next up previous contents
Next: Introduction Up: Contents Previous: Contents   Contents

Notation and abbreviations

For the notation of other quantities either an unambiguous standard notation is used, or the notation is given explicitly in the text. List of the special notation used throughout the Dissertation:

SYMBOL MEANING DEFINITION
$a_{1D}$ one-dimensional $s$-wave scattering length (1.63)
$a_{3D}$ three-dimensional $s$-wave scattering length (1.44)
$a_\perp$ oscillator length of the transverse confinement $a_\perp=\sqrt{\hbar/m\omega_\perp}$
$a_z$ oscillator length of the longitudinal confinement $a_z=\sqrt{\hbar/m\omega_z}$
$D$ [dimensionless] number of dimensions  
$D$ diffusion constant $D = \hbar^2/2m$
$E$ total energy of the system  
$E^{loc}({\bf R})$ local energy of a walker ${\bf R}$ (2.14)
${\cal E}^{loc}(r)$ Bijl-Jastrow component of a local energy (2.40)
${\bf F}({\bf R})$ drift force (2.15)
${{\cal F}_2}(r)$ Bijl-Jastrow component of the drift force (2.39)
$f_1(\r)$ one-body Bijl-Jastrow term see (2.37)
$f_2(r)$ two-body Bijl-Jastrow term see (2.37)
$g_1(r)$ non-diagonal element of the OBDM (1.18)
$g_2(r)$ pair-distribution function (1.19)
$g_3(0)$ value at zero of the three-body correlation function (1.22)
$g_{1D}$ one-dimensional coupling constant (1.69)
$g_{3D}$ three-dimensional coupling constant (1.86)
$L$ size of the system or side of the simulation box  
$m$ particle mass  
$n_{1D}$ linear density $n_{1D} = N/L$
$n_{3D}$ (total) particle density $n_{3D} = N/V$
$N$ number of particles  
${\vec r}_i$ coordinate of $i$-th particle ${\vec r}_i = (x_i,y_i, z_i)$
${\bf R}$ a point in $D N$-dimensional phase space (a walker) ${\bf R}=\{{\vec r_1},...,{\vec r}_N\}$
$R$ range of the potential (1.47)
$R_{m}$ (variational) matching distance  
$R_z$ size of the cloud in $z$-direction  
$R_\perp$ size of the cloud in the transverse direction  
$u(r)$ exponentiation of the Bijl-Jastrov term (2.38)
$V_{ext}(\r)$ external potential  
$V_{int}(\vert{{\vec r}_i-{\vec r}_j}\vert)$ pair-interaction potential  
$\lambda $ anisotropy parameter (aspect ratio) $\lambda=\omega_z/\omega_\perp$
$\mu $ [units of energy] chemical potential  
$\mu $ [units of mass] reduced mass $\mu = m/2$
$\tau$ imaginary time $\tau = i t$
$\phi_0({\bf R})$ ground state many body wave function  
$\psi_T({\bf R})$ trial many body wave function  
$\omega _\perp $ frequency of the transverse harmonic confinement  
$\omega_z$ frequency of the longitudinal harmonic confinement  

List of used abbreviations:


BCS Bardeen Cooper Schriffer
BEC Bose-Einstein condensation
BJ Bijl-Jastrow
DMC Diffusion Monte Carlo
FN-MC Fixed Node Monte Carlo
JS Jastrow-Slater
GP Gross-Pitaevskii
HR hard rod
HS hard sphere
LDA local density approximation
LL Lieb-Liniger
OBDM one-body density matrix
TG Tonks-Girardeau
SR short range
SS soft sphere
SW square well
QMC Quantum Monte Carlo
VMC Variational Monte Carlo


next up previous contents
Next: Introduction Up: Contents Previous: Contents   Contents
G.E. Astrakharchik 15-th of December 2004