next up previous contents
Next: Acknowledgements Up: PhD Previous: Expansions   Contents

Obtaining the momentum distribution from $g_1(r)$

The asymptotic behaviour of the one body density matrix of the Lieb gas is

\begin{displaymath}
\rho(x) = \frac{C}{x^\alpha}, \qquad x \gg 1
\end{displaymath} (11.1)

In order to calculate the momentum distribution one has to calculate the Fourier transform of it

\begin{displaymath}
n(k) = 2 \int_0^\infty \cos kx \rho(x) dx
\end{displaymath} (11.2)

This integral can be calculated numerically up to some cut-off distance $L$. Let us suppose, that at distances larger than $L$ the asymptotic behavior is valid (B.1). Than one can calculate the ``tail'' integral analytically11.1by a substitution $t = e^{i\pi/2}kx$

$\displaystyle \int\limits_L^\infty \frac{\cos kx\,dx}{x^\alpha}
= Re \int\limit...
...dt
= Re \frac{e^{-i\frac{\pi}{2}(1-\alpha)}\Gamma(1-\alpha, ikL)}{k^{1-\alpha}}$     (11.3)

Here the incomplete Gamma function is defined as

$\displaystyle \Gamma(\alpha, L) = \int\limits_L^\infty e^{-t} t^{\alpha-1}dt$     (11.4)

If the if set $L=0$ then the integral can be simplified11.2

\begin{displaymath}
\int_0^\infty \frac{\cos kx}{x^{\alpha}} dx =
\frac{\Gamma(1...
...)}{k^{1-\alpha}} \cos \frac{\pi(1-\alpha)}{2}, k>0, 0<\alpha<1
\end{displaymath} (11.5)

Let us derive an expansion of the incomplete Gamma function in terms of $1/(kL)$. For us it is convenient to use following definition of the function

$\displaystyle f(k,L,\alpha) = \int\limits_L^\infty \frac{\cos\,kx}{x^\alpha}\,dx$     (11.6)

Integrating it by parts two times we obtain11.3

$\displaystyle f(k,L,\alpha) =
\frac{1}{kL^\alpha}
\left(-\sin\,kL+\frac{\alpha}...
...c{\alpha(\alpha+1)}{k^2}
\int\limits_L^\infty \frac{\cos\,kx}{x^{\alpha+2}}\,dx$     (11.7)

Here the last term has the same form as (B.6). And can be expanded in a similar way. Continuation of this expansion leads to formula

$\displaystyle f(k,K,\alpha) =
\sum\limits_{n=0}^\infty
\frac{(-1)^n}{kL^\alpha}...
...kL)^{2n+1}}
-\sin\,kL\frac{\alpha(\alpha+1)...(\alpha+2n-1)}{(kL)^{2n}}
\right)$     (11.8)

Another way to present it is

$\displaystyle f(k,K,\alpha) =
\frac{1}{kL^\alpha}
\sum\limits_{n=0}^\infty
\frac{\mathop{\rm Im} i^ne^{-ikL}}{(kL)^n}
\frac{(\alpha+n-1)!}{(\alpha-1)!}$     (11.9)

Let us write explicitly

$\displaystyle \mathop{\rm Im} i^ne^{-ikL} = (-1)^{\mathop{\rm mod}(n+1,2)+1} f_n(kL)$     (11.10)

where $\mathop{\rm mod}$ operation is integer division and the function $f_n$ is defined as
$\displaystyle f_n(x) =
\left\{
\begin{array}{lr}
\sin x,&n=0,2,4,...\\
\cos x,&n=1,3,5,...
\end{array}\right.$     (11.11)

Looking at the structure of the expansion (B.9) one finds out that the sum converges only is $kL>1$. The factorial dependence of the numerator on the order of the term $n$ leads to divergence of the entire sum. Let us find order of the term $n_{cr}$ when the summation procedure should be stopped. The condition is

$\displaystyle \frac{\partial}{\partial n}
\frac{(\alpha+1-n)!}{(kL)^n} = 0$     (11.12)

In order to proceed further we will take use of the Stirling formula

$\displaystyle n! = \sqrt{2\pi n} n^n e^{-n}$     (11.13)

Simple calculation gives

$\displaystyle \ln(\alpha+n_{cr}-1)+\frac{1}{2(\alpha+n_{cr}-1)} = \ln kL -1$     (11.14)

Now we assume that $n$ is much larger than one, so we can neglect the second term. Finally we obtain

$\displaystyle n_{cr} = kL/e$     (11.15)

Another approach for the calculation of the integral is by modifying the integration contour. First of all, let us expand the cosine into sum of complex exponents

$\displaystyle \int_L^\infty \frac{\cos x\,dx}{x^\alpha} =
\frac{1}{2}\int_L^\in...
...c{e^{ix}\,dx}{x^\alpha} +
\frac{1}{2}\int_L^\infty \frac{e^{-ix}\,dx}{x^\alpha}$     (11.16)

Let us calculate the first integral in this sum.

$\displaystyle I_1 = \int\limits_L^\infty \frac{e^{ix}\,dx}{x^\alpha} =
\int\limits_0^\infty \frac{e^{-y} e^{iL}\,idy}{(iy+L)^\alpha},$     (11.17)

where we introduced notation $x=iy+L$, which is a complex variable $x =
\sqrt{y^2+L^2} e^{i\mathop{\rm arctg}\nolimits \frac{y}{L}}$, so
$\displaystyle I_1 =
\int\limits_0^\infty e^{-y}(y^2+L^2)^{-\frac{\alpha}{2}}
e^{i(L-\alpha\mathop{\rm arctg}\nolimits \frac{y}{L})}\,idy=$     (11.18)
$\displaystyle = \int\limits_0^\infty e^{-y}(y^2+L^2)^{-\frac{\alpha}{2}}
\left[...
...
i\cos\left(\alpha\mathop{\rm arctg}\nolimits \frac{y}{L}-L\right)
\right]
\,dy$     (11.19)

The second integral in (B.16) can be calculated by means of the substitution $x = -iy + L = \sqrt{y^2+L^2}e^{-i\mathop{\rm arctg}\nolimits \frac{y}{L}}$

$\displaystyle I_2 = \int\limits_L^\infty \frac{e^{-ix}\,dx}{x^\alpha} =
\int\li...
...c{\alpha}{2}}
e^{i(-L+\alpha\mathop{\rm arctg}\nolimits \frac{y}{L})}\,(-i)dy
=$     (11.20)
$\displaystyle = \int\limits_0^\infty e^{-y}(y^2+L^2)^{-\frac{\alpha}{2}}
\left[...
...
i\cos\left(\alpha\mathop{\rm arctg}\nolimits \frac{y}{L}-L\right)
\right]
\,dy$     (11.21)

The imaginary parts of the integrals (B.19, B.21) cancel each other and the result is real

$\displaystyle \int_L^\infty \frac{\cos kx\,dx}{x^\alpha}
= k^{\alpha-1}\int\lim...
...pha}{2}}
\sin\left(\alpha\mathop{\rm arctg}\nolimits \frac{y}{kL}-kL\right)\,dy$     (11.22)


next up previous contents
Next: Acknowledgements Up: PhD Previous: Expansions   Contents
G.E. Astrakharchik 15-th of December 2004