next up previous contents
Next: Quantum Monte Carlo technique Up: Correlation functions in a Previous: Dynamic form factor   Contents


Popov's coefficient

The introduced above approach allows us to find the asymptotic behavior of the one-body density matrix and estimate the coefficient of its decay. Within the first order of accuracy we split the average as

$\displaystyle g_1(x) =\langle \sqrt{\hat\rho(x)\hat\rho(0)} e^{i(\hat\varphi(x)...
...t\rho(x)\hat\rho(0)}\rangle
\langle e^{i(\hat\varphi(x)-\hat\varphi(0))}\rangle$     (1.187)

We first calculate the contribution coming from the phase fluctuations

$\displaystyle g_{1}^{phase}(x)=\langle e^{i(\hat{\varphi}(x)-\hat{\varphi}(0))}...
...\hat{b}_{k}(e^{ikx}-1)-\hat{b}_{k}^{\dagger }(e^{-ikx}-1)\right\}
\right\rangle$     (1.188)

The average of the exponent can be further developed by using the relation for the gaussian average $\left\langle \exp A\right\rangle =
\exp \left\langle \frac{1}{2}A^{2}\right\rangle $. At zero temperature excitations are absent and the only nonzero average is $\left\langle \hat{b}%%
_{k}\hat{b}_{k}^{\dagger }\right\rangle =1$. Thus we obtain

$\displaystyle g_{1}^{phase}(x)=\exp \left\{ -\frac{1}{2}\sum_{k}\frac{\pi}{\eta...
...infty}^{\infty}
\frac{\pi(1-\cos kx)}{\eta\vert k\vert}\frac{dk}{2\pi }\right\}$     (1.189)

At this point we substitute the phononic excitation spectrum with the proper Bogoliubov dispersion. This can be done by changing $\eta\rightarrow \eta/\sqrt{ 1+(\hbar k/2Mc)^{2}}$.

$\displaystyle g_{1}^{phase}(x)=\exp \left\{ -\frac{1}{\eta }\int\limits_{0}^{\infty }\frac{%%
\sqrt{1+(\hbar k/2Mc)^{2}}(1-\cos kx)dk}{k}\right\}$     (1.190)

Formally this integral is diverging. However, we will take use of the properties of the $\delta $-function

$\displaystyle \int\limits_{-\infty }^{\infty }\cos \frac{kx}{2\pi }=\delta (x)$     (1.191)

As we are interested in long range asymptotical behavior we subtract (1.191) from the exponent of (1.190) and consider a well-convergent expression

$\displaystyle g_{1}^{phase}(x)=\exp \left\{ -\frac{1}{\eta }\int\limits_{0}^{\infty
}\left( \frac{\sqrt{1+(\hbar k/2Mc)^{2}}}{k}-1\right) (1-\cos kx)\right\} dk$     (1.192)

Partial integration together with the notation $\varepsilon =\hbar/(2xMc)\ll 1$ and $z=kx$ gives

$\displaystyle g_{1}^{phase}(x)=\exp \left\{ -\frac{1}{\eta }\int\limits_{0}^{\infty}
\frac{z-\sin z}{z^{2}\sqrt{1+\varepsilon ^{2}z^{2}}}\right\}\,dz$     (1.193)

This equation can be calculated with non-logarithmic accuracy at $x\gg \xi $ by splitting the integral in three parts $1\ll N \ll 1/\varepsilon$


$\displaystyle \int\limits_{0}^{\infty }\frac{z-\sin z}{z^{2}\sqrt{1+\varepsilon...
...y }\frac{1}{z\sqrt{1+\varepsilon
^{2}z^{2}}}dz=\gamma -1-\ln \frac{\hbar}{4xMc}$     (1.194)

The calculation gives the result

$\displaystyle g_{1}^{phase}(x)
=\left( \frac{e^{1-\gamma }\eta }{8\pi \rho _{0}x}\right) ^{\frac{1}{\eta }}$     (1.195)

In order to take into account the density fluctuations we develop (1.187) using Taylor expansion $\sqrt{1+x} = 1+x/2-x^2/8+{\cal O}(x^3)$, so $g_1^{\rho}(x)
=\langle \sqrt{\hat\rho(x)\hat\rho(0)}\rangle \approx
\rho_0+\fra...
...}\langle
[\hat\rho^{\prime}(x)-\hat\rho^{\prime}(0)]\hat\rho^{\prime}(0)\rangle$. Writing the density operator in terms of creation and annihilation operators (eq. 1.156) we obtain

$\displaystyle g_1^{\rho}(x) =\rho_0+ \frac{1}{4} \sum_k
\frac{\rho_0\hbar\vert ...
...int\limits_0^\infty \frac{\rho_0\hbar k}{Mc(k)}
(\cos kx\!-\!1)
\frac{dk}{2\pi}$      

We substitute the speed of sound for the Bogoliubov dispersion relation $c(k) =
c\sqrt{1+(\hbar k/2Mc)^2}$ and express the integral in dimensionless units $\varepsilon = \hbar/(2Mcx)$, $z=kx$

$\displaystyle \langle \sqrt{\hat\rho(x)\hat\rho(0)}\rangle =\rho_0+ \frac{\rho_...
...c x^2} \int\limits_0^\infty \frac{(\cos z -1)z\,dz}{\sqrt{1+\varepsilon^2 z^2}}$     (1.196)

The integral can be evaluated and expanded for small $\varepsilon$

$\displaystyle \int\limits_0^\infty\frac{(\cos z -1)z\,dz}{\sqrt{1+\varepsilon^2...
... \approx
\frac{1}{\varepsilon^2}+ (-1-3\varepsilon^2 +{\cal O}(\varepsilon^4)),$     (1.197)

where $I_1(z)$ is modified Bessel function of first kind and $L_{-1}(z)$ is modified Struve function.

In terms of the parameter $\eta$ we have

$\displaystyle \langle \sqrt{\hat\rho(x)\hat\rho(0)}\rangle =\rho_0\left(1+\frac{1}{\eta}-\frac{\eta}{16\pi\rho_0^2x^2}\right)$     (1.198)

Combining together (1.195) and (1.198) we obtain finally the expression for the coefficient of the long-range asymptotics

$\displaystyle g_1(x) = \rho_0\left(\frac{e^{1-\gamma}\eta}{8\pi}\right)^{\frac{...
...a}-\frac{\eta}{16\pi\rho_0^2x^2}\right)
\left(\rho_0 x\right)^{-\frac{1}{\eta}}$     (1.199)

In order to get an expression for the one-body density matrix at a finite temperature, one should account for thermal quasi-particle excitations. The long-range excitations are phonons and obey Bose-Einstein statistics $\langle \hat
b^\dagger_k \hat b\rangle = (\exp(\hbar k c/k_B T)-1)^{-1}$. We are interested at the long-range behavior of the one-body density matrix, which corresponds to the limit $k\to 0$. In this conditions one can do a Taylor expansion and get $\langle
\hat b^\dagger_k \hat b\rangle = k_B T/\hbar \vert k\vert c$. The calculation of the average (1.188) leads to appearance of an additional term, which depends on the temperature (compare with (1.189)):

$\displaystyle g_{1}^{phase}(x)=\exp \left\{-\int\limits_{-\infty}^{\infty}
\fra...
...os kx)(1+2k_B T/\hbar\vert k\vert c)}{\eta\vert k\vert}\frac{dk}{2\pi }\right\}$     (1.200)

As we will show, the additional thermal suppression becomes dominating and will change the asymptotic behaviour of $g_1(x)$ significantly. The effect of the thermal phase fluctuations can be separated:

$\displaystyle g_{1}^{phase}(x)=
g_{1,T=0}^{phase}(x)
\exp \left\{-\int\limits_{...
...(1-\cos kx)2k_B T/\hbar\vert k\vert c}{\eta\vert k\vert}\frac{dk}{2\pi}\right\}$     (1.201)

where the zero temperature part $g_{1,T=0}^{phase}(x)$ is readily given by the formula (1.195). The integral in (1.201) is well behaved and can be easily calculated. It turns out to be proportional to $-\vert x\vert$ leading to exponential decay of the thermal fluctuation part at large distances:
$\displaystyle g_{1}^{phase}(x)
=\left( \frac{e^{1-\gamma }\eta }{8\pi\rho_0x}\right)^{\frac{1}{\eta}}
\exp\left(-\frac{\vert x\vert}{\xi_T}\right)$     (1.202)

The characteristic thermal decay length $\xi_T$ is inversely proportional to the temperature:

$\displaystyle \xi_T = \frac{2\hbar^2\rho_0}{mk_BT}=(4\pi\rho_0\lambda^2)^{-1},$     (1.203)

where the de Broglie thermal length is defined in the usual way $\lambda =
\hbar/\sqrt{2\pi m k_B T}$.


next up previous contents
Next: Quantum Monte Carlo technique Up: Correlation functions in a Previous: Dynamic form factor   Contents
G.E. Astrakharchik 15-th of December 2004