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INTRODUCTION

This is a survey of past and ongoing research on mathematical modeling of
hysteresis phenomena; it aims to illustrate some aspects of the mathematics
of hysteresis and of its applications, also in connection with partial differ-
ential equations (PDEs). Following Krasnosel’skiı̆ [1], first we introduce
the concept of hysteresis operator and study some examples, then we estab-
lish connections with applications, finally we deal with related differential
equations.
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We concentrate our attention upon three phenomena of relevant phys-
ical and engineering interest: hysteresis in continuum mechanics, in fer-
romagnetism, and in filtration through porous media. The first two topics
have been dealt with in some of the monographs on hysteresis that have
appeared in the last years [1–9]. These works regard hysteresis as a uni-
fying mathematical concept for a number of phenomena; a large physical
and technical literature however does not refer to this (more recent) math-
ematical approach.

We review some general features of elasto-plasticity and micromag-
netism, and introduce a mathematical model of hysteresis in filtration
through porous media. Apparently the latter topic has received little atte-
ntion so far; its analysis is still open, and we outline a recent approach.
The outcome of most of these models consists of PDEs that include hys-
teresis nonlinearities. In order to illustrate the main analytic techniques
that are known for equations of that type, here we study some parabolic
and hyperbolic PDEs that contain hysteresis operators.

Here is our plan. In Section 1.1 we define hysteresis as rate-independent
memory, introduce the notion of hysteresis operator, illustrate some of its
properties, and also define the more general class of hysteresis relations.

In Section 1.2 we briefly deal with the classic Duhem model; because
of its simplicity, this seems to be a good example to start with, although it
exhibits some drawbacks.

Section 1.3 is devoted to elasto-plasticity. First we define two basic
hysteresis operators, the stop and the play; by means of series and paral-
lel combinations, we then construct the larger class of Prandtl--Ishlinskiı̆
models and the corresponding hysteresis operators. This setting is quite
peculiar, since a number of results can be derived in the framework of the
theory of Convex Analysis, that we review in the Appendix.

In Section 1.4 we deal with discontinuous hysteresis; we introduce
relay operators, the Preisach model, and their vector extensions. We also
provide a weak formulation, which turns out to be especially convenient
in the analysis of related problems at the PDEs, cf. Section 1.10.

In Section 1.5 we outline the classic theory of ferromagnetism known
as micromagnetism, and review the Landau--Lifshitz equation. This model
accounts for a relaxation dynamic and thus is rate-dependent, but never-
theless is at the basis of ferromagnetic hysteresis; this apparent contradic-
tion is explained by the shortness of the time-scale of relaxation. By adding
a friction term and letting the relaxation time vanish, we derive a purely
rate-independent mesoscopic model of ferromagnetism.

In Section 1.6 we discuss some general properties of hysteresis models
with internal variables, which are represented by a population of hysteretic
elements; this class includes the Prandtl--Ishlinskiı̆ and Preisach models.
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In Section 1.7 we illustrate how feedback and nonmonotonicity can
generate hysteresis, and discuss how hysteresis may arise in space-
distributed systems.

The next three sections introduce the reader to the analysis of PDEs
with hysteresis. We begin in Section 1.8 by studying a simple semilinear
transport equation with continuous hysteresis. In Section 1.9 we then deal
with a quasilinear parabolic equation with continuous hysteresis, and in
Section 1.10 with a quasilinear hyperbolic equation of second order with
discontinuous hysteresis. The latter is also the weak formulation of a free
boundary problem. For each of these equations we prove existence of a
solution and, for the two former ones, also its uniqueness.

In Section 1.11 we deal with hysteresis in porous-media filtration; we
introduce two rate-dependent modifications of a hysteresis model, and
discuss a related boundary- and initial-value problem.

In Section 1.12 we draw conclusions, and point out the novelties that
have been included in this survey, as well as some open problems; we also
indicate some very recent advances in the study of hysteresis.

In these developments, notions and results of convex calculus and
variational inequalities are often used; we review some elements of that
theory in the Appendix.

These notes are far from having any ambition of completeness, and
rather aim to introduce the reader to a research in full development. Refer-
ences to the literature may be found especially in the final parts of Sections
1.3, 1.5 and 1.11 and of the Appendix. An effort has been made to allow
for independent reading of different sections, and to make a large part of
this work accessible to a nonmathematical audience. Of course, to make
an effort does not mean to attain a result... actually, this has not even been
tried in Sections 1.8, 1.9 and 1.10 that are devoted to nonlinear PDEs with
hysteresis.

1.1 HYSTERESIS OPERATORS

In this section we characterize hysteresis as rate-independent memory; we
then define hysteresis operators, along the lines of Krasnosel’skiı̆ and co-
workers (see e.g. [1]), and discuss some of their properties.

1.1.1 HYSTERESIS AND HYSTERESIS LOOPS

Hysteresis occurs in several phenomena in physics, chemistry, bio-
logy, engineering and so on. In physics for instance we encounter it in
plasticity, friction, ferromagnetism, ferroelectricity, superconductivity,
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adsorption and desorption, and in the recently studied materials with
shape memory. More generally, hysteresis arises in phase transitions.
Many other examples are known and wait for mathematical investigation.

Let us consider a simple setting, namely a system whose state is char-
acterized by two scalar variables, u and w, which we assume to depend
continuously on time, that we denote by t. Here we assume a purely phe-
nomenologic point of view: we regard the system as a (deterministic) black
box, neglect its internal constitution, and assume that the evolution of w
is determined by that of u. In the terminology of system theory, u is then
referred to as input and w as output. In the final part of this section we
shall also consider a more general approach.

Let us outline a classic measurement apparatus, cf. e.g. [10]. By ap-
plying an electric current through a conducting solenoid wound around a
ring-shaped ferromagnetic material, one can determine a coaxial magnetic
field, �H, in the ferromagnet and control its intensity, u. This magnetic field
determines a magnetic induction field, �B, in the ferromagnet. By winding
a secondary coil around the ring and connecting it to a fluxometer, one can
then measure the intensity w of �B. In first approximation, one can assume
that the fields �H and �B are uniform within the ferromagnet, and regard
them just as functions of time.

In Fig. 1.1 we sketch the evolution of the pair (u,w) in a simple test. If u
increases from u1 to u2, the pair (u,w)moves along a monotone curveABC;
conversely, if u decreases from u2 to u1, then (u,w)moves along a different
monotone curve CDA. Moreover, if u inverts its motion when u1 < u(t) <
u2, then (u,w) moves into the interior of the hysteresis region, L, namely
the part of the (u,w)-plane that is bounded by the major loopABCDA. (The
maximum of −uw along the hysteresis loop might be regarded as a crude
measure of the thickness of this hysteresis loop.) This qualitative behavior
must be quantitatively represented by means of specific models. Here we
assume that the pair (u,w) moves along continuous curves, and speak of
continuous hysteresis; afterwards we shall also deal with discontinuous
hysteresis.

It is convenient to assume that any point of the hysteresis region L
is accessible to the pair (u,w). In typical cases, the system is controlable,
that is, by means of a suitable choice of the input function u the system
can be driven from any initial point of L to any final point of L. In any
case we assume that the evolution of w is uniquely determined by that
of u; this will be made precise by formulating the concept of hysteresis
operator.

In this simplified setting we are assuming that at any instant t the state
of the system is completely characterized by the pair (u(t), w(t)). This is a
severe restriction, and actually fails in several examples of major physical
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FIGURE 1.1 Continuous hysteresis loop.

interest, as we shall see. Later on we shall encounter models that also
account for the evolution of internal variables.

Memory

At any instant t, w(t) depends on the previous evolution of u and on the
initial state of the system; we can express this as follows:

w(t) = [F(u,w0)
]
(t) ∀t ∈ [0, T]. (1.1)

We assume that

(u(0), w0) ∈ L, [F(u,w0)
]
(0) = w0.

Here F(·, w0) represents an operator that acts among suitable spaces of
time-dependent functions, for any fixed w0. We also assume that F(·, w0)
is causal: for any t ∈ [0, T], the output w(t) is independent of u|[t,T], i.e.,

u1
∣
∣[0,t] = u2

∣
∣[0,t] ⇒ [F(u1, w

0)
]
(t) = [F(u2, w

0)
]
(t). (1.2)

1.1.2 RATE-INDEPENDENCE

We require the path of the pair (u(t), w(t)) to be invariant with respect to
any increasing diffeomorphism � : [0, T] → [0, T], i.e.,

F(u ◦ �, w0) = F(u,w0) ◦ � in [0, T]; (1.3)
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in other terms, for any fixed w0,

F(·, w0) : u �→ w ⇒ F(·, w0) : u ◦ � �→ w ◦ �.

This means that at any instant t, w(t) only depends on u([0, t]) and on the
order in which values have been attained before t. We name this prop-
erty rate-independence, and regard it as the main characteristic of hysteresis.
It is essential for representing hysteresis graphically in the (u,w)-plane,
like in Fig. 1.1, without the need of relating the different branches to any
specific time-law of the input u(t). In particular, this entails frequency-
independence: if the input function u is periodic, the w versus u relation
does not depend on the frequency. (However, notice that here a frequency
analysis via the classic integral transformations does not seem natural,
since hysteresis is a nonlinear phenomenon.)

The above definition of hysteresis includes cases in which the out-
put anticipates the input, instead of lagging behind it; for instance, this
occurs in univariate elasto-plasticity, if strain and stress are respectively
represented on the abscissa and ordinate axes. However, the orientation
of hysteresis loops is not intrinsic, for it depends on the choice of which
variable is regarded as input and which one as output, and in many cases
either choices are admissible.

Although most typical examples of hysteresis phenomena exhibit hys-
teresis loops, the occurrence of loops should not be regarded as an essen-
tial feature of hysteresis. Indeed, one can easily conceive rate-independent
models in which no loop occurs (cf. (1.8) below). In some cases the hys-
teresis region is unbounded, as we shall see for some relevant examples
in Section 1.3. Rate-dependent loops may also occur; for instance, electric
losses due to eddy currents cannot be ascribed to hysteresis.

For the hysteresis operator F it is also natural to assume the following
semigroup property:






∀(u,w0) ∈ Dom(F),∀[t1, t2] ⊂]0, T],
setting w(t1) :=

[F(u,w0)
]
(t1),[F(u,w0)

]
(t2) =

[F(u(t1 + ·), w(t1))
]
(t2 − t1).

(1.4)

Nondegenerate hysteresis relations are irreversible, that is, they are not
invariant for time-reversal; in fact the pair (u,w) moves along branching
and merging paths. Hysteresis is typically associated with dissipation; for
instance in ferromagnetism and in elasto-plasticity, in periodic processes,
at any cycle an amount of energy proportional to the area of the region
encircled by the hysteresis loop is dissipated.
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1.1.3 MEMORY SEQUENCES

For any piecewise monotone input function u, on account of rate-
independence, at any instant t̃∈ ]0, T] the output of a hysteresis opera-
tor is determined by the relative maxima and minima of u in the time
interval [0, t̃], namely, by the (finite) sequence of values attained by u at
the instants {ti} (ti < t̃) at which u had inverted its monotonicity. {u(ti)} is
accordingly named a memory sequence; it contains all the information that
is needed to determine the output of any hysteresis operator, on account
of the rate-independence of the latter. Anyway, it is known that (either
finite or infinite) sequences of local maxima and minima like that may fail
to exist even for continuous functions.

One then defines reduced memory sequences as follows. For any u ∈
C0([0, T]) and any t̃ ∈]0, T], let t1 equal the last instant at which |u| attains
its maximum in [0, t̃], and let u1 equal the corresponding value of u. For
definiteness, let us assume that u(t1) > 0. Let then t2 equal the last instant
at which |u| attains its minimum in [t1, t̃], and u2 equal that minimum.
Next let t3 equal the last instant at which |u| attains its maximum in [t2, t̃],
and let u3 equal that maximum; and go on alternating local maxima and
local minima of u. In this way two (either finite or infinite) sequences {tj}
and {u(tj)} are constructed:

0�t1 < t2 < · · · < tj < · · · < t̃
u(t2) < · · · < u(t2j) < · · · < u(t̃)
u(t̃) < · · · < u(t2j+1) < · · · < u(t1),

(1.5)

and, if the number of steps is infinite,

tj ↗ t̃, u(t2j)↗ u(t̃), u(t2j+1)↘ u(t̃) as j→ ∞. (1.6)

For some hysteresis operators (but not for all), at any instant the output
is determined by the reduced memory sequence of the input.

1.1.4 HYSTERESIS AND MONOTONICITY

The monotonicity of the output versus input relation plays an important
role in the analysis of many nonlinear operators. There are several forms of
monotonicity, and for memory operators the range of possibilities is even
larger.

The standard L2-monotonicity property
∫ T

0
[F(u1)− F(u2)](u1 − u2)dt�0 ∀u1, u2 ∈ Dom(F) (1.7)



8 CHAPTER 1 Mathematical Models of Hysteresis

is too strong a requirement for hysteresis operators. The following simple
counterexample should convince the reader that a rate-independent oper-
ator is monotone with respect to the usual scalar product of L2(0, T) only
if it is reduced to a superposition operator, namely, only if it is the form
F(u) = � ◦u for some function � :R → R. In other terms, no genuine hys-
teresis operator is L2-monotone. (An example of the devastating power of
rate-independence...)

Let
F :W1,1(0, T)×R →W1,1(0, T) : (u,w0) �→ w

be defined by means of the following Cauchy problem

dw
dt

=
(du

dt

)+
in ]0, T[, w(0) = w0 (1.8)

(here x+ := (x + |x|)/2 for any x ∈ R). Causality and rate-independence
are straightforward, thus F is a hysteresis operator; actually, this is an
especially simple example of the Duhem operator, cf. Section 1.2. Let us
fix any T > 3�/2 and set

u1(t) := sin t ∀t ∈ [0, 3�/2], u1(t) := −1 ∀t ∈ [3�/2, T],
u2(t) := 0 ∀t ∈ [0, T];

cf. Fig. 1.2. Setting wi := F(ui, 0) for i = 1, 2, we have

[w1(t)− w2(t)][u1(t)− u2(t)] = −1 ∀t�3�/2.

For T large enough the inequality (1.1.7) then fails.
This construction can easily be extended to virtually any nondegener-

ate hysteresis operator. It suffices to select

(i) two points (u′, w′), (u′′, w′′) such that (w′′ − w′)(u′′ − u′) < 0, and
(ii) an input function u1 and a t̃ > 0 such that

u1(0) = u′, u1(t) = u′′ ∀t�t̃, [F(u1, w
′)
]
(t̃) = w′′.

(That is, the input u1 takes the system from (u′, w′) at t = 0 to (u′′, w′′) at
t = t̃.)

Finally, let us set u2(t) ≡ u′ in R+, so that F(u2, w
′) ≡ w′. This yields

∫ T

t̃

([F(u1, w
′)
]− [F(u2, w

′)
])
(u1 − u2)dt

= (T − t̃)(w′′ − w′)(u′′ − u′) < 0 ∀T > t̃;
if T is large enough, we then get

∫ T

0

([F(u1, w
′)
]− [F(u2, w

′)
])
(u1 − u2)dt < 0.
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FIGURE 1.2 Counterexample to L2-monotonicity: the pair (u,w) moves from
(0, 0) to (−1, 1) via (1, 1) in the time interval [0, 3�/2], and stays there for t > 3�/2.
If T is large enough, then

∫ T
0 (w1 − w2)(u1 − u2)dt < 0.

1.1.5 OTHER MONOTONICITY PROPERTIES

Several hysteresis operators are order-preserving:

∀(u1, w
0
1), (u2, w

0
2) ∈ Dom(F ),∀t ∈]0, T],

u1�u2 in [0, t], w0
1�w0

2 ⇒ [F(u1, w
0
1)
]
(t)�

[F(u2, w
0
2)
]
(t).

(1.9)

The following property of piecewise monotonicity preservation (more
briefly, piecewise monotonicity) seems especially appropriate for hystere-
sis operators:

∀(u,w0) ∈ Dom(F ),∀[t1, t2] ⊂ [0, T],
if u is either nondecreasing or nonincreasing in [t1, t2],
then the same holds for F(u,w0);

(1.10)

i.e.,

u,w := F(u,w0) ∈W1,1(0, T) ⇒ du
dt

dw
dt

�0 a.e. in ]0, T[. (1.11)

This simply means that hysteresis branches are nondecreasing.
Let us say that a hysteresis operator F is piecewise antimonotone

whenever −F is piecewise monotone. Piecewise monotonicity (or anti-
monotonicity) is a necessary but nonsufficient condition for invertibility
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of a hysteresis operator; that is, any hysteresis operator is invertible only
if it is either piecewise monotone or piecewise antimonotone, but neither
property suffices to guarantee the invertibility, even if monotonicity (or
antimonotonicity) is strict.

It is easy to see that, for any hysteresis operator, order preservation
entails piecewise monotonicity. The converse fails: Duhem operators (cf.
Section 1.2) exhibit counterexamples. One might also wonder whether
piecewise monotonicity entails rate-independence. The following coun-
terexample, due to P. Krejčí, answers this question in the negative:

[F(u)](t) = tu(t)−
∫ t

0
u(�)d� ∀u ∈ C0([0, T]). (1.12)

For any u ∈W1,1(0, T),

w := F(u) ∈W1,1(0, T), w(t) =
∫ t

0
�

du
d�
(�)d� in [0, T];

thus (1.1.11) holds. However F is rate-dependent (thus it is not a hysteresis
operator).

1.1.6 RATE-DEPENDENT CORRECTIONS

The definition of rate-independence excludes any viscous-type memory,
such as that represented by time-convolution. However, even in typical
hysteresis phenomena, like ferromagnetism, ferroelectricity, and plasticity,
memory effects are not purely rate-independent, for hysteresis is coupled
with (what we might loosely define as) viscosity-type effects. One might
tentatively represent the output as the sum of hysteretic and viscous com-
ponents:

w = Ftot(u) := Fhys(u)+ Fvis(u). (1.13)

This is a rather crude extension. Other expressions might be considered,
too: for instance, one might consider a relaxation dynamics of the form

w+ ε1
dw
dt

= F(u)+ ε2
du
dt
, (1.14)

ε1, ε2 being relaxation constants. In Section 1.11 we shall discuss examples
of this rate-dependent correction in connection with hysteresis in porous
media filtration.

Usually rate-dependent effects get larger as the rate increases, and
vanish as the rate vanishes. Therefore hysteresis is more evident at slow
regimes, whereas it may be dominated by viscosity at fast regimes. In
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applications hysteresis appears only if the time-scale is sufficiently slow,
and we are induced to regard as hysteretic those phenomena for which the
rate-independent component prevails at typical regimes.

Several continuous hysteresis operators are constructed as follows:
first the operator is defined for piecewise monotone (equivalently, piece-
wise linear) input functions. A uniform continuity property is then estab-
lished; this allows one to extend the operator by continuity to a complete
function space, usually either C0([0, T]) or W1,1(0, T). This extension pre-
serves several properties: causality, rate-independence, piecewise mono-
tonicity, and so on.

1.1.7 HYSTERESIS RELATIONS

So far we have assumed that the evolution of the variable w is determined
by that ofu, and accordingly regardedu as input andw as output. However
this is not always the case, and we outline a more general point of view, in
which the functions u and w are set on equal ground.

We deal with functionsu andw that are elements of some Banach space,
B, of functions of time (e.g., B = C0([0, T]) or B = W1,1(0, T)). We assume
that we are given a functional � : B2×[0, T] → R, and constrain a pair
(u,w) ∈ B2 by setting

�(u,w, t) = 0 ∀t ∈ [0, T]. (1.15)

In general �(u,w, t) depends not only on u(t) and w(t) at the instant t,
but also on the evolution of both variables; namely, �(u,w, ·) is a memory
functional. We say that (1.15) is a hysteresis relation if � is causal and
rate-independent. Here by causality we mean that

∀t ∈ [0, T], u1
∣
∣[0,t] = u2

∣
∣[0,t], w1

∣
∣]t,T] = w2

∣
∣]t,T]

⇒ �(u1, w1, t) = �(u2, w2, t); (1.16)

thus �(u,w, t)does not depend on u
∣
∣]t,T] andw

∣
∣]t,T]. By rate-independence

we mean that, for any increasing smooth diffeomorphism � : [0, T] →
[0, T],

�(u ◦ �, w ◦ �, t) = �(u,w,�(t)) ∀t ∈ [0, T]; (1.17)

this generalizes (1.3). Any hysteresis operator F : B × R → B trivially
determines the hysteresis relation

�(u,w, t) := [F(u,w(0))](t)− w(t) ∀t ∈ [0, T],∀(u,w) ∈ B2. (1.18)
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If we allow the operator � to be multivalued, then we get a wide class of
hysteresis models.

Hysteresis can also be represented without using the notion of hys-
teresis operator (or relation). In Sections 1.4 and 1.5, dealing with discon-
tinuous hysteresis and with micromagnetism, we shall see two alternative
formulations.

1.1.8 HISTORICAL NOTE

Rate-dependent memory has been known to mathematicians for a long
time: Volterra’s pioneering studies date back to the beginning of the last
century. On the other hand the history of hysteresis (i.e., rate-independent
memory) is quite short: mathematical developments have been lagging
behind those of physicists and engineers. Of course, mathematics has been
used in works of applied scientists on hysteresis, but there it occurred more
as calculus than in the form of functional analysis.

Apparently, it was only in 1966 that hysteresis was first given a func-
tional approach. This was due to an engineering student: in [11,12] R. Bouc
modeled several hysteresis phenomena, regarding hysteresis as a map be-
tween function spaces. The Bouc hysteresis operator is briefly reviewed in
Section 1.2.

In 1970 M.A. Krasnosel’skiı̆ and co-workers [13] first formulated (what
now is called) the Prandtl--Ishlinskiı̆ model in terms of hysteresis opera-
tors. Then Krasnosel’skiı̆, Pokrovskiı̆ and others conducted a systematic
analysis of the mathematical properties of these operators. In the period
1970--80, they published a number of papers, several of which also ap-
peared in English translation. This formed the basis for their 1983 mono-
graph [1], which was translated into English in 1989. In the 1980s some
western applied mathematicians and mathematical physicists also began
to study hysteresis models issued from applications, especially PDEs with
hysteresis. In recent years, research on models of hysteresis phenomena
has been progressing, see e.g. the monographs [1–9].

The notion of hysteresis operator (or relation) raises several
questions: the adequacy of these operators to represent specific applica-
tive phenomena, the analysis of their properties (continuity in various
functional spaces, construction of the closure of discontinuous hystere-
sis operators, and so on), their characterization, the study of their
operator structure, the identification of parameters, and so on. Special
attention needs to be paid to both ordinary equations and PDEs that in-
clude these operators. Something has been done, but much more is left
to do.
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1.2 THE DUHEM MODEL

In this section we outline a hysteresis model, which seems to be due to the
nineteenth-century physicist P. Duhem [15]; this model has an especially
simple analytic representation, but also exhibits some drawbacks which
reduce its applicability. We also mention a related model of hysteresis due
to R. Bouc [11].

For any differentiable input function u(t) and any initial value w0 of
w, we define the output function w(t) to be the solution of the following
initial value problem:






dw
dt

= g1(u,w)
(du

dt

)+ − g2(u,w)
(du

dt

)−
in ]0, T[

w(0) = w0,

(1.19)

where we set x+ := (|x| + x)/2 and x− := (|x| − x)/2 for any x ∈ R. Here g1
and g2 are prescribed (nonnegative) functions, and are assumed to be so
regular that the Cauchy problem (1.19) has one and only one solution; cf.
Theorem 1.2.1 below.

As we saw in Section 1.1, irreversibility is one of the main features
of hysteresis; we thus assume that (1.19) only holds for increasing time,
and impose the constraint dt > 0 throughout this section. Multiplying
both members of (1.19)1 by dt, the positive and negative parts are then
preserved, and we formally get the equivalent equation

dw
du

=
{
g1(u,w) if du > 0

g2(u,w) if du < 0
in ]0, T[. (1.20)

In this way we have eliminated time, and rate-dependence has become
evident. Under appropriate regularity conditions, two systems of curves
are obtained in the (u,w)-plane by integrating the fields g1 and g2; these
curves respectively represent the paths of evolution of the pair (u,w) for
increasing and decreasingu. These curves may span either the whole plane
R2 or just a subset.

By setting 




sign0(x) := −1 if x < 0,
sign0(0) := 0,
sign0(x) := 1 if x > 0,

.






g(u,w,−1) := g2(u,w),
g(u,w, 0) := 0,
g(u,w, 1) := g1(u,w),

∀(u,w) ∈ R2,
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we can also write (1.20) in the form

dw
du

= g
(
u,w, sign0

(du
dt

))
in ]0, T[ (dt > 0), (1.21)

or equivalently,

dw
dt

= h
(
u,w,

(du
dt

))
in ]0, T[ (dt > 0); (1.22)

here the function h is positively homogeneous of degree one with respect to
its third argument. These equivalent representations of the equation (1.19)
illustrate a connection between the sign function, positive homogeneity
of degree one, and rate-independence: these are basic ingredients of the
analytic representation of hysteresis, and in the sequel we shall encounter
other examples of this interplay.

In this model at any instant t the state is characterized by the pair
(u(t), w(t)) without any internal variable. This is not always satisfactory
for applications, as is shown by the following example. Let us move from
the origin of the (u,w)-plane and, by a suitable choice of the input func-
tion u, come back to the origin along a closed curve. According to (1.19),
the system should forget this process; the same should occur for any other
closed loop in the (u,w)-plane. But, for several ferromagnetic materials ex-
perimental tests are at variance with this prediction. This suggests that for
those materials the state is not completely characterized by the pair (u,w),
and that the evolution of one or more interior parameters should also be
described by the model. In the next sections we shall see some examples
of hysteresis models that include internal variables. Nevertheless, some
physicists and engineers use relations of the form (1.19) to represent ferro-
magnetic hysteresis, maybe because of its simplicity; one can then expect
that the drawback we just pointed out might be quantitatively negligible
for some materials and for certain processes.

If g1, g2�0 then the Duhem operator D is piecewise monotone, cf.
(1.10); but simple examples show that it needs not be order-preserving,
that is,

u1�u2 in [0, T] �⇒ D(u1, w
0)�D(u2, w

0) in [0, T]. (1.23)

Moreover, in general the output of the Duhem operator is not determined
by the reduced memory sequence of the input, defined in Section 1.1. (We
leave the search for simple counterexamples to the reader.)

1.2.1 CONFINEMENT

Dealing with (1.19) we allowed the pair (u,w) to vary in the whole R2. A
more interesting model is obtained if (u,w) is confined to a region L ⊂ R2



1.2 THE DUHEM MODEL 15

that is comprised between the graphs of two monotone continuous func-
tions. This can be represented as follows. Let us assume that we are given
two functions

��, �r : R → [−∞,+∞] continuous and nondecreasing, �r���, (1.24)

and set

J(u) := [�r(u), ��(u)], �(u,w) := IJ(u)(w) ∀(u,w) ∈ R2

(see the Appendix for the definition of the indicator function IJ(u)). We then
couple the rate-independent differential inclusion

dw
dt

∈ �(u,w)+ g1(u,w)
(du

dt

)+ − g2(u,w)
(du

dt

)−
in ]0, T[ (dt > 0)

(1.25)
with the initial condition (1.19)2. By Proposition A.9, the inclusion (1.25)
is equivalent to the following variational inequality (still with dt > 0):






w ∈ J(u) in ]0, T[; ∀v ∈ J(u) in ]0, T[,
[

dw
dt

− g1(u,w)
(du

dt

)+ + g2(u,w)
(du

dt

)−]
(w− v)�0 in ]0, T[.

(1.26)
The differential equation (1.22) can easily be extended to vectors. For

any N > 1, it suffices to replace the scalar function h : R3 → R by a vector
function �h : (RN)3 → RN that is positively homogeneous of degree one
with respect to its third argument.

1.2.2 SOME PROPERTIES OF THE DUHEM OPERATOR

Here we just state a result, and refer to [8; Chapter V] for details.

THEOREM 1.2.1. Assume that g1, g2 are continuous, and that

|gi(u,w1)− gi(u,w2)|�L(u)|w1 − w2| ∀u,w1, w2 ∈ R (i = 1, 2), (1.27)

with L : R → R+ continuous. Then, for any u ∈ W1,1(0, T) and any w0 ∈ R,
there exists a unique w := D(u,w0) ∈W1,1(0, T) that fulfils (1.19).

The Duhem operator D(·, w0) is strongly continuous in W1,p(0, T) for any
p ∈ [1,+∞], and is strongly and weakly continuous in C1([0, T]).
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Even under smoothness assumptions on the prescribed functions g1 and
g2, in general the Duhem operator is not continuous with respect to the
weak topology of W1,p(0, T) for any p�1. Actually, even small-amplitude
oscillations of the input field umay trigger large drifts of the outputw. For
instance, for any T > 0, let

g1 ≡ 1 and g2 ≡ 0 in R2, un(t) = sin(nt)
n

∀t ∈ [0, T];

then

un → 0 weakly star in W1,∞(0, T) and uniformly in [0, T].
For any w0 ∈ R, the limit input u(t) ≡ 0 is transformed by D into the
constant output w(t) ≡ w0, but, setting wn = D(un, w0),

wn(t) = w0 +
∫ t

0
(cosn�)+d� �→ w0 weakly star inW1,∞(0, T).

This simple example also shows that in general the Duhem operator
D(·, w0) cannot be extended by continuity to C0([0, T]). For this operator,
counterexamples of this sort are not exceptional; actually they can easily
be constructed whenever in the interior of the hysteresis region (here the
whole R2) g1 and g2 are two nonidentical continuous functions.

It may even occur that, for a smooth inputuwith unbounded variation,
the output w diverges in zero time. For instance, if

g1 ≡ 1 and g2 ≡ 0 in R2, u(t) = t sin(1/t) ∀t ∈ [0, T],
then

dw
dt

=
(du

dt

)+ =
[

sin
(1
t

)
− 1
t

cos
(1
t

)]+ ∀t > 0 (dt > 0),

which is not integrable in any right neighborhood of t = 0.
In general the Duhem operator has no continuous extension either to

C0([0, T]) or to BV(0, T). However, it can be extended to a unique contin-
uous operator acting in C0([0, T]) ∩BV(0, T) equipped with the metric

d(u, v) := max[0,T] |u− v| +
∣∣∣
∫

[0,T]
|du| −

∫

[0,T]
|dv|

∣∣∣

∀u, v ∈ C0([0, T]) ∩ BV(0, T).
We refer to [8; Chapter V] for the latter statements, too.

In conclusion, despite of its simplicity and of the appeal of its analytic
representation, the functional properties of the Duhem model are not very
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satisfactory; in particular, it is rather disturbing that in general the asso-
ciated hysteresis operator cannot be extended by continuity to C0([0, T]).
This restricts its application, and excludes several models governed by dif-
ferential equations. Nevertheless the Duhem model has some elements of
interest; for instance, it is one of the few models of hysteresis of which a
closed analytic representation is known.

1.2.3 THE BOUC MODEL

R. Bouc was one of the very first pioneers of mathematical research in hys-
teresis. Already in the 1960s, as a PhD student at the Ecole Polytechnique
of Paris, he proposed and studied the following operator:

[B(u)](t) := au(t)+
∫ t

0
f
(∫ t

s
|u′(�)|d�

)
�(u(s))u′(s)ds ∀t ∈ [0, T].

(1.28)

Bouc applied this model to several problems of engineering interest, and
studied its analytic properties also in connection with ordinary differential
equations; cf. e.g. [11,12]. Here u is an absolutely continuous input,
a is a positive constant, f and � are prescribed nonnegative continuous
functions, with f nonincreasing. It is easy to see that B is causal and rate-
independent, namely, a hysteresis operator. B is also piecewise monotone
in the sense of the definition (1.10), but it is not order-preserving in general,
cf. (1.9). If f ∈ C1([0,+∞[), it is not difficult to see that B is continuous in
W1,1(0, T).

In the particular case of

f(v) := Ae−�v ∀v�0 (A, � : constants > 0), (1.29)

direct computation shows that B is equivalent to a Duhem operator [11].
Other choices of the function f can represent effects of accommodation,
namely, changes of the hysteresis loop by repeated cycling and convergence
to a limit loop.

This model has not (yet) been studied by mathematicians, despite of
its potentialities.

1.3 RHEOLOGICAL MODELS OF ELASTO-PLASTICITY

In this section we introduce plastic hysteresis. This is one of the most
typical examples of hysteresis phenomena, was the first to be studied, and
suggests the most simple examples of hysteresis operators; moreover the
underlying convexity entails a number of interesting properties. This then
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looks as a good starting point to illustrate the interplay between physical
and mathematical aspects of hysteresis.

1.3.1 CONSTITUTIVE RELATIONS

Several phenomena of engineering interest can be modeled via the follow-
ing procedure.

(i) The state of the system is first characterized by means of a (usu-
ally finite) set of state variables. For instance, strain and stress
in continuum mechanics, electric tension and electric current in
electricity, electric field and electric displacement in electrostatics,
magnetic field and magnetic induction in magnetostatics, the four
latter fields in electromagnetism, and so on.

(ii) Some fundamental laws, the validity of which is not restricted
to specific materials, are then formulated. Examples include the
momentum balance and the laws of mass and energy conservation
in continuum mechanics, the Kirschhoff laws of electricity, the
laws of electrostatics, the laws of magnetostatics, the system of
Maxwell equations in electromagnetism, the energy and entropy
balances in thermodynamics, and so on.

(iii) The specific behavior of different materials is represented via con-
stitutive relations, which may also exhibit memory effects, and in
some cases hysteresis.

Here we concentrate our attention upon the third issue. Constitutive laws
are sometimes formulated via the construction of ideal bodies, known as
rheological models in continuum mechanics, as electric circuital models in
electricity, as magnetic circuital models in magnetism, and so on. These
are:

(i) phenomenologic models, and are not intended to represent the
fine-scale structure of materials;

(ii) lumped-parameter models, that is, they do not account for space
dependence; nevertheless, they can also be used to study space-
distributed systems;

(iii) scalar models, but can be extrapolated to tensors, as we shall see.

The construction proceeds as follows. One first introduces a small
class of elementary models that are meant to represent basic properties:
e.g., elasticity, viscosity, plasticity in continuum mechanics; resistance,
inductance, capacitance in electricity, and so on. Composite ideal bodies
are then built by assembling these elements according to a restricted set
of rules, which can be represented via series (or cascade) and parallel
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arrangements. For each material, one then tries to select an ideal body
capable of representing its constitutive behavior, and to identify the pa-
rameters occurring in the corresponding constitutive equation.

Each elementary model is described by an equation, which contains
one or more parameters. The constitutive behavior of the composed model
is determined by that of its elements, and the corresponding equation is
derived from those of its constituents by means of simple composition rules
that now we outline.

Composition Rules of Rheological Models

Here we deal with continuum mechanical models, regard the strain and
stress tensors as state variables, and denote them by ε and �, respectively.
Rheological models typically relate an applied force with the correspond-
ing deformation and/or with the time-derivative of the latter. They are
representative of strain and stress on the basis of the following identifica-
tions:

force ↔ stress (= �); deformation ↔ strain (= ε).
Here we deal with univariate models; however the relations we derive

will be extrapolated to tensors. Serial and parallel combinations have an
intuitive meaning, and are also prone to graphic representation. Let us
consider a composite rheological model that consists of two or more (either
elementary or composite) submodels, which are arranged either in series
or in parallel, cf. Fig. 1.3. Let us denote the stress (strain, respectively)
of its components by �i (εi, respectively), for i = 1, 2, . . . , and the stress
(strain, respectively) of the composite system by �̃ (ε̃, respectively). Let us
see the main properties of these operations.

(i) Combinations in Series. The constitutive elements are subjected to
the same force, and this also coincides with the force acting on the
composite model. The deformation of the latter is instead equal to
the sum of the deformations of its elements, cf. Fig. 1.3(a):

�̃ = �1 = �2 = · · · , ε̃ = ε1 + ε2 + · · · . (1.30)

(ii) Combinations in Parallel. The properties of force and deformation
are here exchanged, cf. Fig. 1.3(b):

�̃ = �1 + �2 + · · · , ε̃ = ε1 = ε2 = · · · . (1.31)

The two latter characterizations will be used to extend the operations of
combination in series and in parallel to tensors.
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FIGURE 1.3 Arrangements in series (a) and in parallel (b). They correspond to
(1.30) and (1.31), respectively.

The dual character of these arrangements is evident. These rules are
extended in a natural way to combinations in parallel and in series of
infinitely many elements; in that case sums are replaced either by series, or
more generally by integrals with respect to a prescribed density measure.

There exists a third basic composition rule: the feedback arrangement.
This is especially interesting, for combined with nonlinearity it can gener-
ate hysteresis [8; Sections I.4, II.4]. However, feedback is rather different
from series and parallel arrangements, and does not enter the present dis-
cussion; we then postpone it to Section 1.7.

As we have mentioned above, these models can be applied to several
phenomena. In electricity, for instance, series and parallel arrangements
correspond to the rules (1.30) and (1.31), with ε replaced by the tension, V,
and � by the current, J. In electrostatics, ε is replaced by the electric field,
E, and � by the electric displacement, D. In magnetostatics, ε is replaced
by the magnetic field, H, and � by the magnetic induction, B. And so on.

Elementary Rheological Behaviors
First we introduce some elementary rheological laws for multivariate sys-
tems. We shall then introduce corresponding univariate rheological mod-
els, and use them to build more general ones. Finally we shall extrapo-
late the latter to multivariate systems. Schematically we shall proceed as
follows:

introduction of (tensor) laws →
definition of (scalar) rheological elements →

series and parallel combinations of rheological elements →
extension to tensors.
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We introduce the assumption of small (infinitesimal) deformations, so
that we can identify Euler and Lagrange coordinates, Piola and Cauchy
stress tensors, �, and use the linearized strain tensor, ε. In the formula-
tion of the basic constitutive laws of continuum mechanics, we distinguish
between the spheric components of the strain and stress tensors,

ε(s) := 1
3

3∑

i=1

εiiI, �(s) := 1
3

3∑

i=1

�iiI

(here by I we denote the identity 3×3-tensor), and their deviatoric compo-
nents,

ε(d) := ε− ε(s), �(d) := � − �(s). (1.32)

The spaces of spheric and deviatoric tensors are orthogonal. The tensor
ε(d) is symmetric, since this holds for ε (by definition) as well as for ε(s). It
is a well-known consequence of the principle of conservation of angular
momentum that the tensor �(d) is also symmetric. Thus ε(d) and �(d) are
both elements of the linear space of symmetric 3×3 deviatoric tensors, that
we denote by Ds.

Alinear elastic relation is classically assumed between the spheric com-
ponents of � and ε:

�(s) = aε(s) (a : constant > 0). (1.33)

On the other hand, several models have been proposed to relate the devi-
atoric components; the main ones involve �(d), ε(d) and dε(d)/dt. Here we
confine ourselves to the following two classes, that are rate-independent;
the same then holds for their series and parallel combinations.

(i) Linear Elasticity. This is represented by the following equality,
which also accounts for linearity of the spheric components,

� = Aε i.e. �ij =
3∑

�,m=1

Aij�mε�m for i, j = 1, 2, 3. (1.34)

Here A is a positive-definite matrix which fulfils the symmetry
conditions

Aij�m = Aijm� = A�mij for i, j, �,m = 1, 2, 3.

For isotropic materials, denoting the Kronecker tensor by �ij, one
can show that there exist two positive constants, � and 	, named
Lamé moduli, such that

Aij�m = ���m�ij + 2	�i��jm for i, j, �,m = 1, 2, 3.
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In this case (1.34) reads

�ij = �
3∑

�=1

ε���ij + 2	εij for i, j = 1, 2, 3. (1.35)

(ii) Rigid Perfect Plasticity. This can be represented by the following
inclusion:

�(d) ∈
(
�IK

)−1
(dε(d)

dt

)
, (1.36)

(see the Appendix for this notation) or equivalently,

dε(d)
dt

∈ �IK(�(d)); (1.37)

here K is a closed convex subset of Ds and K � 0. This set is
known as the yield criterion, and its selection has been at the focus
of studies on plasticity since the pioneering works of Tresca, Saint
Vénant, Lévy, von Mises.

The relation (1.36) may be regarded as a limit case of nonlinear viscos-
ity, that is characterized by an inclusion of the form

�(d) ∈ g
(dε(d)

dt

)
, (1.38)

for a maximal monotone function g : Ds → 2Ds (the set of the parts of Ds).
Some of the following developments can be extended to this more gen-
eral setting; however there is a fundamental difference between viscosity
and plasticity: the latter is rate-independent, at variance with the former.
Accordingly viscosity is not a hysteresis phenomenon.

According to (1.37) the shear deformation, ε(d), is unchanged as long as
the shear stress, �(d), lies in the interior of K. As �(d) attains the boundary
of K, the material can flow; more precisely, ε(d) can increase along any
oriented direction of the normal cone to K (cf. the Appendix). This flow
is plastic, since removing the shear stress the deformation is not removed.
More precisely, the flow is perfectly plastic, for it occurs under constant
shear stress, without strain-hardening (see below). It is easy to see that the
deviatoric relation (1.36) is consistent with the spheric relation (1.33).

Denoting by I∗K the convex conjugate of the function IK , by (A.15) we

have �I∗K = (
�IK

)−1. By Proposition A.9, the inclusions (1.36) and (1.37) are
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respectively equivalent to the following variational inequalities

3∑

i,j=1

�(d)ij
(dε(d)ij

dt
− vij

)
�I∗K

(dε(d)ij
dt

)
− I∗K(v) ∀v ∈ Ds, (1.39)

�(d) ∈ K,
3∑

i,j=1

dε(d)ij
dt

(�(d)ij − vij)�0 ∀v ∈ K. (1.40)

1.3.2 ELASTIC AND PLASTIC UNIVARIATE ELEMENTS

Consistently with (1.34), we define a (linear) elastic elementary model, that
we denote by E, which is characterized by the univariate rheological law

� = aε (a : constant > 0). (1.41)

This rheological model is often graphically represented by a spring, cf. Fig.
1.4(a).

We define the multivalued sign function as follows:





sign (x) := {−1} if x < 0,
sign (0) := [0, 1],
sign (x) := {1} if x > 0,

(1.42)

and introduce another elementary model, which is characterized by the
univariate rheological law

� ∈ b sign
(dε

dt

)
(b : constant > 0). (1.43)

We regard this as a scalar model of rigid perfect plasticity, denote it by P,
and refer to it as a plastic element. Indeed this inclusion is of the form (1.36),
since sign = (

�I]−1,1[
)−1.

The inclusion (1.43) may represent the resistance which opposes the
motion of a heavy body sliding along a horizontal surface, according to
Coulomb’s model of dry friction. This is also consistent with the usual
interpretation of plasticity as an effect of internal friction. Accordingly,
this rheological model is often graphically represented by a sliding block,
cf. Fig. 1.4(b).

Stop

Now we introduce two (mutually dual) elementary rheological models,
named stop and play, that can be used to construct more sophisticated
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FIGURE 1.4 Graphic representation of the elastic (a) and plastic (b) elementary
models.

FIGURE 1.5 Prandtl’s model of elastoplasticity (or stop), E−P, in (a); correspond-
ing � versus ε relation in (b).

models of elasto-plasticity. We define them in the univariate setting; the
formalism of convex calculus makes their tensor extension straightfor-
ward.

The classic Prandtl model of elasto-plasticity, also named stop, can be
represented by coupling a linear elastic element, E, in series with a rigid
perfectly-plastic element, P. Denoting series and parallel arrangements
respectively by the symbols ‘−’ and ‘|’, this model can be represented by
the rheological formula E− P; cf. Fig. 1.5.

By (1.41) and (1.43), denoting by ε the total displacement and by �
the (signed) force intensity, one easily derives the following variational
inequality

|�|�b,
(
a

dε
dt

− d�
dt

)
(� − v)�0 ∀v, |v|�b. (1.44)
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PROPOSITION 1.3.1 ([8; Chapter II]). For any ε ∈ W1,1(0, T) and �0 ∈ [−b, b],
there exists one and only one � := G(ε,�0) ∈ W1,1(0, T) that fulfils (1.44) and
such that �(0) = �0.

The operator G(·,�0) is continuous in W1,1(0, T), and can be extended to a
Lipschitz-continuous operator in C0([0, T]).

Alternatively, one may first define G for piecewise linear inputs, check that
this operator is Lipschitz-continuous with respect to the uniform metric,
and then extend it to C0([0, T]) [1,3,5,8,16].

Defining the sign graph as in (1.42), (1.44) can also be written as a
differential inclusion:

d�
dt

+ sign−1
(�
b

)
� adε

dt
. (1.45)

The transformation ε �→ � is rate-independent. In order to check this, first
notice that in (1.45) it is implicitly assumed that dt > 0, since hysteresis is
irreversible; moreover

� sign−1(�) = sign−1(�) ∀� > 0.

Multiplying both members of (1.45) by dt, formally we then get the equiv-
alent condition

d� + sign−1
(�
b

)
� adε,

which is obviously rate-independent.
This model can account for elasto-plasticity without strain-hardening.

Indeed it represents a material that, starting from � = ε = 0, behaves elasti-
cally as long as |�| < b. As � attains the threshold b, it flows plastically
under constant stress. This is interpreted by stating that the deformation
consists of an elastic and a plastic part, and that for � = b the plastic part
may increase, whereas the elastic part remains unchanged. This flow is
plastic, for if the stress is decreased, the plastic part of the deformation is
not removed, until � attains the opposite threshold, −b.
Play

This model is the dual of the stop, and can be represented by E|P, namely,
a linear elastic element E coupled in parallel with a rigid perfectly-plastic
element P, cf. Fig. 1.6(a):

By (1.41) and (1.43), denoting by � the total applied force and by ε
the displacement, � and ε are then related by the following variational
inequality:

|� − aε|�b, dε
dt
(� − aε− v)�0 ∀v, |v|�b, (1.46)
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FIGURE 1.6 Prager’s model of perfect plasticity with strain hardening (or play),
E|P, in (a); corresponding ε versus � relation in (b).

which is equivalently to the differential inclusion

b sign
(dε

dt

)
+ aε � �. (1.47)

PROPOSITION 1.3.2 ([8; Chapter II]). For any � ∈ W1,1(0, T) and ε0 ∈ R such
that |ε0 − a�(0)|�b, there exists one and only ε := E(�, ε0) ∈W1,1(0, T) which
fulfils (1.46) and such that ε(0) = ε0.

The operator E(·, ε0) is continuous in W1,1(0, T), and can be extended to a
Lipschitz-continuous operator in C0([0, T]).

By the homogeneity property of the sign graph, formally the inclusion
(1.47) can also be written as

b sign(dε)+ aε � �,

by which rate-independence is evident.
This model can account for rigid plasticity with strain-hardening. In-

deed, starting from � = ε = 0, the material behaves rigidly as long as
|�| < b. Whenever � increases beyond the threshold b it may flow, the de-
formation being proportional to � − b; thus the larger is the deformation,
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the larger is the required stress. This flow is plastic, since if the stress is
decreased, the deformation is not removed until �−aε attains the opposite
threshold −b.

At variance with the stop, the play operator has a regularizing effect,
that we describe by the next proposition.

PROPOSITION 1.3.3. Let us denote by E the play operator characterized by (1.46).
For any � ∈ C0([0, T]) and any ε0 ∈ R such that |ε0 − a�(0)|�b,

� ∈ C0([0, T]) ⇒ E(�, ε0) ∈ C0([0, T]) ∩ BV(0, T). (1.48)

PROOF. Let us set ε := E(�, ε0). A simple inspection of Fig. 1.6(b), shows
that ε can increase (decrease, respectively), only as the pair (�, ε) lies on
the right (left, respectively) border of the hysteresis strip. Any uniformly
continuous function t �→ �(t) can have an infinite number of oscillations,
but just a finite number of them may have amplitude �2b. The pair (�, ε)
can then commute just a finite number of times, if any, from the ε-ascending
line to the ε-descending straight line or conversely. Therefore t �→ ε(t) has
just a finite number of either nondecreasing or nonincreasing branches, i.e.,
it is piecewise monotone. The time variation of t �→ ε(t) is then finite. ��

On account of this result, the occurrence of a play operator in a dif-
ferential equation may increase the regularity of the solution. This is an
example of the smoothing character of hysteresis.

Plays and stops are closely related each other. Let us denote by G and E
the stop and play operators, characterized by (1.45) and (1.47), respectively;
for the sake of simplicity, let us assume that a = b = 1. Denoting the
identity by I, and omitting initial values, it is not difficult to check that

E + G = I, 2(I + E)−1 = (I + G). (1.49)

Generalized Play

Let us set R̃ := R ∪ {−∞,+∞} and assume that

{
��, �r are maximal monotone (possibly multivalued) functions

R → 2R̃, such that inf �r(u)� sup ��(u) ∀u ∈ R
(1.50)

(by 2R̃ we denote the set of parts of R̃). The (possibly discontinuous and
multivalued) generalized play operator, that we outline in Fig. 1.7(a),
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FIGURE 1.7 Discontinuous generalized play in (a) and associated auxiliary func-
tion � in (b).

corresponds to the following rate-independent differential inclusion:

dw
dt

∈ �(u,w) :=






R̃− if w ∈ ��(u) \ �r(u)

{0} if sup �r(u) < w < inf ��(u)

R̃+ if w ∈ �r(u) \ ��(u)

R̃ if w ∈ �r(u) ∩ ��(u)

(1.51)

a.e. in ]0, T[, cf. Fig. 1.7(b). Here we set R̃+ := R+ ∪ {+∞} and R̃− :=
R− ∪ {−∞}.

More precisely, if �r and �� are Lipschitz-continuous, then the gener-
alized play operator transforms any pair (u, 
) ∈ W1,1(0, T) × R into the
unique function w ∈ W1,1(0, T) such that w(0) equals the projection of 

onto [�r(u(0)), ��(u(0))] and (1.51) is satisfied.

This operator can be extended to C0([0, T]) × R by continuity, and is
equivalent to a variational inequality. For any u ∈ R let us set K(u) :=
[�r(u), ��(u)] and denote by IK(u) the corresponding indicator function (cf.
the Appendix). Then �(u,w) = −�IK(u)(w), and (1.51) is equivalent to

w ∈ K(u), dw
dt
(w− v)�0 ∀v ∈ K(u), a.e. in ]0, T[. (1.52)

The following property is especially useful in the analysis of differential
equations that include a generalized play, see Section 1.9. Here we use the
Heaviside function:

Ĥ(
) := 0 if 
�0, Ĥ(
) := 1 if 
 > 0,

and the sign function sign(
) := Ĥ(
)− Ĥ(−
), for any 
 ∈ R.
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THEOREM 1.3.4 (Hilpert’s Inequality [17]). Let (ui, w0
i ) ∈ W1,1(0, T) × R (i =

1, 2), h be any measurable function [0, T] → R such that h ∈ Ĥ(u1 − u2) a.e. in
]0, T[, and denote by E a generalized play operator. Setting wi := E(ui, w0

i ) and
w̄ := w1 − w2, then

dw̄
dt
h� d

dt

(
w̄+) a.e. in ]0, T[. (1.53)

Hence, if s ∈ sign(u1 − u2) a.e. in ]0, T[,
dw̄
dt
s� d

dt
|w̄| a.e. in ]0, T[. (1.54)

PROOF. For any measurable function k :]0, T[→ R,

k ∈ Ĥ(w̄) a.e. in ]0, T[ ⇒ d
dt

(
w̄+) = dw̄

dt
k a.e. in ]0, T[.

To prove (1.53) it then suffices to show that k can be chosen such that

dw̄
dt
(h− k)�0 a.e. in ]0, T[. (1.55)

This can be checked by distinguishing the different cases that may occur
at any instant t:

if w̄ > 0 and ū := u1 − u2 > 0, then h = k and (1.55) is fulfilled;
if w̄ > 0 and ū�0, then by examining Fig. 1.7 one can see that dw̄/dt�0,

hence (1.55) is fulfilled;
if w̄ = 0, then we can take k = h so that (1.55) is fulfilled;
if w̄ < 0 and ū > 0, then again Fig. 1.7 shows that dw̄/dt�0, and (1.55)

is fulfilled;
if w̄ < 0 and ū�0, then h = k and (1.55) is fulfilled. ��

Tensor Extension

Let us denote the space of symmetric 3×3 tensors by R9
s . Although so far

we have assumed ε and � to be scalars, the previous developments can
easily be extended to tensors, or rather to the deviatoric components of
the strain and stress tensors (for we still assume a linear relation between
the spheric components ε(s) and �(s)). The graph sign is then replaced
by (�IK)−1, K being a closed, convex subset of Ds such that 0 ∈ K. After
Proposition A.9, (�IK)−1 coincides with the subdifferential of the support
function of K; that is, (�IK)−1 = ��K (= �I∗K). The function �K is positively
homogeneous of degree one, cf. Proposition A.12; this property is at the
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basis of rate-independence. In the multivariate setting the operations of
series and parallel arrangement have no meaning in themselves; however,
one may associate them to the rules (1.30) and (1.31), and extend them to
tensors.

1.3.3 PRANDTL--ISHLINSKIĬ MODELS

Above we introduced a model of elasto-plasticity without strain-hardening,
and one of perfect-plasticity with strain-hardening; it is then natural to
search for a model of elasto-plasticity with strain-hardening. Moreover,
the state of any of the above models is characterized by the pair (ε,�),
whereas a number of tests on elasto-plastic materials indicates the occur-
rence of internal variables.

An answer to these exhigences is given by a (scalar) model Prandtl [18]
proposed in 1928, and Ishlinskiı̆ [19] rediscovered in 1944, that is obtained
by coupling a family of stops in parallel. The stop--play duality then sug-
gests construction of a dual model by coupling a family of plays in series.
These two classes will be respectively named Prandtl--Ishlinskiı̆ models of
stop- and play-type. The corresponding operators can be represented by
systems of (possibly infinite) variational inequalities analogous to (1.44)
and (1.46); the extension to tensors will be straightforward.

Here we illustrate a generalization of those models, in which possibly
infinite families of elements are considered, along the lines of [8; Chapter
III]. In order to construct a (scalar) Prandtl--Ishlinskiı̆ operator of stop-type,
first we need a density over the set of all stops. As any stop is character-
ized by two positive parameters, a, b, this density can be represented by a
positive and finite measure, 	, over the set

P := {� := (a, b) ∈ R2 : a, b > 0}. (1.56)

Let us denote by ε̃ and �̃ the strain and stress of the composite model. For
any ε̃ ∈W1,1(0, T) and any family {�0

�}�∈P of admissible initial stresses, by
(1.45) that model corresponds to an infinite system of variational inequal-
ities, or equivalently of inclusions:






d��

dt
+ sign−1

(�
b

)
� adε̃

dt
	-a.e. in P

��(0) = �0
� 	-a.e. in P

�̃ =
∫

P
��d	(�).

(1.57)

By Proposition 1.3.1 this is equivalent to

�̃ =
∫

P
G�

(
ε̃,�0

�

)
d	(�) =: G̃	

(
ε̃, {�0

�}�∈P
)
. (1.58)
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G̃	 is a hysteresis operator, that we name Prandtl--Ishlinskiı̆ operator of stop-
type. If 	 is nonnegative this operator is piecewise monotone, but not order
preserving, in the sense of (1.9), (1.10).

At any instant t the state of the system is uniquely determined by
{ε̃(t)}∪{��(t)}�∈P . The ��’s play the role of internal variables; in particular
they must be specified to define the initial state of the system. Let us denote
by M(P) the set of 	-measurable functions P → R. In the univariate
setting, under regularity hypotheses on the data, G̃	 can be extended to a
continuous operator C0([0, T])× M(P)→ C0([0, T]).

We now consider the dual procedure, and arrange a family of plays
in series. Let 	 be a prescribed positive finite measure over P , and still
denote by ε̃ and �̃ the stress and the strain of the composite model. For
any �̃ ∈ W1,1(0, T) and any family {ε0

�}�∈P of admissible initial strains,
by (1.47) this model also corresponds to an infinite system of variational
inequalities, or equivalently of inclusions:






b sign
(dε�

dt

)
+ aε� � �̃ 	-a.e. in P

ε�(0) = ε0
� 	-a.e. in P

ε̃ =
∫

P
ε�d	(�),

(1.59)

and by Proposition 1.3.2 this is equivalent to

ε̃ =
∫

P
E�(�̃, ε0

�)d	(�) =: Ẽ	

(
�̃, {ε0

�}�∈P
)
. (1.60)

Ẽ	 is a hysteresis operator, that we name Prandtl--Ishlinskiı̆ model of play-type.
At any instant t, the state of the system is determined by {�̃(t)}∪{ε�(t)}�∈P ;
here the ε�’s play the role of internal variables.

Both models can be extended to tensors; to this aim it suffices to replace
the multivalued function ‘sign’ by �I∗K , namely, the subdifferential of the
conjugate of the indicator function of a closed convex set K ⊂ Ds.

We saw that stops and plays are related by (1.49). The next statement
establishes an analogous property for scalar Prandtl--Ishlinskiı̆ models of
stop- and play-type.

PROPOSITION 1.3.5 ([20], cf. also [8; Section III.6]). For any � > 0 and any non-
negative finite Borel measure 	 over P , there exist � > 0 and a nonnegative finite
Borel measure  over P such that (omitting initial values)

(�I + Ẽ	)
−1 = �I + G̃. (1.61)
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1.3.4 ELASTO-PLASTICITY WITH STRAIN-HARDENING WITHOUT
INTERNAL VARIABLES

Here we briefly illustrate two equivalent and mutually dual rheological
models that account for elasto-plasticity with strain-hardening, contain
no internal variable (at variance with the Prandtl--Ishlinskiı̆ models), and
generalize both the stop and the play. As it is typical of the approach based
on rheological models, first we deal with the univariate setting and then
we extend our results to tensors.

Let us fix three positive constants k, �,� (� < �), set K := [−k, k], and
consider the differential inclusion

�IK(� − �ε) � �
dε
dt

− d�
dt

in ]0, T[. (1.62)

As ��IK = �IK for any ��0, the relation between � and ε defined by (1.62) is
causal and invariant with respect to any increasingC∞-diffeomorphism � :
[0, T] → [0, T], thus it is a hysteresis relation. This inclusion is equivalent
to the following variational inequality:






� − �ε ∈ K in ]0, T[
(
�

dε
dt

− d�
dt

)
(� − �ε− v)�0 ∀v ∈ K, in ]0, T[, (1.63)

which generalizes both (1.44) and (1.46).

PROPOSITION 1.3.6 ([21]). Let 0 < � < �, K := [−k, k] (k > 0), and two elastic
elements E1 and E2 and a rigid perfectly-plastic element P be respectively charac-
terized by the rheological equations

� = �ε, � = (� − �)ε, � ∈ (�IK)−1
(dε

dt

)
. (1.64)

Then (1.62) is the rheological equation of the model E1|(E2 − P), and represents
elasto-plasticity with (linear) kinematic strain-hardening, cf. Fig. 1.8.

The simple argument is based on repeated application of the rules
(1.30), (1.31) of series and parallel arrangements.

No internal variable occurs in this model. As � → 0 (� → +∞, respec-
tively) in (1.62), the stop (play, respectively) model is retrieved. As k → 0
(k → +∞, respectively), (1.62) is reduced to � = �ε (� = �ε, respectively),
which represents the elastic model E1 (E1|E2, respectively).



1.3 RHEOLOGICAL MODELS OF ELASTO-PLASTICITY 33

FIGURE 1.8 First model of elastoplasticity with (linear) kinematic strain harden-
ing: E1|(E2 − P).

PROPOSITION 1.3.7 ([21], see also [5; Section I.1]). Let�,�, K be as above, and�0 ∈
K, ε0 be such that �0 − �ε0 ∈ K. Then:

(i) For any ε ∈ W1,1(0, T) such that ε(0) = ε0, there exists one and only
one � ∈ W1,1(0, T) that fulfils (1.62) and such that �(0) = �0. This
defines a Lipschitz-continuous hysteresis operator

G̃ : Dom(G̃) ⊂W1,1(0, T)× R →W1,1(0, T) : (ε,�0) �→ �. (1.65)

(ii) Dually (but not symmetrically), for any � ∈ W1,1(0, T) such that
�(0) = �0, there exists one and only one ε ∈ W1,1(0, T) that fulfils
(1.62) and such that ε(0) = ε0. This defines a Lipschitz-continuous
hysteresis operator

Ẽ : Dom(Ẽ) ⊂W1,1(0, T)× R →W1,1(0, T) : (�, ε0) �→ ε. (1.66)

(iii) The operators G̃, Ẽ can both be extended by continuity to C0([0, T]);
these extensions are Lipschitz-continuous with respect to the uniform
norm, and piecewise monotone (cf. (1.10)).

The Dual Model

Setting a := �−1, b := �−1 and K̃ := aK, (1.62) also reads

�IK̃(a� − ε) � dε
dt

− bd�
dt

in ]0, T[. (1.67)

PROPOSITION 1.3.8 ([21]). Let a, b, h be three positive constants, b < a, and set
H := [−h, h], K̃ := (a − b)H. Let two elastic elements Ẽ1 and Ẽ2 and a
rigid perfectly-plastic element P̃ be respectively characterized by the rheological
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FIGURE 1.9 Second model of elastoplasticity with (linear) kinematic strain hard-
ening: Ẽ1 − (Ẽ2|P̃).

equations

ε = b�, ε := (a− b)�, � = (�IH)−1
(dε

dt

)
. (1.68)

Then (1.67) is the rheological equation of the model Ẽ1−(Ẽ2|P̃), and also represents
elasto-plasticity with (linear) kinematic strain-hardening, cf. Fig. 1.9.

The latter is a classic model of kinematic strain-hardening, and is due to
Prager [22]. Other conclusions analogous to those of the previous model
can be drawn.

Prandtl--Ishlinskiı̆-Type Models

Either of above two models can be used as a building block for a more
general model, along the lines of the Prandtl--Ishlinskiı̆ constructions. For
instance one can consider a family {(��,��, K�) : � ∈ P} as in Proposition
1.3.6; each of these triplets determines a model of the form E1�|(E2� −
P�), and by Proposition 1.3.7 this determines a play-type and a stop-type
operator. These models can then be arranged either in series or in parallel,
and this corresponds to Prandtl--Ishlinskiı̆ models of play-type and stop-
type, respectively. An analogous procedure can be applied to the dual
model. As (1.62) and (1.67) are equivalent, it is clear that equivalences also
occur among the latter operators; however we shall not enter that issue
here.

Tensor Extension

The two latter models can be extended to the multivariate setting, by setting
(1.62) ((1.67), respectively) for K (K̃, respectively) equal to closed convex
subsets ofDs (the linear space of symmetric 3×3 deviators). By the orthog-
onality of the spaces of deviatoric and spheric tensors, it is not difficult to
see that this entails a relation of the same form for �(d) and ε(d), as well as
a linear elastic relation between �(s) and ε(s). Propositions 1.3.6, 1.3.7 and
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1.3.8 hold also in this more general setting, with the exception of part (iii)
of Proposition 1.3.7.

Coupling with PDEs

The models of this section are prone to be coupled with the dynamic equa-
tion

�
�2�u
�t2

− ∇·� = �f in �T
(
here (∇·�)i :=

∑

j
��ij/�xj ∀i

)
(1.69)

for space-distributed systems. Corresponding initial- and boundary-value
problems for elastoplasticity have been studied via variational inequalities
in a large number of works; here we just refer to the monographs [23,24].
That approach has been applied to Prandtl--Ishlinskiı̆ models e.g. in [8;
Chapter VIII]; Prandtl--Ishlinskiı̆ operators have also been used to study
wave propagation by Krejčí in [5,25–29]; see also [3].

Stop, plays and Prandtl--Ishlinskiı̆ models have been at the basis of
early mathematical investigations on hysteresis, e.g. [1], and are still
among the most studied models of scalar hysteresis. As we have seen
in this section, many properties can be derived for the corresponding hys-
teresis operators by formulating them in terms of variational inequalities,
and by applying techniques of convex analysis, that we briefly review in
the Appendix.

A large literature deals with elasto-plasticity; see e.g. the monographs
of Besseling and Van der Giessen [30], Duvaut and Lions [23], Halphen
and Salencon [31], Han and Reddy [32], Haupt [33], Hill [34], Lemaitre
and Chaboche [35], Lubliner [36], Nečas and Hlaváček [24], Prager [22],
Prager and Hodge [37], Simo and Hughes [38], Washizu [39].

1.4 DISCONTINUOUS HYSTERESIS

The so-called (delayed) relay is the most simple model of discontinuous hys-
teresis. In this section we review its definition, specify the functional frame-
work, and extend it to vectors. We also introduce the Preisach model and its
vector extension, and refer to the discussion of Section 1.6 on population-
type models of hysteresis. A more detailed presentation may be found in
[8; Chapter VI] and in [40].

1.4.1 SCALAR RELAY

Let us fix any pair � := (�1,�2) ∈ R2, �1 < �2. For any continuous function
u : [0, T] → R and any 
 ∈ {−1, 1}, let us set Xu(t) := {� ∈]0, t] : u(�) = �1
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or �2} and

w(0) :=






−1 if u(0)��1,


 if �1 < u(0) < �2,

1 if u(0)��2,

(1.70)

w(t) :=






w(0) if Xu(t) = ∅,

−1 if Xu(t) �= ∅ and u(maxXu(t)) = �1,

1 if Xu(t) �= ∅ and u(maxXu(t)) = �2,

∀t ∈]0, T],

(1.71)

cf. Fig. 1.10. Thus w(t) = ±1 for a.a. t, and this function is measurable.
Notice that any continuous function u : [0, T] → R is uniformly continu-
ous, hence it can oscillate no more than a finite number of times between
the two thresholds �1,�2; therefore w ∈ BV(0, T). By setting h�(u, 
) := w,
an operator

h� =: C0([0, T])× {−1, 1} → BV(0, T)

is thus defined. This operator is obviously causal and rate-independent,
namely, it is a hysteresis operator; it is also piecewise monotone and order
preserving.

FIGURE 1.10 Relay operator.



1.4 DISCONTINUOUS HYSTERESIS 37

Closure

It is evident that the relay operator is not closed as an operator h� :
C0([0, T])→ L1(0, T). We then introduce the (multivalued) completed relay
operator k�. For any u ∈ C0([0, T]) and any 
 ∈ [−1, 1], we set w ∈ k�(u, 
)
if and only if w is measurable in ]0, T[,

w(0) :=






−1 if u(0) < �1,


 if �1�u(0)��2,

1 if u(0) > �2,

(1.72)

and, for any t ∈]0, T],

w(t) ∈






{−1} if u(t) < �1,

[−1, 1] if �1�u(t)��2,

{1} if u(t) > �2,

(1.73)






if u(t) �= �1,�2, then w is constant in a neighborhood of t
if u(t) = �1, then w is nonincreasing in a neighborhood of t
if u(t) = �2, then w is nondecreasing in a neighborhood of t.

(1.74)
Thus −1�w(t)�1 for a.a. t. Notice thatw ∈ BV(0, T) for any u ∈ C0([0, T]),
because of the argument we saw for h�. Thus

k� =: C0([0, T])× [−1, 1] → 2BV(0,T).

The graph of k� in the (u,w)-plane invades the whole rectangle [�1,�2]×
[−1, 1], cf. Fig. 1.11. One can show that this operator is the closure of h�
with respect to the strong topology of C0([0, T]) and the sequential weak
star topology of BV(0, T) [8; Section VI.1]. The use of k� is then especially
convenient in problems for PDEs.

Reformulation of the Scalar Relay

In view of the coupling with PDEs, cf. Section 1.10, we reformulate the
completed relay operator, k�. The conditions (1.73) and (1.74) are respec-
tively equivalent to






|w|�1
(w− 1)(u− �2)�0
(w+ 1)(u− �1)�0

a.e. in ]0, T[, (1.75)
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FIGURE 1.11 Completed relay operator. Here the pair (u,w) can attain any value
of the rectangle [�1, �2]×[−1, 1]. w is locally nonincreasing (nondecreasing, respec-
tively) if u(t) = �1 (u(t) = �2, respectively); w is locally constant if �1 < u(t) < �2.

∫ t

0
udw =

∫ t

0
�2 dw+ −

∫ t

0
�1 dw− =: ��(w, [0, t]) ∀t ∈]0, T] (1.76)

(these are Stieltjes integrals) [41,42]. The condition (1.73) entails that
udw��2dw+−�1dw−, whence

∫ t
0 udw���(w, [0, t]), independently from

the dynamics of the pair (u,w) through the rectangle [�1,�2]×[−1, 1]; the
opposite inequality is then equivalent to (1.76).

In conclusion, the system (1.73), (1.74) is equivalent to (1.75) coupled
with the inequality

∫ t

0
udw���(w, [0, t]) ∀t ∈]0, T]. (1.77)

1.4.2 VECTOR RELAY

Let us denote by � := (�1, �2) the angular coordinates (longitude and co-
latitude, say) on the unit sphere, S2; by an obvious identification, we can
then assume that � ranges over S2. For any � := (�1,�2) ∈ R2 with �1 < �2
and any � ∈ S2, we introduce the vector-relay operator:

�h(�,�) : C0([0, T])3×{±1} → BV(0, T)3 : (�u, 
) �→ h�(�u·��, 
)��. (1.78)
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Its closure in natural function spaces, �k(�,�), is simply obtained by replacing
the scalar relay h� with its completion k� in (1.78), and is multivalued.

Reformulation of the Vector Relay

The characterization (1.72), (1.75), (1.77) of scalar hysteresis operators can
easily be extended to vectors. For any (�u, 
) ∈ C0([0, T])3×[−1, 1] and any
(�, �) as above, by (1.72), (1.75) and (1.77) we have �w ∈ �k(�,�)(�u, 
) if and
only if �w(t) = w(t)�� for any t, where the scalar function w is such that

w(0) =






−1 if �u(0)·�� < �1


(�,�) if �1��u(0)·����2

1 if �u(0)·�� > �2,

(1.79)






(w(t)− 1)
(�u(t)·�� − �2

)
�0

(w(t)+ 1)
(�u(t)·�� − �1

)
�0

|w(t)|�1

∀t ∈ [0, T], (1.80)

∫ t

0
�u·�� dw���(w, [0, t]) ∀t ∈]0, T]. (1.81)

This formulation of the vector-relay operator can be extended to space-
distributed systems, just by assuming that it is fulfilled pointwise in space.
Let us set �t := �×]0, t[ for any t > 0, and denote by 〈·, ·〉 the duality
pairing between C0(�t) and C0(�t)′. As dw = dw+ − dw− and |dw| =
dw+ + dw−, (1.81) can then be extended as follows:
〈
�u·��, �w(�, �)

��

〉
��2 + �1

2

∫

�

[
w(�, �, x, t)− w0(�, �, x)

]
dx

+�2 − �1

2

∥∥
∥
�w(�, �)

��

∥∥∥
C0(�t)′

(
=:
∫

�̄
��(w(�, �), [0, t])

)
∀t ∈]0, T].

(1.82)

1.4.3 THE PREISACH MODEL

Maybe this is the most powerful scalar model of hysteresis among those
that are known so far (which are not many; more would be wellcome...)
This model was proposed by the physicist F. Preisach in 1935 [43] to rep-
resent scalar ferromagnetism; it was then also applied to model hysteresis
in porous-media filtration as well as other hysteresis phenomena. Here
we introduce the corresponding hysteresis operator, and review its main
properties.
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First, let us define the so-called Preisach (half-)plane to be the set of
thresholds of all relay operators

P :=
{
� = (�1,�2) ∈ R2 : �1 < �2

}
. (1.83)

Let us denote by R the family of Borel measurable functions P → {−1, 1},
and by {
�}, or just 
, a generic element of R. For any finite (signed) Borel
measure 	 over P , let us then define the Preisach operator

H	 : C0([0, T])× R → L∞(0, T),
[H	(u, 
)

]
(t) :=

∫

P
[
h�(u, 
�)

]
(t)d	(�) ∀t ∈ [0, T]. (1.84)

This construction may be regarded as a sort of spectral resolution of a class of
hysteresis operators, that we shall characterize afterwards. The operator
H	 is causal and rate-independent, namely, it is a hysteresis operator; if
	�0, H	 is also piecewise monotone and order preserving. These proper-
ties are clearly inherited from the relay operator.

Memory Maps

Let us fix any u ∈ C0([0, T]), any 
 ∈ R, and let w� ∈ k�(u, 
�) 	-a.e. in P .
On the basis of the definition of the relays h�, it is easy to see that for any
t ∈]0, T],





if �1 > u(t) then w�(t) = −1

if �2 < u(t) then w�(t) = 1

if �1 < u(t) < �2 then w�(t) depends on u|[0,t] and on 
�.

(1.85)

Let us set

A−
w(t) := {� ∈ P : w�(t) = −1}, A+

w(t) := {� ∈ P : w�(t) = 1},
Bw(t) := �A−

w(t) ∩ �A+
w(t).

(1.86)
At any t, the curve Bw(t) intersects the line �1 = �2 at the point (u(t), u(t)).
Because of (1.85), as u increases (decreases, respectively) in time, Bw moves
up (to the left, respectively), cf. Fig. 1.12. It is then easy to check that for
any t ∈ [0, T], Bw(t) is a maximal antimonotone graph in P , provided that
this holds for t = 0. This graph will be called a memory map; it contains the
complete information on the state at the instant t of all relays that do not sit
on the the map itself. At any instant the output is retrieved by integrating
the values of all relays with respect to the prescribed Preisach measure 	.
This integral is determined by Bw(t) provided that 	(Bw(t)) = 0; obviously
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FIGURE 1.12 In (a) the possible states of relays w� := h�(u, 
�) are shown. As
u increases (decreases, respectively) certain relays are switched to the state 1 (−1,
respectively), cf. (b) and (c) respectively. The regions characterized by the states
−1 and 1 are then separated by a maximal antimonotone graph, Bw(t), provided
that the same holds at t = 0; cf. (d).

this condition is fulfilled whenever 	 is not singular with respect to the
ordinary bidimensional Lebesgue measure.

Let us assume that Bw(0) coincides with the bisectrix of the second
quadrant:

Bw(0) = Bv := {� ∈ P : �1 + �2 = 0}.
This relay configuration represents the state of a virginal ferromagnetic
material, namely, a system which has never experienced any hysteresis
process.

Let us apply any input u ∈ C0([0, T]), and set m(t) = max{|u(�)| : � ∈
[0, t]} for any t ∈ [0, t]. One can show that at any instant t the memory map



42 CHAPTER 1 Mathematical Models of Hysteresis

Bw(t) is then the union of the half-line {� ∈ P : −�1 = �2 > m(t)} with
an either finite or countable family of segments; each of these segments is
parallel to one of the axes �1 and �2, and they can only accumulate in a
neighborhood of the line {� ∈ P : �1 = �2}.

Conversely, starting from the virginal state, any graph of the form, that
we just outlined can be attained by applying a suitable input u ∈ C0([0, T]).
It should be noticed that not any memory map Bmay be attained starting
from the virginal stateBv, since parts ofBv lying on the line �1+�2 = 0 once
deleted cannot be restored. However, if a maximal antimonotone graph B
in P contains a half-line included in the bisectrix {� ∈ P : −�1 = �2}, then
it can be approximated in the Hausdorff distance by a sequence of graphs
having a staircase shape in correspondence to diagonal parts of B. Each
of these approximating graphs is obtained by applying a continuous input
function having oscillations of decreasing amplitude.

There is a strict analogy between the above approximation procedure
and the alternate demagnetization process, which is used to demagnetize
magnetic heads for instance. The latter consists of applying an alternating
current of decreasing amplitude, which generates a magnetic field also
having oscillations of decreasing amplitude.

By the above construction, it is easy to see that for any input function
u ∈ C0([0, T]) and at any instant, defining the memory sequence {u(tj)} as
in (1.5),

the sequence {u(tj)} determines the memory map Bw(t), and conversely;

the input u determines the memory map Bw(t), and Bw(t)
determines the output [H	(u, 
v)](t) via integration with respect to 	.

The Preisach model allows for a unified treatment of several (scalar)
hysteresis models. This is conveniently illustrated by means of the Preisach
plane. The (ordinary) play operator is equivalent to a Preisach operator
characterized by a measure that is uniformly distributed on a straight line
parallel to the bisectrix of the first and third quadrants (as this measure
is infinite, some modifications are needed in the above formulation, in
particular integration over P should be replaced by the Cauchy principal
value). More generally, a generalized play is obtained if the measure is
(possibly nonuniformly) distributed along the graph of a strictly increasing
single-valued function �1 �→ �2.

Thus ordinary plays and generalized plays are Preisach operators. By
(1.49) one can then represent stop operators in terms of Preisach operators,
too. The same also applies to Prandtl--Ishlinskiı̆ operators of both types,
for they are averages of plays and stops.
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Continuity Properties of the Preisach Operator

We summarize several continuity results in the next statement. Here by
B we denote the set of maximal antimonotone graphs in P .

THEOREM 1.4.2 ([44], [8; Section IV.3]). Let 	 be a finite Borel measure over P
and 
 ∈ R. Then:

(i) H	(u, 
) ∈ C0([0, T]) ∀u ∈ C0([0, T]) (1.87)

if and only if (setting 	 := 0 outside P)

|	| (R × {r}) = |	| ({r} × R) = 0 ∀r ∈ R. (1.88)

(ii) If H	(·, 
) operates inC0([0, T]), then it is also continuous in that space.
(iii) H	(·, 
) is uniformly continuous in C0([0, T]) if and only if |	(B)| = 0

for any B ∈ B.
(iv) H	(·, 
) is Lipschitz-continuous in C0([0, T]) with Lipschitz constant

L if and only if

|	{(�1+�1,�2+�2) : (�1,�2) ∈ B,
√

�2
1 + �2

2 < ε}|�Lε ∀B ∈ B,∀ε > 0.
(1.89)

Under appropriate conditions on the Preisach measure 	, H	(·, 
) op-
erates in the Sobolev spacesW1,p(0, T) (1�p�+∞), or in the Hölder spaces
C0,([0, T]) (0 < �1), or in C0([0, T])∩ BV(0, T) [44]. Other conditions on
	 guarantee the existence of the inverse operator H−1

	 , and yield its conti-
nuity in the spaces above.

Vector Preisach Model

The extension of the Preisach model to vectors is of special interest for
applications. This can be constructed by integrating a family of vector
relays with respect to a suitable measure , that is defined over the four
parameters that determine vector relays: �1,�2, �1, �2. At the expense of
some generality, one can also use the following procedure [6,7,45–47]:

(i) project the input onto a generic direction, ��;
(ii) apply to it a scalar Preisach operator, which may depend on ��;

(iii) average these outputs with respect to a prescribed weight func-
tion, �(��).

Characterization of Preisach Operators

For any measure 	, the Preisach operator H	 fulfils the congruency and
wiping-out properties, that we now outline. Let a, b ∈ R (b �= 0), T >> 1+�,
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i ∈ R, and

ui ∈ C0([0, T]), ui(t) = a+ b cos(t− 1) ∀t ∈ [1, T] (i = 1, 2). (1.90)

Thus ui is periodic of period 2� in [1 + �, T]. By means of the definition of
the relay operator, one can check that the same holds for wi := H	(ui, 
i).
The pair (ui, wi) then moves along (possibly degenerate) so-called minor
hysteresis loops, at the interior to the major loop. The following holds:

(i) Congruency Property. The function w1 −w2 is constant in [1+�, T];
that is, minor hysteresis loops are congruent via vertical transla-
tions in the (u,w)-plane.

(ii) Wiping-out Property (also named return-point property). Let u1 and
u2 be as in (1.90), and set

Ai := {t ∈ [0, 1] : ui(t) /∈ [a− b, a+ b]} (i = 1, 2).

It is easy to see that, ifA1 = A2 and u1 = u2 inA1, thenw1 = w2 in [1+�, T].
(Notice that u1 and u2 need not coincide in [0, 1] \ A1.) This can easily be
checked on the basis of the properties of the memory map, i.e. of relays,
and means that any past oscillation of u at the interior of a larger one has
no influence on the memory: small cycles in the (u,w)-plane are wiped out
by larger ones.

The characterization theorem states that, under minor restrictions that
we omit,

a hysteresis operator fulfils the congruency and wiping-out
properties if and only if it is a Preisach operator. (1.91)

This result was first established by Mayergoyz [48,49]; a rigorous mathe-
matical argument was then provided by Brokate [50].

Identification of the Preisach Measure

As the measure 	 characterizes the Preisach operator, the identification of
	 is a key step for the effective use of this model in applicative problems.
As can easily be checked via the memory map, by applying a suitable
input and measuring the corresponding output, it is easy to evaluate the
measure of an arbitrary square of the Preisach plane P having sides parallel
to the axes. By this procedure one can effectively approximate the Preisach
measure 	. An algorithm based on an appropriate selection of the input
functions allows one to reduce the number of measurements [6–8,51].

The Preisach Model and Ferromagnetism

The Preisach model is often applied to represent the magnetization versus
magnetic field relation in a ferromagnetic body formed by an aggregate of
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single-domain particles. Although the properties that can be derived from
the Preisach model are in good qualitative agreement with the physical
evidence, for several ferromagnetic materials there are quantitative dis-
crepancies. This also applies to the vector Preisach model. Physicists and
engineers then proposed several variants of the originary Preisach model,
in order to provide a more adequate model of ferromagnetic hysteresis.
For instance, Della Torre [52] replaced the relation M = H	(H) by

M = H	(H + �M) (� being a constant > 0); (1.92)

this also defines a hysteresis operator, H	,� : H �→M; this is known as the
moving Preisach model. Other models are reviewed e.g. in [4,6,7].

In the next section we illustrate a classic model of vector ferromagnetic
hysteresis, that deals with a finer length-scale than that the Preisach model
is supposed to represent.

1.5 MICROMAGNETISM

In this section we outline the theory of micromagnetism, and introduce the
Landau--Lifshitz equation. In order to account for dissipation due to mag-
netic inclusions, we then amend this equation, and derive a purely rate-
independent mesoscopic model of ferromagnetic hysteresis.

Spontaneous Magnetization

Even a small magnetic field is capable of inducing a large magnetization
in a ferromagnetic body below a temperature (named Curie’s tempera-
ture) that is characteristic of the material. In 1907 Weiss [53] explained
this phenomenon by assuming that any ferromagnetic material exhibits a
spontaneous magnetization, �M = �M(x), even if no magnetic field is applied.
Since magnets can look macroscopically demagnetized, Weiss assumed
that the body breaks up into small uniformly magnetized regions (named
magnetic domains), which may be magnetized along different directions.
Under these conditions, by applying a small magnetic field one may pro-
duce a large macroscopic magnetization either by modifying the domain
configuration, or by rotating the domain magnetization.

The origin of spontaneous magnetization remained unclear, until in
1928 Heisenberg explained it on the basis of quantum mechanics. In 1932
Bloch assumed that magnetic domains are separated by thin transition
layers (Bloch walls), where the magnetization rotates smoothly. Afterwards
several kinds of walls and more exotic configurations were conjectured
and experimentally observed; see e.g. [54] for a detailed account. In 1935
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Landau and Lifshitz [55] proposed a mesoscopic quantitative model, and
on that basis Brown [56–58] introduced a theory that is now known as
micromagnetism (or micromagnetics),∗ that we synthetically review below.

In their work of 1935 Landau and Lifshitz also proposed represent-
ing the evolution of magnetization via a simple equation, that accounts
for the domain-wall dynamic and relaxation towards (metastable) equi-
librium. That equation is rate-dependent, and thus cannot represent hys-
teresis, as we defined it in Section 1.1. Moreover, it does not account for
rate-independent dissipation due to magnetic inclusions. We shall propose
a modified equation, to eliminate these drawbacks.

Maxwell’s Equations

We deal with processes in a ferromagnetic material that occupies a bounded
domain � of R3 in a time interval ]0, T[, and set �T := �×]0, T[, R3

T :=
R3×]0, T[. We denote the magnetic field by �H, the magnetization by �M,
and the magnetic induction by �B; in Gaussian units, these fields are related
by the condition �B = �H + 4� �M. We also denote the electric field by �E, the
electric displacement by �D, the electric current density by �J, the electric
charge density by �̂, and the speed of light in vacuum by c. The Maxwell
laws read

c∇× �H = 4��J + � �D
�t
, c∇×�E = −��B

�t
in R3

T, (1.93)

∇·�B = 0, ∇· �D = 4��̂ in R3
T. (1.94)

These equations must be coupled with appropriate constitutive rela-
tions. For instance, we may assume that the material is homogeneous,
isotropic, and is surrounded by vacuum; the electric conductivity � and
the dielectric permeability � are then constant in �, whereas � = 0 and
� = 1 outside �. Ohm’s law then reads

�J = �
(�E+ �g) in R3

T, (1.95)

where �g represents a prescribed applied electromotive force. Moreover,

�D = ��E in R3
T. (1.96)

These equations must be coupled with initial conditions for �D and �B, and
with suitable decay conditions at infinity. Even if we were just interested

∗This theory deals with phenomena that occur on the length-scale of the 	m, which
nowadays is labeled as mesoscopic.
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into the evolution of the ferromagnet, the Maxwell equations should not
be confined to the region �, due to difficulties in prescribing boundary
conditions for the electromagnetic fields. This is strictly related to the
action at distance which characterizes electromagnetic phenomena.

Magnetostatic Equations

In case of slowly varying fields, the system of Maxwell equations (1.93),
(1.94) can be replaced by the magnetostatic equations

c∇× �H = 4��J, ∇·�B = 0 in R3. (1.97)

We assume that the current density field �J is a divergence-free datum;
�J may include not only conduction currents but also Ampère currents,
which account for the presence of magnets outside �. The magnetic field
�H can be decomposed into the sum of an applied field �Happ induced by �J,
plus a demagnetizing field �Hdem determined by �M. The system (1.97) is
equivalent to the following equations:

∇· �Happ = 0, c∇× �Happ = 4��J in R3, (1.98)

∇·( �Hdem + 4� �M) = 0, ∇× �Hdem = �0 in R3. (1.99)

Henceforth it will be assumed that any field defined just in � is ex-
tended with vanishing value outside �.

1.5.1 MAGNETIC ENERGY MINIMIZATION

At the length-scale of about 10−5 cm, the ferromagnetic behaviour can be
described by expressing the magnetic energy as a functional of the meso-
scopic magnetization field M, and then minimizing that functional.

Let us represent the ferromagnet as an array of magnetic moments
of prescribed modulus, M, and variable orientation. According to the
above mentioned Heisenberg theory, the ferromagnetic behavior is due
to the occurrence of a strong coupling among electronic spins, which in-
duces neighboring moments to be (almost) parallel. By averaging over
the mesoscopic length-scale, the constraint on the magnitude is then
preserved:

| �M| = M in �. (1.100)
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The magnetic coupling and the nonconvexity of this constraint are at the
basis of the ferromagnetic behavior, in particular of hysteresis.

Magnetic Energy

For the sake of simplicity, henceforth we neglect magnetostriction, namely,
mechanical effects related to magnetization. We also assume that the ma-
terial is a (single grain) perfect crystal; however, this restriction will be
removed later. The magnetic (free) energy can be represented as a func-
tional of the magnetization, �M, and consists of the following contributions.

(i) Exchange Energy. The force which locally tends to align electronic
spins can be represented by a term which penalizes the space
derivatives of �M:

Eex( �M) := 1
2

3∑

i,j=1

aij

∫

�

� �M
�xi

· �
�M

�xj
dx; (1.101)

here
{
aij
}

is a positive definite, symmetric 3×3-tensor.
(ii) Anisotropy Energy. This has the form

Ean
( �M) :=

∫

�
�
( �M)dx. (1.102)

The minimization of this term accounts for the tendency of �M
to point in one or more directions of easy magnetization. The
function � : R3 → R depends on the crystal structure of the ferro-
magnet. We assume that � is convex and smooth; this convexity
hypothesis is not very restrictive, as any function of | �M| may be
added to �( �M), because of the constraint on the modulus. Near
the Curie temperature, as a first approximation we can assume
that � is quadratic, e.g., �( �M) = c(M2

x +M2
y), c being a positive

constant.
(iii) Magnetic Field Energy. We saw that the field �H can be represented

as the sum of the applied field �Happ = �Happ(�J) and the demagne-
tizing field �Hdem = �Hdem( �M), cf. (1.98), (1.99). The energy that is
stored in the field �H is then the sum of two terms:

Efield( �M):=Eapp( �M)+Edem( �M)=−
∫

�

�Happ · �M dx+ 1
8�

∫

R3
| �Hdem( �M)|2 dx.

(1.103)
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Magnetic Energy Functional

By assembling the above contributions, we get the magnetic energy func-
tional:

Emag
( �M) := Eex

( �M)+ Ean
( �M)+ Efield

( �M)

=
∫

�

(
1
2

3∑

i,j=1

aij
� �M
�xi

· �
�M

�xj
+ �

( �M)− �Happ · �M
)

dx+ 1
8�

∫

R3

∣∣ �Hdem( �M)
∣∣2 dx.

(1.104)
Henceforth we shall assume that the applied field �Happ is prescribed.

Any thermodynamically stable magnetic configuration fulfils the following
variational principle:

Emag( �M) = inf
{Emag(�v) : �v ∈ H1(�)3, |�v| = M a.e. in �

}
.

By the direct method of the calculus of variations, one can see that this
problem has a solution. The H1-coerciveness entails that the limit of any
minimizing sequence is compact in L2(�)3, and then fulfils the nonconvex
constraint on the modulus (1.100). In general uniqueness fails, because of
nonconvexity. For instance, several stable stationary configurations may
occur if �Happ = �0 identically in �, provided that the specimen is not so
small to be reduced to a single domain. Relative minimizers (i.e., states that
minimize the functional Emag just with respect to variations of �M that are
small in the norm ofH1(�)3) represent metastable states, and are physically
acceptable. Their stability, that is, the time-scale by which they will decay
to a lower minimum of Emag, depends on the temperature and on the
deepness of the potential well they sit in. The (either absolute or relative)
minimization of the functional Emag accounts for the onset of the domain
structure, as it is briefly illustrated in the caption of Fig. 1.13.

Domain Walls

Magnetic domains are separated by transition zones (walls) across which
magnetization rotates smoothly, cf. Fig. 1.14. The layer thickness is a
compromise between the tendency of the exchange energy to enlarge the
layers, and that of the anisotropy energy Ean( �M) to reduce their thickness,
in order to align the field to a preferred direction, z. If either anisotropy is
too small or the specimen is not large enough, a single domain appears. In
the bulk of the ferromagnet the field is essentially parallel to z, whereas near
the boundary it tends to stay tangential to the boundary itself, in order to
reduce the field energy, Efield( �M), cf. (1.103). Thus in thin films the domain
magnetization is parallel to the film itself. Note that the demagnetizing
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FIGURE 1.13 Along the lines of [59], here it is illustrated how progressive mod-
ifications of the magnetization of a ferromagnet may reduce the functional Emag.
The first configuration generates a large exterior magnetic field. The second one
reduces that field at the expense of the formation of domains, which are separated
by 180◦-walls. The third one introduces so-called closure domains by forming
90◦-walls; this modification eliminates the exterior field almost completely. The
broken lines represent domain walls, whereas the solid lines are force lines of the
field �M inside the ferromagnet, of the field �H outside.

FIGURE 1.14 180◦ domain wall. More precisely, this a hybrid Bloch--Néel wall: the
field �M rotates in the plane of the page, and also in an orthogonal plane (it then
appears shorter, because of perspective).

field �Hdem determines a nonlocal feedback: �M depends on �Hdem via the
above minimization principle, and in turn the latter depends on the former
via the magnetostatic equations.

This theory accounts for the occurrence of different types of walls.
For instance, let us consider a wall separating two domains in which
the magnetization attains two opposite values parallel to the wall itself
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(a so-called 180◦-wall). �M then rotates through the wall matching smoothly
the two opposite values. This rotation can occur in two fundamental
modes: either parallel to the plane of the wall (Bloch wall), or orthogo-
nal to that plane (Néel wall). The first mode is energetically convenient in
the bulk, whereas the second mode is preferred near the boundary, for it
allows the magnetization to remain parallel to the boundary itself. Actual
walls have an intermediate structure, and more exotic structures may also
occur, cf. Fig. 1.14. In thin films Néel walls may only occur.

In general the coefficient of the exchange energy is fairly small, and
for certain ferromagnetic materials anisotropy is large. In that case the
coefficients of the exchange and anisotropy energies can be represented as
proportional to ε and ε−1, respectively. As ε→ 0 a sharp interface is then
obtained; this can be justified analytically via a �-limit operation [60].

1.5.2 THE LANDAU--LIFSHITZ EQUATION

In their seminal work [55] of 1935, Landau and Lifshitz proposed to repre-
sent micromagnetic evolution via the following equation:

� �M
�t

= �1 �M× �He − �2 �M×( �M× �He) in �T, (1.105)

where the effective magnetic field �He is defined as

�He := �H − �′( �M)+
3∑

i,j=1

aij
�2 �M
�xi�xj

(
= − �

� �MEmag( �M)
)

in �T (1.106)

(by �
� �M we denote the Fréchet, or variational, derivative). �1 and �2 are

positive phenomenological coefficients; typically �1 > �2, in some cases
�1 � �2. We shall refer to the system (1.105), (1.106) as the Landau--Lifshitz
equation.

This dynamic is equivalently expressed by the Gilbert equation

� �M
�t

= 	1
�M×

( �He − 	2

	1

� �M
�t

)
in �T. (1.107)

A simple calculation shows that the two pairs of constants (�1, �2) and
(	1,	2) are related by the following transformation formulae:






�1 = 	1

1 + 	2
2M2

�2 = 	1	2

1 + 	2
2M2

or equivalently






	1 = �2
1 + �2

2M2

�1

	2 = �2

�1
.



52 CHAPTER 1 Mathematical Models of Hysteresis

(1.105) is the most simple relaxation dynamic for a magnet that is free to
rotate and is subjected to a magnetic field �He. In fact, multiplying (1.105)
scalarly by �M, one can see that | �M| is constant in time. For a magnetic
material surrounded by a diamagnetic medium, the following boundary
condition holds:

�M×
3∑

i,j=1

aij
� �M
�xi

j = �0 on ��×]0, T[. (1.108)

Energy Balance

The vector

− 1
M2

�M×( �M× �He) = �He − 1
M2

( �M· �He) �M (1.109)

is the projection of the driving force �He onto the tangent plane at the point
�M to the sphere with center �0 and radius M. By (1.105), this term drives �M

to move towards �He and is dissipative. The vector �M× �He lies in the same
tangent plane and is orthogonal to �M×( �M× �He); it induces �M to rotate
around �He by forming a constant angle (precession) and with angular ve-
locity proportional to | �He|; this contribution is not dissipative. As a result
of the composition of these two forces, under a constant �He, �M asymp-
totically converges to �He along a nonplanar spiral on the spheric surface
of radius M. The relaxation time is proportional to 1/�2. By (1.105) and
(1.106),

− d
dt

Emag
( �M) =

∫

�

� �M
�t

· �He dx = �2

∫

�

∣∣ �M× �He∣∣2 dx, (1.110)

which yields the energy balance equation

Emag
( �M(t))+ �2

∫ t

0
d�
∫

�

∣∣ �M× �He∣∣2 dx = Emag
( �M(0)). (1.111)

Quasi-stationary Landau--Lifshitz equation

The larger is �2, the faster is the relaxation; in the limit as �2 → +∞, (1.105)
yields

�M× �He = �0 in �T. (1.112)

This means that the vectors �M and �He are pointwise parallel, and only
entails that �M is a stationary point of the magnetic energy functional Emag
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under the constraint | �M| = M. The dissipation condition

d
dt

Emag
( �M)�0 (1.113)

must then be required explicitly.

1.5.3 MODIFIED LANDAU--LIFSHITZ EQUATION

The Landau--Lifshitz equation is rate-dependent: if
( �H(x, t), �M(x, t)) is a

solution of (1.105) and (1.106), and s : R+ → R+ is a diffeomorphism,
then in general

( �H(x, s(t)), �M(x, s(t))) does not solve the same system. On
the other hand, ferromagnetic hysteresis cycles are rate-independent for
a fairly wide range of frequencies. This suggests that relaxation towards
(metastable) equilibrium occurs on a shorter time-scale. Analytically, this
can be represented by rewriting (1.105) of the form

�
� �M
�t

= �̃1 �M× �He − �̃2 �M×( �M× �He) in �T, (1.114)

and then passing to the limit as the relaxation time � vanishes. However,
due to the nonlinearity of this equation, difficulties arise in performing the
limit procedure; indeed in this way the time regularity of �M is lost, hence
the field �M might exhibit uncontrolled oscillations in time.

Let us then revisit the physics of the problem. So far we have not
accounted for the occurrence of magnetic inclusions, like impurities, dislo-
cations, and so on. These inclusions induce a sort of internal friction which
opposes the motion of domain walls, and thus contributes to dissipation. In
fact domain walls are pinned by defects; unpinning requires a sufficiently
strong effective magnetic field, and occurs by a small dissipative jump.
This also accounts for the well-known Barkhausen noise. This process can
be regarded as rate-independent, and is responsible for most of hysteresis
dissipation in ferromagnetic materials that exhibit a domain structure. For
instance, steel may be regarded as iron with uniformly distributed inclu-
sions of carbon and other substances on a microscopic length-scale; it turns
out that hysteresis is much more pronounced in this material than in pure
iron.

Here we describe the effect of inclusions on magnetic dynamics in a
way that is reminiscent of Coulomb’s dry friction. Along the lines of [61]
we couple the equation

� �M
�t

= �1 �M× �HE − �2 �M×( �M× �HE) in �T, (1.115)
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with the modified effective magnetic field

�HE := �H − �′( �M)+
3∑

i,j=1

aij
�2 �M
�xi�xj

− �Z (= �He − �Z),

where �Z ∈ ��
(� �M

�t

)
.

(1.116)

Here �� is the subdifferential of a prescribed convex function R3 → R+,
that is positively homogeneous of degree one: �(a�v) = a�(�v) for any a > 0
and any �v ∈ R3. By Proposition A.12, � is then a support function, i.e., it
is of the form

� = I∗K where K ⊂ R3 is closed and convex, and 0 ∈ K;
(1.116) is thus equivalent to a variational inequality. The most simple choice
of � is to take it proportional to the modulus function: �(�v) = �|�v|, � being
a positive constant; in this case K is a ball with center at the origin. A more
general � may account for anisotropy. Nonuniformity of the mesoscopic
distribution of inclusions might also be represented by allowing � to de-
pend explicitly upon x. As it occurs for similar equations, the fact that the
function �� is multivalued does not prevent the process from selecting a
unique �Z ∈ ��(� �M/�t).

We shall refer to the system (1.115), (1.116) as the modified Landau--
Lifshitz Equation. (1.115) might also be written in the following equivalent
Gilbert-like form, cf. (1.107):

� �M
�t

= 	1
�M×

( �HE − 	2

	1

� �M
�t

)
in �T. (1.117)

Energetic Interpretation

As
∫

�

� �M
�t

· �HE dx =
∫

�

� �M
�t

·( �He − �Z)dx = − d
dt

Emag
( �M)−

∫

�
�
(� �M

�t

)
dx,

(1.118)
multiplying (1.115) by � �M/�t we get the energy balance equation

Emag
( �M(t))+

∫ t

0
d�
∫

�

[
�2
∣∣ �M×�HE∣∣2 +�

(� �M
�t

)]
dx = Emag

( �M(0)). (1.119)

Similar to (1.105), equation (1.115) represents a relaxation dynamic of
�M under the action of the field �HE. Because of the ��-term, �M can change
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only if �HE lies on the border of K. Sometimes this setting is ascribed to
occurrence of an activation energy.

The system (1.115), (1.116) accounts for

(i) precession because of the �1-term;
(ii) relaxation (i.e., rate-dependent dissipation) because of the�2-term;

(iii) a component of hysteresis (i.e., rate-independent dissipation) re-
lated to the nonconvexity of the potential. This is due to the com-
bined effect of the nonconvex constraint (1.100), and of anisotropy;

(iv) a friction-type component of hysteresis, due to magnetic inclu-
sions. This is related to the lack of Gâteaux differentiability of the
functional �, cf. the Appendix.

The larger the projection of the input field �H onto the tangent plane at �M
to the sphere of radius M, the larger is the effective field �He, the farther
the system is from equilibrium, and the larger is the relaxation rate � �M/�t.
On the other hand �Z (cf. (1.116)) is confined to K. Friction effects are more
evident at low rates, whereas at high rates they are dominated by relax-
ation. The presence of the ��-term increases the stability of the system,
and enlarges the class of metastable states.

Quasi-stationary Modified Landau--Lifshitz Equation

Let us rewrite the modified Landau--Lifshitz equation in the form (1.114),
with �HE in place of �He. By passing to the limit as the relaxation time �
vanishes, we get

�̃1 �M× �HE − �̃2 �M×( �M× �HE)= �0 in �T.

If (�̃1, �̃2) �= (0, 0), this is equivalent to the quasi-stationary modified
Landau--Lifshitz equation

�M× �HE = �0 in �T. (1.120)

This equation means that there exists �HE as in (1.116), and that this field is
either parallel or antiparallel to �M pointwise in �T . This condition is rate-
independent but not stationary, for �HE contains the term �Z, which depends
on � �M/�t. (1.120) does not entail dissipation; we then require it explicitly,
in analogy with (1.113):

d
dt

Emag
( �M)+

∫

�
�
(� �M

�t

)
dx�0. (1.121)
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In conclusion, the system (1.120), (1.121) represents a mesoscopic model
of ferromagnetic hysteresis, which can be coupled either with the Maxwell
system or with the magnetostatic equations.

A number of monographs deal with ferromagnetism, e.g. Aharoni [62],
Bertotti [2], Brown [56–58], Chikazumi and Charap [63], Cullity [64], Della
Torre [4], Doering [65], Herpin [66], Hubert and Schäfer [54], Jiles [67],
Kneller [68], Kronmüller [69], Maugin [70], Mayergoyz [6,7], Morrish [71].
The Landau--Lifshitz equation has been studied either independently or
coupled with the Maxwell laws, see e.g. [61,72–89].

1.6 MODELS OF HYSTERESIS WITH INTERNAL
VARIABLES

Population Models

The Prandtl--Ishlinskiı̆ and Preisach models of hysteresis, which are re-
spectively used to represent elasto-plastic and ferromagnetic hysteresis,
account for the occurrence of internal variables, and are both formulated
in terms of populations. In this section we outline and discuss a larger class
of population models, whose applicability is not restricted to any specific
physical phenomenon, and which can also be applied to nonhysteretic
phenomena. In the case of ferromagentism, we shall see that it is not clear
how a natural vector extension of the Preisach model might be consistent
with the Maxwell system. We then propose an alternative approach, that is
issued from the theory of two-scale homogenization, which was introduced
by Allaire [90] and Nguetseng [91].

The Prandtl--Ishlinskiı̆ and Preisach models are constructed by assem-
bling a population of elementary models, either plays or stops or relays,
which have common characteristics and only differ for the value of their
characteristic parameters. Each of these constitutive elements is assumed
to be subjected to the same input, which also coincides with the input of
the composite model; we shall see that this assumption is crucial. These
elements are also assumed to be reciprocally independent: each one then
yields an output which does not depend either on the state or on the output
of the others. These elementary outputs are then summed to produce the
output of the global model.

1.6.1 SCALAR SETTING

First Model: the Particle-Density Approach

We deal with a material which occupies a Euclidean domain �, and assume
that a population of (not better specified) particles sits at each coarse-scale
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point x ∈ �. These particles may be characterized by their either elasto-
plastic or magnetic behavior: here this choice is immaterial. We first as-
sume that all fields have a fixed direction, and replace vectors by com-
ponents in that direction, so that we can deal with a scalar setting. For
the time being, we also neglect dependence on the space variable x. We
assume that each of these particles is characterized by a function f� , with
� ranging through some set P of parameters. For a large part of this dis-
cussion we can also neglect memory effects; we thus assume that the f�’s
are reduced to real functions. Actually, most of these developments also
apply to phenomena without memory.

As different particles may correspond to a same �, we represent the
space density of these different �’s by means of a (positive) measure 	 on
P . One may think that each � characterizes a family of undistinguishable
particles, which coexist at any coarse-scale point x, and whose behavior
is characterized by a function, f�, which transforms an input variable, u,
into an output variable, w. For instance, in elasto-plasticity u and w are
the strain and stress, or conversely; in ferromagnetism as u and w we can
take the magnetic field and the magnetization, respectively. Our basic
constitutive relation is then

w(�) = f�(u(�)) ∀� ∈ P. (1.122)

We represent by 	(�) the space density of the family of particles charac-
terized by the parameter �, and introduce two key hypotheses: we assume
that, at each x ∈ �,

(i) all the particles are subjected to the same input, u;
(1.122) then reads w(�) = f�(u) ∀� ∈ P; (1.123)

(ii) the total output equals the sum of the outputs
of the different particles: w = ∫

P w(�)d	(�).
(1.124)

These hypotheses obviously entail the following relation:

w =
∫

P
f�(u)d	(�) =: F	(u) at any x ∈ �. (1.125)

Notice that this condition is just expressed in terms of the fields u, w, and
keeps no trace of the underlying distributions � �→ (u(�), w(�)). This
model and the corresponding operator, F	, are indeed characterized by
the family {f� : � ∈ P} and by the measure 	.

Second Model: Two-scale Approach

The occurrence of a population distributed on a fine scale suggests the
possibility of applying a homogenization approach to the previous model.
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To each coarse-scale point x ∈ � we associate a reference set, Y := [0, 1[
say, that we equip with the Lebesgue measure. We assume that a particle
sits at each y ∈ Y , and transforms an input field ũ(y) into an output w̃(y);
y ∈ Y thus represents a fine-scale variable. As the parameter � depends on
the specific particle, there exists a function �̂ : Y → P such that � = �̂(y).
Thus ũ(y) = u(�̂(y)) and w̃(y) = w(�̂(y)); henceforth we shall omit the
tildes. The constitutive law (1.122) is here replaced by

w(y) = f�̂(y)(u(y)) ∀y ∈ Y . (1.126)

The assumptions (1.123) and (1.124) then read

w(y) = f�̂(y)(u) ∀y ∈ Y, w =
∫

Y
w(y)dy, (1.127)

whence
w =

∫

Y
f�̂(y)(u)dy =: G�̂(u) ∀x ∈ �. (1.128)

As in (1.125), here the variables x and t have been omitted, and in (1.128)
there is no trace of the underlying distributions y �→ (u(y), w(y)). This
model and the corresponding function G�̂ are characterized by the family
{f� : � ∈ P} and by the function �̂ : Y → P .

Comparison

The two approaches above are equivalent, and F	 = G�̂, if and only if 	 is
the image of the ordinary three-dimensional Lebesgue measure, �, by the
mapping �̂ : Y → P , that is,

F	 = G�̂ ⇔ 	 = �̂(�). (1.129)

Setting |A| := �(A) (=
∫
A dx) for any measurable set A ⊂ R3, this condition

on the measure 	 means that 	(A) = |�̂−1(A)| for any A, or equivalently
(setting dy = d�(y) in the integral, as usual)

∫

P
�(�)d	(�) =

∫

Y
�(�̂(y))dy ∀� ∈ L1(P;	). (1.130)

The two-scale approach may be regarded as underlying the particle-
density model, and thus looks more fundamental. It provides a detailed
account of the fine-scale structure: for any coarse-scale point x and any
input u, it yields the fine-space fieldw = w(y). The particle-density model,
on the other hand, requires less information, for it only involves the density
measure of the field w = w(�), parameterized by the variable � ∈ P .
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Nevertheless, under condition (1.130), the two models are equivalent, for
the final outcome of both is a relation between the coarse-scale fields u and
w, with no trace of the underlying fine-scale field. We shall see that this
equivalence is strictly related to the hypotheses (1.123).

There is an obvious analogy between the particle density and Young’s
parameterized measures [92–94], which indeed are also image measures. It
may be noticed that the two-scale representation is more precise; on the
other hand parameterized measures seem to be a more ductile tool, with a
wider spectrum of applications.

Coupling with PDEs (Scalar Case)

Here we assume that � is univariate, replace it by an interval ]a, b[, and
set Q := ]a, b[×]0, T[. We couple the w versus u constitutive relation with
a PDE,

�
�t
(u+ w)− �2

u

�x2
= g in Q, (1.131)

g = g(x, t) being a prescribed source field. This equation may represent the
Maxwell--Ohm equations without displacement current for a univariate
conducting material (with normalized coefficients); in this case u and w
respectively denote the magnetic field, H, and the magnetization, M.

Let us couple the coarse-scale equation (1.131) with a coarse-scale
constitutive relation between the fields u and w: let us prescribe either
w = F	(u) or w = G�̂(u) pointwise in ]a, b[, cf. (1.125), (1.128). This prob-
lem can be treated also if F	 and G�̂ are replaced by hysteresis operators.
Under natural assumptions on the data, it is not difficult to prove the exis-
tence of a solution such that

u ∈ H1(0, T;L2(a, b)
) ∩ L∞(0, T;H1(a, b)

) =: X, w ∈ L∞(Q). (1.132)

cf. e.g. [8; Chapter IX] and Section 1.9 below. The argument is based
on approximation by time discretization. An energy-type balance can be
derived by multiplying the approximate equation by the approximate so-
lution, u�, � being the time-step. This yields a uniform estimate for u� inX.
Therefore there exists u ∈ X such that, possibly extracting a subsequence,
u� → u weakly star in X. Because of the compactness of the injection
X̃ → L2(a, b;C0([0, T])3), possibly extracting a further subsequence,

u� → u in C0([0, T]), a.e. in ]a, b[. (1.133)

As we saw, several hysteresis operators are either continuous on C0([0, T])
or discontinuous but closed; either property suffices to pass to the limit in
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the hysteresis relation, and thus to conclude the proof of the existence of a
solution for our problem.

We conclude that in the scalar setting a coarse-scale formulation of the
Maxwell--Ohm equations coupled with the population model can be jus-
tified analytically.

1.6.2 VECTOR SETTING

Now we extend the two models above to vectors. At any coarse-scale point
x of the domain � of R3, we still represent the system as an aggregate of
particles. We still denote the parameter set by P , although in general it will
be different from that of the univariate setting (as it is the case for the vector
Preisach model). We represent the input--output relation in the form

�w = �f�(�u) ∀� ∈ P, (1.134)

and still assume that P is equipped with a density measure 	. Under the
assumptions (1.123) and (1.124), the input �u and the output �w are related
as follows

�w =
∫

P
�f�(�u)d	(�) =: �F	(�u) at any x ∈ �, (1.135)

similarly to what we saw in the scalar setting, cf. (1.125). The correspond-
ing two-scale model is also analogous to the scalar one: at any x ∈ �, we
associate a reference set, Y := [0, 1[3, that we equip with the Lebesgue
measure. We then prescribe a mapping �̂ : Y → P . As above, for any
y ∈ Y , �̂(y) determines the mapping f�̂(y), which characterizes the behav-
ior of the particle sitting at the point y. The hypotheses (1.123) and (1.124)
then entail that

�w(x) =
∫

Y
�f�̂(y)(�u(x))dy =: �G�̂(�u(x)) for a.a. x ∈ �. (1.136)

It is clear that these two models are equivalent, and �F	 = �G�̂ , if and
only if 	 is the image of the Lebesgue measure by the mappings �̂, cf.
(1.129), (1.130).

Coupling with PDEs (Vector Case)

We shall see that in the vector case the analysis of the Maxwell--Ohm equa-
tions is more problematic than in the scalar setting.

Let us consider electromagnetic processes of a three-dimensional ferro-
magnetic metal, that we represent by a Euclidean domain �. Let us denote
the magnetic field by �u and the magnetization by �w. The system of the
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Maxwell--Ohm equations without displacement current (with normalized
coefficients) yields

�
�t
(�u+ �w)+ ∇×∇×�u = �g in �T := �×]0, T[ (∇×:= curl), (1.137)

�g = �g(x, t) being a given function. As an alternative one might deal with
the corresponding system of first-order equations, namely the Ampère and
Faraday laws; this would have no effect on the conclusions we draw below.

Let us couple the coarse-scale equation (1.137) with a coarse-scale con-
stitutive relation between �u and �w; let us then prescribe either �w = �F	(�u) or
�w = �G�̂(�u) pointwise in �T . Natural regularity conditions for the solution
of (1.137) reads as follows:

�u ∈ H1(0, T;L2(�)3
)∩L∞(0, T;L2

rot(�)
3) =: X̃, �w ∈ L∞(�T)3. (1.138)

In analogy to what we saw for the scalar setting, a suitable time-
discretized problem has a solution, and a uniform-in-� estimate in X̃ can
be derived for the approximate field �u�. Therefore there exists �u ∈ X̃ such
that, possibly extracting a subsequence,

�u� → �u weakly star in X̃, as � → 0. (1.139)

However, space oscillations of increasing frequency are not excluded in
this limit, since the injection X̃ → L2

loc(�;C0([0, T])3) is not compact. It
is then not clear how one might pass to the limit in the hysteresis relation,
and thus prove the existence of a solution to our problem.

We conclude that in the vector setting we are not able to justify analyt-
ically a coarse-scale formulation of the Maxwell--Ohm equations coupled
with the population model. These difficulties are strictly related to the
occurrence of the double-curl operator in the equation (1.137).

Homogenization Approach

The above discussion suggests that the field �u(x, t)might have a nontrivial
fine-scale space structure, which should be accounted for in the formula-
tion of the problem. This induces us to amend the hypothesis (1.123), and
to apply the viewpoint of homogenization theory. Let us denote the meso-
scopic length-scale by ε. Dealing with the two-scale-type vector model, we
already defined the mapping �̂ : Y → P . Now we extend that mapping
to R3 by Y-periodicity, and consider the following �w versus �u relation:

�w(x) = �f�̂(x/ε)(�u(x)) for a.a. x ∈ �. (1.140)
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This represents the constitutive behavior of a periodic ferromagnetic ma-
terial, which in each period εY reproduces the arrangement of magnetic
particles that we represented by the function �̂(y). At this point one should
couple this constitutive relation with the Maxwell system, and study the
limit as ε vanishes. (In these notes we do not enter that issue.)

Comparison between the Prandtl--Ishlinskiı̆ and Preisach
Models

As we anticipated, the above discussion is not restricted to ferromagnetism,
and might also be applied to a number of phenomena. For instance, in
elasto-plasticity one can assume the (linearized) strain and the stress as
state variables. In Section 1.3 we formulated two basic models: the play,
and the stop; the corresponding constitutive relations can be expressed
in terms of variational inequalities. By means of parallel and series ar-
rangements of these elements, we then constructed the Prandtl--Ishlinskiı̆
models, which can be represented by systems of variational inequalities.

Along the lines of the discussion of this section, we distinguish a fine-
scale description (two-scale approach) from that based on the image mea-
sure (particle-density model). The latter is at the basis of the Prandtl--
Ishlinskiı̆ model, and provides a less detailed description than the former.
There is an obvious analogy between relays and the Preisach model on one
hand, and plays or stops and the Prandtl--Ishlinskiı̆ models on the other.

However, these two settings exhibit a relevant difference. For ferro-
magnetism we have just seen the difficulties that arise in coupling the
Maxwell--Ohm equations with a population model expressed in terms of
the image measure (thus using a coarse-scale constitutive law). On the
other hand, in the case of elasto-plasticity well-posedness has been proved
for the dynamic equation coupled with the Prandtl--Ishlinskiı̆ models (that
is a coarse-scale constitutive law, too) [88; Chapter VII]. This can be ascribed
to the intrinsic convex structure plays and stops have, at variance with re-
lays; indeed plays and stops can be represented via variational inequalities.

1.7 GENESIS OF HYSTERESIS AND COUPLING WITH
PDES

1.7.1 HYSTERESIS AND NONMONOTONICITY

Discontinuous hysteresis relations can be approximated by introducing a
time-relaxation term into equations that contain a nonmonotone function.
In this section we couple equations of this type with some especially simple
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FIGURE 1.15 Nonmonotone u versus w relation (1.142) in (a). Associated relax-
ation dynamics approximating a hysteresis behavior in (b).

ODEs and PDEs, and deal with the limit behavior as the relaxation constant
vanishes.

By inverting a nonmonotone relation, a multivalued correspondence
is obtained; this represents a feedback mechanism. A hysteresis relation is
then derived by assuming a suitable dynamic. For instance, let us fix any
�1,�2 ∈ R with �1 < �2, and consider the nonmonotone relation of Fig.
1.15(a):

u ∈ �(w) :=






] −∞,�2] if w = −1,

1
2 [�1 + �2 − (�2 − �1)w] if −1 < w < 1,

[�1,+∞[ if w = 1.

(1.141)

Let us fix a constant ε > 0, approximate (1.141) by means of the relax-
ation dynamics

ε
dwε
dt

+ �(wε) � u for t > 0, (1.142)

and set

�(w) := 1
2
[(�1 − �2)w+ �1 + �2] ∀w ∈ R.

Let us also denote by �I[−1,1] the subdifferential of the indicator function
of the interval [−1, 1] (cf. the Appendix), so that � = � + �I[−1,1]. The
inclusion (1.142) is then equivalent to the following variational inequality






−1�wε�1
(
ε

dwε
dt

+ �(wε)− u
)
(wε − v)�0 ∀v ∈ [−1, 1]

for t > 0. (1.143)
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The two vertical branches of the graph of � are attractors for this dy-
namic, whereas the oblique segment is a repulsor. Let us assume that the
evolution of u is prescribed, and make some heuristic remarks. If at the
initial instant the pair (u,w) does not lie on the oblique branch, then after
a transient w � ±1 and u � z for some z ∈ �(w).

If w(t) = −1, as u increases beyond the upper threshold �2, by (1.142)
w increases until w � 1. Similarly, if w(t) = 1, as u decreases below the
lower threshold �1, thenw decreases tow � −1. The smaller is ε, the faster
is this dynamic; see Fig. 1.15(b). Therefore, as ε vanishes, (1.142) tends to a
discontinuous hysteresis relation between u and w; more precisely, in the
limit we get a relation of the form

w ∈ h̄�(u,w0) for t > 0. (1.144)

The multivalued operator h̄� acts from C0([0, T]) to 2BV(0,T) for any T > 0;
it essentially differs from h� (we defined in Section 1.4) in that, if u(t) = �1
(u(t) = �2, respectively) at some instant t, then [h̄�(u,w0)](t) can attain
either −1 or 1 [88; Section XI.1].

This analysis rests on the assumption that the evolution of u is pre-
scribed; if this restriction is removed, a more complex behavior may occur.
We now couple the relaxation dynamic (1.142) with a differential equation
that involves both u and w, and see whether the feedback that w exerts on
u via this equation is able to modify the above dynamic.

Coupling with ODEs

(i) Let f ∈ L1
loc(R

+) be a given function, and consider the system






duε
dt

+ wε = f

ε
dwε
dt

+ �(wε) � uε
for t > 0 (ε: constant > 0). (1.145)

The function u = limε→0 uε is necessarily continuous. We claim that then
the feedback exerted on u by w via the differential equation (1.145)1 does
not modify the above picture; as ε→ 0 we thus get






du
dt

+ w = f
w ∈ h̄�(u,w0)

for t > 0. (1.146)

For instance, let us start from uε(0) < �2, wε(0) = −1, and let f = f0
(constant) > −1. Then uε increases, until it overtakes �2. At that point,



1.7 GENESIS OF HYSTERESIS AND COUPLING WITH PDES 65

wε quickly moves up, and attains a value � 1 in a time of order of 1/ε. It
might be objected that, as wε increases, duε/dt = f − wε may change sign,
so that uε may invert its direction and thus decrease below the threshold
�2. But, if ε is small enough, this cannot stop the increase of wε. Indeed,
as wε increases, the threshold 1

2 [�1 + �2 − (�2 − �1)wε] at which dwε/dt
changes sign moves to values < �2; and the smaller is ε, the faster is this
motion.

The latter argument depends on the shape of the graph of � in a neigh-
borhood of the turning points (−1,�2) and (1,�1); if � were modified so
to have a horizontal tangent at those points instead of a corner, then the
discussion would be more delicate. (We refrain from entering these details
here.)

Thus f − wε � f0 − 1 after a transient; if f0 < 1, then uε inverts its
direction, and decreases until uε��1. Therefore if −1 < f0 < 1 then the
pair (uε, wε) keeps on cycling: u oscillates between �1 and �2, andw jumps
back and forth between −1 and 1. This construction is used to model
several oscillatory behaviors in physics, biology, engineering, and so on.

(ii) Let us now consider a system of the form






d
dt
(uε + wε)+ wε = f

ε
dwε
dt

+ �(wε) � uε
for t > 0. (1.147)

If f is locally bounded, the function u+w= limε→0(uε+wε) is continuous,
whereas u needs not be so. Let us then set �̃(v) := �(v) + v for any v ∈ R,
and rewrite (1.147)2 in the equivalent form

ε
dwε
dt

+ �̃(wε) � uε + wε for t > 0 (ε: constant > 0), (1.148)

so that the function uε +wε here plays the role that before was of uε. If the
function �̃ is nondecreasing, i.e. �2 − �1�2, then no hysteresis occurs as
ε→ 0. If instead �̃ is decreasing in ]−1, 1[, i.e. �2 −�1 > 2, then hysteresis
appears; in the limit we then get






d
dt
(u+ w)+ w = f

w ∈ F(u+ w,w0)
for t > 0. (1.149)

Here F is a multivalued hysteresis operator: F is analogous to k� of (1.72)--
(1.74), but its thresholds are different.
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Coupling with PDEs

(iii) Let � be a bounded domain of RN (N�1), f be a prescribed function
� × R+ → R. Let us set � :=∑N

i=1 �2
/�x2

i , consider a system of the form






�uε
�t

− �uε + wε = f

ε
�wε
�t

+ �(wε) � uε
in �, for t > 0, (1.150)

and couple it with initial and boundary conditions for uε. If f is regular
enough, by analogy with the ODE system (1.145), as ε→ 0 we may expect
to get 





�u
�t

− �u+ w = f
w ∈ k�(u,w0)

in �, for t > 0. (1.151)

(iv) Let us now consider an equation of the form

�
�t
(uε + wε)− �uε = f in �, for t > 0. (1.152)

If this is coupled with a maximal monotone relation wε = a(uε), the corre-
sponding initial- and boundary-value problem is well posed under mild
assumptions [95,96]. The same holds also if (1.152) is coupled with the
relaxation dynamics (1.142), for any ε > 0; but in this case, as ε vanishes,
the analysis of the asymptotic behavior of the pair (uε, wε) is nontrivial.
Actually, here one cannot expect that the evolution of uε uncouples from
that of wε, since the feedback exerted by wε on uε might modify the above
picture.† Therefore a priori it is not obvious that by passing to the limit in
the system (1.142), (1.152) one would get






�
�t
(u+ w)− �u = f

w ∈ k�(u,w0)
in �, for t > 0. (1.153)

An Alternative Approach

Now we provide an alternative interpretation of the relaxation dynamics
(1.142), and introduce a different approach, along the lines of [97]. We still
assume that the function � is as in (1.141), although our discussion might
easily be extended to other nonmonotone functions.

† This would be the case even if (1.142) were coupled with a simple equation like u+bw =
g, where b is a constant > (�2 − �1)/2 and g is a prescribed function of (x, t).
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Let us consider a space-distributed system the state of which is char-
acterized by two scalar variables, u and w. By u we shall denote a con-
tinuous quantity, such as temperature, or the component of the magnetic
field along a fixed direction, and so on. On the other hand, w = ±1 will
represent two admissible phases; e.g., solid and liquid, or up and down ori-
entation of magnetization in a uniaxial ferromagnet. The variables u and
wwill be related by a constitutive law like (1.141), that we couple with the
equation

�
�t
(u+ w)− �u = f in �, for t > 0; (1.154)

this may represent either the energy balance for solid--liquid systems, or
(for a univariate system) the coupling of the Ohm and Maxwell laws with-
out displacement current. However, here we shall not refer to any specific
applicative setting.

Now we assume that at the small length-scale the two phases are well
separated, but that at the coarse length-scale they may look to be finely
mixed. On the latter scale we then represent the phase by a new variable
w̃, which we derive from w via a local average, or by convolution with a
compactly supported mollifier. Accordingly w̃will range in the set [−1, 1];
values of w̃ ∈] − 1, 1[ may be interpreted as representing mixtures, with
a fraction 1

2 (1 + w̃) ( 1
2 (1 − w̃), respectively) of particles in the state w = 1

(w = −1, respectively).(Here we use the term particle rather freely, refer-
ring to a small aggregate of elements.) Thus w and w̃ can respectively be
regarded as fine-scale (or mesoscopic) and coarse-scale (or macroscopic)
phase variables.

In the framework of the two-scale model that we are outlining, as
long as �1 < u < �2 the particles that are in either state w = ±1 remain
unchanged. The same then occurs for the average value w̃; as long as
�1<u<�2, the coarse scale variable w̃ then constantly attains some value
of [−1, 1]. This may represent the behavior of w̃ in the critical cases in
which either

(i) u drops below �2 while w̃ is rapidly moving towards 1, or sym-
metrically

(ii) u increases beyond �1 while w̃ is rapidly moving towards −1.

On the basis of the above discussion, we set

�(u, w̃) :=






1 − w̃ if u > �2,

0 if �1�u��2,

w̃− 1 if u < �1,

∀(u, w̃) ∈ R2; (1.155)
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FIGURE 1.16 Outline of the coarse-scale relaxation dynamics εdw̃/dt = �(u, w̃)
corresponding to � as in (1.155).

we then replace the fine-scale relaxation equation (1.142) by the (nonequiv-
alent) coarse-scale dynamic (cf. Fig. 1.16)

−1�w̃�1, ε
�w̃
�t

= �(u, w̃) in Q. (1.156)

A More General Setting

Let us assume that
{

��, �r are maximal monotone (possibly multivalued) functions
R → 2R \ {∅} such that inf �r(u)� sup ��(u) ∀u ∈ R, cf. Fig. 1.17(a),

(1.157)
and set

�(u, w̃) := [w̃− inf �r(u)]− − [w̃− sup ��(u)]+ ∀(u, w̃) ∈ R2; (1.158)

thus

�(u, w̃) = 0 ⇔ inf �r(u)�w̃� sup ��(u) ∀(u, w̃) ∈ R2.

As ε vanishes in the corresponding relaxation equation (1.156), we get the
dynamic of Fig. 1.17(b).

The equation (1.156), with � as in (1.155) or (1.158), can be coupled
with the equation

�
�t
(u+ w̃)− �u = f in �, for t > 0. (1.159)
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FIGURE 1.17 Function � of (1.158) in (a); corresponding coarse-scale relaxation
dynamics εdw̃/dt = �(u, w̃) in (b).

In [97] corresponding initial- and boundary-value problems were formu-
lated, and the behavior of the solution (u, w̃) as ε vanishes was studied.

1.8 A TRANSPORT EQUATION WITH HYSTERESIS

In this section we introduce PDEs with hysteresis operators. We shall use
typical notation of the analysis of P.D.E.s in Sobolev spaces, see e.g. [3,5,8]
and references therein. We then deal with a simple example: we prove
well-posedness and asymptotic stability of an initial- and boundary-value
problem for a semilinear transport equation in a single dimension of space.

1.8.1 PDES WITH HYSTERESIS

First we extend the definition of hysteresis operator to space-distributed
systems. Let � be a domain of RN (N�1) and T be a positive constant. We
assume that

F : C0([0, T])× R → C0([0, T]) is a continuous hysteresis operator,
(1.160)

cf. (1.2) and (1.3), and define the corresponding space-distributed operator
F̃ as follows:

∀u ∈ L1
loc

(
�;C0([0, T])),∀w0 ∈ L1

loc(�), for a.a. x ∈ �,
∀t ∈ [0, T], [F̃(u,w0)](x, t) := [F(u(x, ·), w0(x)

)]
(t).

(1.161)

We thus regard the space variable x as a parameter, and neglect any space
interaction between neighboring points, for no space derivative occurs
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in (1.161). This can also be extended to multivalued hysteresis operator.
Henceforth we identify F̃ with F , and omit the tilde.

Let A be an elliptic operator. Here are some basic examples of PDEs
with hysteresis, in �×]0, T[:

�
�t
[u+ F(u)] + Au = f, (1.162)

�u
�t

+ Au+ F(u) = f, (1.163)

�2

�t2
[u+ F(u)] + Au = f, (1.164)

�2
u

�t2
+ Au+ �

�t
F(u) = f, (1.165)

�2
u

�t2
+ Au+ F(u) = f, (1.166)

�
�t
[u+ F(u)] + �u

�x
= f (for N = 1), (1.167)

�u
�t

+ �u
�x

+ F(u) = f (for N = 1). (1.168)

Classification of PDEs with Hysteresis

The standard classification of nonlinear PDEs can be extended to equations
that contain hysteresis operators.

In Section 1.1 we saw that any scalar hysteresis operator, F , is reduced
to a (possibly multivalued) superposition operator on any time interval in
which the input function is monotone (either nondecreasing or nonincreas-
ing). Let us denote by SF this class of superposition operators; in several
examples of applicative interest, these operators are associated with non-
decreasing functions (we named this property piecewise monotonicity of
F). We say that a scalar equation that contains F is either parabolic or hy-
perbolic whenever it would be so if the operator F were replaced by any
element of SF . These equations are nonlinear, and by the same criterion
we also extend the usual definition of semilinearity, quasilinearity and full
nonlinearity.

These definitions can be extended to vector hysteresis operators, pro-
vided that whenever a vector input function evolves monotonically along
any fixed (possibly x-dependent) direction, the vector output is reduced to
a (possibly multivalued) superposition operator. This property is fulfilled,
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for instance, by the vector-relay and the vector Preisach operator. The same
applies to tensor hysteresis operators, like those of Prandtl--Ishlinskiı̆.

For instance, the equations (1.162), (1.163) are parabolic, and (1.164)--
(1.168) are hyperbolic. On the other hand (1.162), (1.164), (1.167) are quasi-
linear, and (1.163), (1.165), (1.166), (1.168) are semilinear.

1.8.2 TRANSPORT EQUATION WITH HYSTERESIS IN CLASSICAL
SPACES

In this and the next sections we shall deal with some of the above equations.
In the remainder of this section we study the semilinear first-order equation
(1.168), along the lines of [8; Section X.4]; this example is rather simple,
and gives us the opportunity to introduce some of the techniques that are
currently used for the analysis of PDEs with hysteresis.

First we fix any T > 0, set Qt := R+×]0, t[ for any t > 0 and Q :=
QT , denote by C0

b(R
+) the Banach space of bounded continuous functions

R+ → R equipped with the uniform norm, and define C0
b(Q̄) similarly. We

assume that (1.160) holds and that

f ∈ C0
b(Q̄), u0, w0 ∈ C0

b(R
+), v0 ∈ C0([0, T]), u0(0) = v0(0); (1.169)

by integrating the equation (1.168) along the characteristic lines x − t =
constant, we now formulate an initial- and boundary-value problem in
integral form in the space of continuous functions.

PROBLEM 1.8.1. Find u ∈ C0
b(Q̄) such that, setting

w(x, t) := [F(u(x, ·), w0(x)
)]
(t) ∀(x, t) ∈ Q̄, (1.170)

one has

u(x, t) =
∫ t

0
[f −w](x− t+�, �)d�+

{
u0(x − t) if 0 < t�x
v0(t− x) if 0 < x < t�T

(1.171)

for any (x, t) ∈ Q̄.

THEOREM 1.8.1 (Well-posedness). Let (1.160), (1.169) hold, and assume that

∃L, L̂ > 0 : ∀v1, v2 ∈ C0([0, T]),∀
1, 
2 ∈ R,∀t ∈]0, T],
max[0,t] |F(v1, 
1)− F(v2, 
2)|�Lmax[0,t] |v1 − v2| + L̂|
1 − 
2|, (1.172)

∀x > 0,∀v ∈ C0([0, T]), if v(0) = u0(x) then
[F(v,w0(x)

)]
(0) = w0(x).

(1.173)
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Then Problem 1.8.1 is well posed. More precisely, for i = 1, 2, let u0
i , w

0
i , v

0
i , fi be

as in (1.169), and denote by ui the corresponding solution of Problem 1.8.1. Set
ũ := u1 − u2, define ũ0, w̃0, ṽ0, f̃ similarly, and set

M(ũ0, ṽ0, t) := max
{‖ũ0‖C0

b(R
+), ‖ṽ0‖C0([0,t])

};

then

‖ũ‖C0
b(Q̄t)

�eLt
(∫ t

0
‖f̃ ‖C0

b(Q̄�)
d� + L̂t‖w̃0‖C0

b(R
+) +M(ũ0, ṽ0, t)

)

∀t ∈]0, T].
(1.174)

PROOF. For i = 1, 2, let us take any zi ∈ C0
b(Q̄) and set

wi(x, t) :=
[F(zi(x, ·), w0

i (x)
)]
(t) ∀(x, t) ∈ Q̄, (1.175)

ui(x, t) =
∫ t

0
[fi − wi](x − t+ �, �)d� +

{
u0
i (x − t) if 0 < t�x
v0
i (t− x) if 0 < x < t�T.

(1.176)
Setting w̃ := w1 − w2 and z̃ := z1 − z2, by (1.172) we have

‖w̃‖C0
b(Q̄t)

�L‖z̃‖C0
b(Q̄t)

+ L̂‖w̃0‖C0
b(R

+) ∀t ∈]0, T];

(1.176) then yields

‖ũ‖C0
b(Q̄t)

�
∫ t

0

(‖f̃ ‖C0
b(Q̄�)

+ ‖w̃‖C0
b(Q̄�)

)
d� +M(ũ0, ṽ0, t)

�
∫ t

0

(‖f̃ ‖C0
b(Q̄�)

+ L‖z̃‖C0
b(Q̄�)

)
d� + L̂t‖w̃0‖C0

b(R
+) +M(ũ0, ṽ0, t)

∀t ∈]0, T].

(1.177)

In particular for any u0, w0, v0, f as in (1.169) we have

‖ũ‖C0
b(Q̄t)

�L
∫ t

0
‖z̃‖C0

b(Q̄�)
d� ∀t ∈]0, T].

If t < 1/L then the mapping z �→ u is a strict contraction in C0
b(Q̄t), hence

it has a fixed point. Reiterating the argument step by step in time, we
conclude that Problem 1.8.1 has a solution. (1.177) then holds with ũ in
place of z̃, and (1.174) follows by the Gronwall lemma. ��
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1.8.3 FORMULATION IN SOBOLEV SPACES

We assume that (1.160) is fulfilled, that

u0, w0 ∈ L1(R+), v0 ∈ L1(0, T), f ∈ L1(Q), (1.178)

and reformulate the above problem in differential form. This will allow
us to improve the regularity of the solution, by using some of the most
common techniques for the analysis of PDEs with hysteresis operators.

PROBLEM 1.8.2. Find u ∈W1,1
loc (Q) such that, setting

w(x, t) := [F(u(x, ·), w0(x)
)]
(t) ∀t ∈ [0, T], for a.a. x > 0, (1.179)

one has
�u
�t

+ �u
�x

+ w = f a.e. in Q, (1.180)

u(x, 0) = u0(x) for a.a. x > 0, (1.181)

u(0, t) = v0(t) for a.a. t ∈]0, T[. (1.182)

As W1,1(Q) ⊂ L1(R+;C0([0, T])), (1.179) is meaningful, and w(x, ·) ∈ C0

([0, T]) for a.a. x > 0. The functions u and w will be regarded as elements
of spaces of functions of t parameterized by the variable x, and also as
elements of spaces of functions of x parameterized by the variable t. Oc-
casionally this will be made clearer by displaying indices x and t in the
expression of function spaces.

THEOREM 1.8.2 (Existence, Uniqueness and Regularity). Let 1 < p < +∞, as-
sume that (1.160) holds, and

∀(v, 
) ∈ Dom(F),∀[t1, t2] ⊂ [0, T],
if v is either nondecreasing or nonincreasing in [t1, t2],
then the same holds for F(v, 
),

(1.183)

∃M,N > 0 : ∀(v, 
) ∈ C0([0, T])× R,∀t ∈ [0, T],∣∣[F(v, 
)](t)∣∣�|
| +M|v(t)| +N. (1.184)

Then Problem 1.8.2 has one and only one solution; moreover

u,
�u
�t
,
�u
�x

∈ L∞t
(
0, T;Lpx(R+)

) ∩ L∞x
(
R+;Lpt (0, T)

)
, (1.185)
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u ∈W1,∞
t

(
0, T;Lpx(R+)

) ∩ L∞x
(
R+;W1,p

t (0, T)
)

∩L∞t
(
0, T;W1,p

x (R+)
) ∩W1,∞

x

(
R+;Lpt (0, T)

)
,

(1.186)

w ∈ L∞x
(
R+;W1,p

t (0, T)
)
. (1.187)

If (1.172) is fulfilled, then the solution is also unique.

PROOF. (i) Approximation. Let us fix any m ∈ N, set h := T/m and

u0
m := u0, w0

m := w0, f nm := f(·, nh) for n = 1, ..., m.

We approximate our problem via implicit time-discretization. For any
family {vnm}n=1,...,m of functions R → R, let us set:

vm := time-interpolate of v0
m, ..., v

m
m, a.e. in �,

v̄m(·, t) := vnm a.e. in �,∀t ∈](n− 1)h, nh], for n = 1, . . . , m.
(1.188)

PROBLEM 1.8.2m. Find unm ∈W1,p(R+) such that, for n = 1, ..., m, setting

wnm(x) :=
[F(um(x, ·), w0(x)

)]
(nh) for a.a. x > 0, (1.189)

one has
unm − un−1

m

h
+ dunm

dx
+ wnm = f nm a.e. in R+, (1.190)

unm(0) = v0(nh). (1.191)

Existence of an approximate solution can be proved step by step. For any
n, at the nth step u0

m,..., un−1
m are known. By the causality of F , wnm(x)

then only depends on unm(x); that is, there exists a Caratheodory function
gnm : R × R+ → R such that (1.189) reads

wnm(x) = gnm(unm(x), x) for a.a. x > 0. (1.192)

By (1.183) and (1.184), gnm(·, x) is nondecreasing and affinely bounded. The
Cauchy problem (1.190)--(1.192) then has one and only one solution in R+.

(ii) A Priori Estimates. Let us set

z0
m = f(·, 0)−du0

dx
−w0, znm := unm − un−1

m

h
for n = 1, ..., m, (1.193)

am,p−1(v) := min{|v|p−2, m}v, Am,p(v) :=
∫ t

0
am,p−1(
)d
 ∀v ∈ R,∀m ∈ N.

(1.194)
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By taking the incremental ratio in time in (1.190), we have

znm − zn−1
m

h
+ dznm

dx
+ wnm − wn−1

m

h
= f nm − f n−1

m

h
a.e. in R+, for n = 1, ..., m.

(1.195)

Multiplying this equation by am,p−1(z
n
m), and integrating in ]0, x[ we have

∫ x

0

(
Am,p(z

n
m(x))− Am,p(zn−1

m (x))
)

dx + (
Am,p(z

n
m(x))− Am,p(znm(0))

)

+
∫ x

0

wnm − wn−1
m

h
am,p−1(z

n
m)dx =

∫ x

0

f nm − f n−1
m

h
am,p−1(z

n
m)dx

(1.196)
for a.a. x > 0, for any n; by (1.183) the third addendum is nonnegative. By
summing for n = 1, ..., � for any � ∈ {1, ..., m}, we then get
∫ x

0

(
Am,p(z

�
m(x))− Am,p(z0(x))

)
dx +

�∑

n=1

(
Am,p(z

�
m(x))− Am,p(z�m(0))

)

�
�∑

n=1

∥∥∥
f nm − f n−1

m

h

∥∥∥
Lp(0,x)

‖znm‖p−1
Lp(0,x) for a.a. x > 0,∀�.

Notice that z�m(0) := [v0(�h)− v0(�h− h)]/h for any �. A simple calculation
then yields

∥∥∥
�um
�t

∥∥∥
L∞t (0,T;Lpx(R+))

,
∥∥∥
�um
�x

∥∥∥
L∞x (R+;Lpt (0,T))

�C1 (1.197)

(by C1, C2, ... we denote suitable constants independent of m); hence, by
(1.184),

‖wm‖L∞(Q)�C2. (1.198)

(iii) Limit Procedure. The equation (1.190) also reads

�um
�t

+ �ūm
�x

+ w̄m = f̄m a.e. in R+×]0, T[. (1.199)

By (1.197) and by comparing the terms of this equation, we get
∥∥∥
�um
�x

∥
∥
∥
L∞t (0,T;Lpx(R+))

,
∥
∥∥
�um
�t

∥
∥
∥
L∞x (R+;Lpt (0,T))

�C3. (1.200)

By (1.197), (1.198) and (1.200) there exist u,w such that, possibly taking
m→ ∞ along a subsequence,

um → u,
�um
�t

→ �u
�t
,

�um
�x

→ �u
�x

weakly star in L∞t
(
0, T;Lpx(R+)

) ∩ L∞x
(
R+;Lpt (0, T)

)
,

(1.201)
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wm → w weakly star in L∞x
(
R+;W1,p

t (0, T)
)
. (1.202)

By passing to the limit in (1.199) we get (1.180). By (1.201), um → u uni-
formly in [0, T] for a.a. x > 0; by (1.160) this entails

F(um,w0)→ F(u,w0) uniformly in [0, T], a.e. in R+.

As wm is the linear interpolate of wm(·, nh) := [F(um,w0)](·, nh) (n =
1, ..., m), then

wm → F(u,w0) uniformly in [0, T], a.e. in R+.

By (1.202) we conclude that w = F(u) a.e. in Q. Thus u solves Problem
1.8.1.
(iv) Uniqueness. By (1.186), u ∈ C0

b(Q̄) and u solves Problem 1.8.1; by
Theorem 1.8.1 the solution is then unique. (This might also easily be proved
directly on Problem 1.8.2.) ��
Remarks

(i) Existence of a solution of Problem 1.8.2 can easily be established
also if the piecewise monotonicity property (1.183) is replaced by
that of Lipschitz-continuity (1.172). In this case one also gets w ∈
L∞x
(
R+;W1,p

t (0, T)
)
.

(ii) If the drift term �u/�x is replaced by v(x)�u/�x for a prescribed
nonincreasing positive function v ∈W1,∞(R+), no difficulty arises
in extending Theorem 1.8.2. Other extensions are also possible,
e.g. R+ can be replaced either by R or by a bounded interval.

(iii) Let R+ be replaced by a domain � ⊂ RN , �v : � → RN be a given
function, and consider the equation

�u
�t

+ �v(x)·∇u+ F(u) = f in �×]0, T[. (1.203)

If the field �v is integrable, then one can integrate this equation along each
integral line, retrieve a family of equations in a single space variable of the
form (1.168), and thus derive well-posedness results.

1.8.4 LARGE-TIME BEHAVIOR

Problems 1.8.1 and 1.8.2 can be extended to t ranging in the whole R+, just
by assuming that u solves the corresponding problem in any finite interval
[0, T]; in that case we shall say that u solves the problem in R+.



1.8 A TRANSPORT EQUATION WITH HYSTERESIS 77

Because of rate-independence, for any hysteresis operator F as in
(1.160) it is easy to see that

F : C0
b(R

+)× R → C0
b(R

+) and is continuous, (1.204)

∀(v, 
) ∈ C0
b(R

+)× R,
∃ lim
t→+∞ v(t) ∈ R ⇒ ∃ lim

t→+∞
[F(v, 
)](t) ∈ R. (1.205)

Let us set Q∞ := (R+)2.

PROPOSITION 1.8.3. Assume that (1.160), (1.172), (1.173) hold, and

u0, w0, v0 ∈ C0(R+), f : R+ → C0
b(R

+) is strongly continuous. (1.206)

Then Problem 1.8.1 has one and only one solution in R+.

This is a straightforward consequence of Theorem 1.8.1. Let us now come
to the large-time behavior of the solution of Problem 1.8.2.

PROPOSITION 1.8.4. Let 1 < p < +∞, (1.160), (1.172), (1.173) hold, and

u0, w0, v0 ∈W1,p(R+), f ∈W1,p
t

(
R+;Lpx(R+)

)
, (1.207)

∃b > 0 : ∀u ∈W1,p
loc (R

+), �F(u,w0)

�t

∣∣∣
�u
�t

∣∣∣
p−2 �u

�t
�b
∣∣∣
�u
�t

∣∣∣
p

a.e. in R+.
(1.208)

Then Problem 1.8.2 has one and only one solution in R+; moreover

�u
�t

∈ L∞t
(
R+;Lpx(R+)

) ∩ L∞x
(
R+;Lpt (R+)

)
, (1.209)

�u
�t

→ 0 strongly in Lp(R+), as t → +∞. (1.210)

PROOF. Existence and uniqueness of the solution in R+ follow from Theo-
rem 1.8.2.

By passing to the limit as h→ 0 in (1.196), by (1.208) we have

1
p

d
dt

∫ x

0

∣
∣∣
�u
�t
(
, t)

∣
∣∣
p

d
 + 1
p

(∣∣
∣
�u
�t
(x, t)

∣∣∣
p −

∣
∣∣
dv0

dt
(t)
∣
∣∣
p)+ b

∫ x

0

∣
∣∣
�u
��

∣
∣∣
p

d


� 2
bp

∫ x

0

∣
∣∣
�f
��

∣
∣∣
p

d
 + b(p− 1)
2p

∫ x

0

∣
∣∣
�u
��

∣
∣∣
p

d
 for a.a. x > 0,∀t > 0,



78 CHAPTER 1 Mathematical Models of Hysteresis

whence, multiplying by p,

d
dt

∫ x

0

∣∣∣
�u
�t
(
, t)

∣∣∣
p

d
 +
∣∣∣
�u
�t
(x, t)

∣∣∣
p + b(p+ 1)

2

∫ x

0

∣∣∣
�u
��

∣∣∣
p

d


�2
b

∫ x

0

∣∣∣
�f
��

∣∣∣
p

d
 +
∣∣∣
dv0

dt
(t)
∣∣∣
p

for a.a. x > 0 and a.a. t > 0.
(1.211)

As the right side is integrable with respect to time in R+, Lemma 1.8.5
below yields (1.209) and (1.210). ��

LEMMA 1.8.5. Let f ∈ L1(R+), f�0, and a, C be positive constants. Let Y be the
family of nonnegative functions y ∈W1,1(R+) such that

y(0)�C, y′(t)+ ay(t)�f(t) for a.a. t > 0. (1.212)

Then

y(t)�C +
∫ +∞

0
f(�)d� ∀t > 0,

y(t)→ 0 as t → +∞, uniformly in Y.

(1.213)

PROOF. By the formula of variation of constants we have

y(t)�e−aty(0)+
∫ t

0
e−a(t−�)f(�)d��C +

∫ +∞

0
f(�)d� =:M ∀t > 0,

y(t) �e−a(t−T)y(T)+
∫ t

T
e−a(t−�)f(�)d�

�e−a(t−T)M +
∫ t

T
f(�)d� ∀T, t > 0, T < t.

This yields (1.213). ��

1.9 A QUASILINEAR PARABOLIC PDE WITH
HYSTERESIS

In this section we deal with a quasilinear parabolic equation that con-
tains a continuous hysteresis operator. We prove well-posedness, study
the large-time behavior of the solution, deal with the corresponding peri-
odic problem, and finally prove the existence of a solution for a parabolic
equation with hysteresis in the coefficient of the elliptic term.
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1.9.1 FORMULATION AND EXISTENCE RESULT

Let � be a bounded Lipschitz domain of RN (N�1),T be a positive constant,
and set �T := �×]0, T[. We assume that

F : C0([0, T])× R → C0([0, T]) is a continuous hysteresis operator,
(1.214)

and identify it with F̃ , cf. (1.161). We fix a function f : �T → R, and couple
the equation

�
�t
[u+ F(u)] − �u = f in �T (1.215)

with suitable initial and boundary conditions. For the sake of simplicity,
here we assume the homogeneous Dirichlet condition, and setV := H1

0(�).
We identify the (real) Hilbert space H := L2(�) with its topological dual
H′; in turn H can then be identified with a subspace of V ′, as V is a dense
subspace of H with continuous injection. We thus get the Hilbert triplet

V ⊂ H = H′ ⊂ V ′ with continuous and dense injections.

We denote by 〈·, ·〉 the duality pairing between V ′ and V, and define the
linear and continuous operator A : V → V ′ by

〈Au, v〉 :=
∫

�
∇u·∇vdx ∀u, v ∈ V.

Finally, we assume that

u0, w0 ∈ H, f ∈ L2(0, T;V ′). (1.216)

PROBLEM 1.9.1. Find u : � → C0([0, T]) measurable such that u ∈ L2(0, T;V)
and, setting

w(x, t) := [F(u(x, ·), w0(x)
)]
(t) ∀t ∈ [0, T], for a.a. x ∈ �, (1.217)

w ∈ L2(0, T;H), u+ w ∈ H1(0, T;V ′), and

�
�t
(u+ w)+ Au = f in V ′, a.e. in ]0, T[, (1.218)

(u+ w)|t=0 = u0 + w0 in V ′. (1.219)
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For N = 1 this problem is a simplified model of scalar ferromagnetism,
with normalized coefficients. (1.218) can be derived from the Maxwell
equations, neglecting the displacement current term and assuming a linear
relation between the electric field, E, and the electric current density, J.
The operator F then represents the (scalar) hysteretic relation between the
magnetic field, H, and the magnetization, M.

THEOREM 1.9.1 (Existence). Assume that (1.214) is fulfilled, and

∀(v, 
) ∈ Dom(F),∀[t1, t2] ⊂ [0, T],
if v is either nondecreasing or nonincreasing in [t1, t2],
then the same holds for F(v, 
),

(1.220)

∃M,N ∈ R+ : ∀(v, 
) ∈ C0([0, T])× R,∀t ∈ [0, T],
|[F(v, 
)](t)|�|
| +M|v(t)| +N, (1.221)

for a.a. x ∈ �,∀v ∈ C0([0, T]),
if v(0) = u0(x) then

[F(v,w0(x)
)]
(0) = w0(x),

(1.222)

u0 ∈ V, w0 ∈ H,
f = f1 + f2, f1 ∈ L2(0, T;H), f2 ∈W1,1(0, T;V ′). (1.223)

Then Problem 1.9.1 has a solution such that

u ∈ H1(0, T;H) ∩ L∞(0, T;V), w ∈ L2(�;C0([0, T])). (1.224)

Moreover the norm of (u,w) in the latter spaces is bounded by a constant that only
depends on the data u0, w0, f via the respective norms in V, H, L2(0, T;H) +
W1,1(0, T;V ′).

PROOF. We use the argument of Theorem 1.1 of [8; Chapter IX], which is
based on approximation by implicit time-discretization, derivation of a
priori estimates, and passage to the limit by compactness.

(i) Approximation. We fix any m ∈ N, set h := T/m and





f n1m(x) :=

1
h

∫ nh

(n−1)h
f1(x, t)dt for a.a. x ∈ �, f n2m := f2(nh),

f nm := f n1m + f n2m, u0
m := u0, w0

m := w0, for n = 1, ..., m.
(1.225)

Defining time-interpolate functions as in (1.188), we now approximate our
problem via implicit time-discretization.



1.9 A QUASILINEAR PARABOLIC PDE WITH HYSTERESIS 81

PROBLEM 1.9.1m. For n = 1, ..., m, find unm ∈ V such that, setting

wnm(x) :=
[F(um(x, ·), w0(x)

)]
(nh) for n = 1, ..., m, for a.a. x ∈ �,

(1.226)
one has

unm − un−1
m

h
+ wnm − wn−1

m

h
+ Aunm = f nm in V ′, for n = 1, ..., m. (1.227)

Existence of an approximate solution can be proved step by step. For any
n, at the nth step u0

m,..., un−1
m are known a.e. in �. By the causality of F , wnm

then only depends on unm, i.e.,

wnm(x) = gnm(unm(x), x) for a.a. x ∈ �,

for a suitable Caratheodory function gnm : R × � → R. By (1.220), (1.221),
for a.a. x ∈ � the function gnm(·, x) is nondecreasing and affinely bounded.
Existence of a solution of the elliptic equation (1.227) then follows.

(ii) A Priori Estimates. Let us multiply equation (1.227) by unm − un−1
m , and

sum for n = 1, ..., �, for any � ∈ {1, ..., m}. By (1.220),
(
wnm − wn−1

m

) (
unm − un−1

m

)
�0 a.e. in �, for n = 1, ..., m;

hence

h
�∑

n=1

∫

�

∣∣∣
unm − un−1

m

h

∣∣∣
2 + 1

2

∫

�

(|∇u�m|2 − |∇u0|2)dx

�
�∑

n=1
V′ 〈f nm, unm − un−1

m 〉V ∀�.
(1.228)

As

�∑

n=1
V′ 〈f nm, unm − un−1

m 〉V� 1
2‖f1‖2

L2(0,T;H) + h
2

�∑

n=1

∫

�

(
unm − un−1

m

h

)2

dx

+C1‖f2‖2
W1,1(0,T;V′) + 1

2 maxn=0,...,� ‖unm‖2
V ∀�
(1.229)

(byC1, C2, ...we denote suitable constants independent ofm), by a standard
calculation we get

‖um‖H1(0,T;H)∩L∞(0,T;V)�C2. (1.230)

Hence um is uniformly bounded in L2(�;C0([0, T])), and by (1.221) we
have

‖wm‖L2(�;C0([0,T]))�C3. (1.231)
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Notice that (1.227) also reads

�
�t
(um + wm)+ Aūm = f̄m in V ′, a.e. in ]0, T[. (1.232)

(iii) Passage to the Limit. By the estimates (1.230) and (1.231) there exist u
and w such that, possibly taking m→ ∞ along a subsequence,

um → u weakly star in H1(0, T;H) ∩ L∞(0, T;V),
wm → w weakly star in L2(�;L∞(0, T)). (1.233)

By taking m → ∞ in (1.227) we then get (1.218); (1.219) is also easily
derived. As

H1(0, T;H) ∩ L∞(0, T;V) ⊂ L2(�;C0([0, T])) with compact injection,

by (1.233)1 possibly extracting a further subsequence

um(x, ·)→ u(x, ·) uniformly in [0, T], for a.a. x ∈ �. (1.234)

By the continuity of F , cf. (1.214), this entails that F(um,w0) → F(u,w0)

uniformly in [0, T] a.e. in �. As wm(x, ·) is the linear interpolate of
wm(x, nh) :=

[F(um,w0)](x, nh) (n = 0, ..., m) for a.a. x, wm → F(u,w0)

uniformly in [0, T] a.e. in �. By (1.233)2 we then conclude that w = F(u)
a.e. in �T . The final statement is a straightforward consequence of the
above estimates. ��
1.9.2 UNIQUENESS

We assume that

��, �r : R → R are two Lipschitz-continuous
and affinely bounded curves, �r��� pointwise, (1.235)

and denote by F the corresponding generalized play operator, cf. (1.51).
The next result carries over to a larger class of hysteresis operators, which
also includes several (either continuous or discontinuous) Preisach opera-
tors, cf. Section 1.4.

THEOREM 1.9.2 (Dependence on the Data and Uniqueness [17]). Assume that
(1.235) is fulfilled, let

u0
i ∈ V, w0

i ∈ H (i = 1, 2), f1 − f2 ∈ L1(�T), (1.236)

and set

w0
i := min

{
max{w0

i , �r(u
0
i )}, ��(u0

i )
}

a.e. in � (i = 1, 2). (1.237)
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Let u1, u2 ∈ H1(0, T;H) ∩ L∞(0, T;V) be corresponding solutions of Problem
1.9.1 (which exist after Theorem 1.9.1), and define w1, w2 as in (1.217). Then
∫

�

[
(u1 − u2)

+(x, t)+ (w1 − w2)
+(x, t)

]
dx

�
∫

�

[
(u0

1 − u0
2)

+ + (w0
1 − w0

2)
+]dx +

∫ t

0
d�
∫

�
(f1 − f2)+(x, �)dx,

(1.238)

for any t ∈ [0, T]; an analogous inequality holds if the positive part is replaced
either by the negative part or by the absolute value. Therefore the solution of
Problem 1.9.1 is unique, and depends monotonically and Lipschitz-continuously
on the data u0, w0, f .

PROOF. We follow Hilpert’s argument of [17]. First let us approximate the
Heaviside function,

Ĥ(
) := 0 if 
�0, Ĥ(
) := 1 if 
 > 0,

by setting Ĥm(
) := max{min{m
, 1}, 0} for any 
 ∈ R and any m ∈ N.
Note that w1, w2 ∈ H1(0, T;H), as �� and �r are Lipschitz-continuous.

Let us write (1.218) for i = 1, 2, take the difference of these equations,
multiply it by Ĥm(u1−u2), and integrate it in�t := �×]0, t[ for a.a. t ∈]0, T[.
By the monotonicity of Ĥm, we get

∫∫

�t

( �
��
(u1 − u2)+ �

��
(w1 − w2)

)
Ĥm(u1 − u2)dxd�

�
∫∫

�t
(f1 − f2) Ĥm(u1 − u2)dxd� for a.a. t ∈]0, T[.

Notice that Ĥm(u1 − u2) → � = Ĥ(u1 − u2) a.e. in �T as m → ∞. By
passing to the limit in the latter inequality we then infer that

∫∫

�t

( �
��
(u1 − u2)+ �

��
(w1 − w2)

)
� dxd��

∫∫

�t
(f1 − f2)+ dxd�

for a.a. t ∈]0, T[.
(1.239)

Moreover
( �
��
(u1 − u2)

)
� = �

��

[
(u1 − u2)

+] a.e. in �T,

and the Hilpert inequality (1.53) yields

( �
��
(w1 − w2)

)
�� �

��

[
(w1 − w2)

+] a.e. in �T.
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The inequality (1.239) then yields

∫∫

�t

�
��

(
(u1 − u2)

+ + (w1 − w2|)+
)

dxd��
∫∫

�t
(f1 − f2)+ dxd�

for a.a. t ∈]0, T[,
and integrating in time we get (1.234). ��

1.9.3 LARGE TIME BEHAVIOUR

THEOREM 1.9.3 (Uniform Asymptotic Stability in V). Assume that (1.214),
(1.220) and (1.221) hold, that
{ ∃L > 0 : ∀v ∈ C0([0,+∞[),∀
 ∈ R,∀[t1, t2] ⊂ [0,+∞[,
v affine in [t1, t2] ⇒ |[F(v, 
)](t2)−

[F(v, 
)](t1)|�L|v(t2)− v(t1)|,
(1.240)

u0 ∈ V, w0 ∈ H,
f = f1 + f∞, f1 ∈ L2(0,+∞;H), f∞ ∈ V ′, (1.241)

and set u∞ := A−1f∞ (∈ V). Then there exists one and only one

u ∈ (H1(0,+∞;H) ∩ L∞(0,+∞;V))+ u∞ (1.242)

that solves Problem 1.9.1 for any T > 0. Moreover

u(·, t)→ u∞ := A−1f∞ strongly in V, as t→ +∞, (1.243)

uniformly as u0 (f1, respectively) ranges in any bounded subset of V
(L2(0,+∞;H), respectively).

Finally,

w ∈ L2
loc(0,+∞;H), �w

�t
∈ L2(0,+∞;H), (1.244)

and there exists w∞ ∈ H such that

w(·, t)→ w∞ in measure in �, as t→ +∞. (1.245)

PROOF. First notice that by rate-independence (1.220) and (1.221) hold for
any T > 0.

Setting ũ := u− u∞ (1.218) also reads

�
�t
(ũ+ w)+ Aũ = f1 in V ′, a.e. in ]0, T[, (1.246)
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Let us multiply this equation by �ũ/�t, and integrate over �. By (1.220)

�w
�t

�ũ
�t

= �w
�t

�u
�t

�0 a.e. in �T,

and we get
∫

�

∣∣∣
�ũ
�t

∣∣∣
2
dx + 1

2
d
dt

∫

�
|∇ũ|2dx =

∫

�
f1

�ũ
�t

dx�1
2

∫

�

(
|f1|2 +

∣∣∣
�ũ
�t

∣∣∣
2)

dx

a.e. in ]0, T[.
(1.247)

By (1.240), |�w/�t|�L|�ũ/�t|. Multiplying (1.246) by ũwe then have

1
2

d
dt

∫

�
|ũ|2dx +

∫

�
|∇ũ|2dx =

∫

�

(
f1 − �w

�t

)
ũdx�

∫

�

(
|f1| + L

∣∣∣
�ũ
�t

∣∣∣
)
|ũ|dx

�
∫

�

( 1
2a

|f1|2dx + L2

2a

∣∣∣
�ũ
�t

∣∣∣
2 + a|ũ|2

)
dx a.e. in ]0, T[,∀a > 0.

(1.248)
By the Poincaré inequality there exists a constant a > 0 such that

a

∫

�
|ũ|2dx�1

2

∫

�
|∇ũ|2 dx; (1.249)

multiplying (1.248) by a/(2L2) and adding it to (1.247), we then get

1
4

∫

�

∣∣∣
�ũ
�t

∣∣∣
2
dx + 1

2
d
dt

∫

�

( a

2L2 |ũ|2 + |∇ũ|2
)

dx + a

4L2

∫

�
|∇ũ|2dx

�2L2 + 1
4L2 ‖f1‖2

H a.e. in ]0, T[.

This yields (1.242). By setting

y(t) :=
∫

�

( a

2L2 |ũ(x, t)|2 + |∇ũ(x, t)|2
)

dx for a.a. t ∈]0, T[,

for a suitable constant � > 0 we also get

dy
dt
(t)+ �y(t)�2L2 + 1

2L2 ‖f1(·, t)‖2
H for a.a. t ∈]0, T[.

As the right side is integrable in ]0. + ∞[, by Lemma 1.8.5 y(t) → 0 as
t→ +∞; (1.243) thus holds.

By (1.240) and (1.242) w has the regularity (1.244). Finally, by (1.243),
(1.244) and by the continuity of F , we infer that there exists w∞ ∈ H such
that (1.245) holds. ��
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1.9.4 PERIODIC PROBLEM

We introduce a periodic problem associated with Problem 1.9.1, with a
nonhomogeneous Dirichlet condition. Let F fulfil (1.214) and

f ∈ L2(0, T;V ′). (1.250)

PROBLEM 1.9.2. Find

u ∈ L2(�;C0([0, T])) ∩ L2(0, T;V),
w ∈ L2(�;C0([0, T])) ∩ L2(0, T;H), (1.251)

such that u+ w ∈ H1(0, T;V ′) and

w(x, t) = [F(u(x, ·), w(x, 0))](t) ∀t ∈ [0, T], for a.a. x ∈ �, (1.252)

�
�t
(u+ w)+ Au = f in V ′, a.e. in ]0, T[, (1.253)

u(·, 0) = u(·, T), w(·, 0) = w(·, T) a.e. in �. (1.254)

THEOREM 1.9.4 ([98]). Let F be the generalized play operator associated with two
curves ��, �r such that

��, �r : R → R are Lipschitz-continuous and nondecreasing;
�r��� in R; ��(
) > 0 ∀
�0, �r(
) < 0 ∀
�0,

(1.255)

and assume that

f = f1 + f2, f1 ∈ L2(0, T;H), f2 ∈W1,1(0, T;V ′), f2(0) = f2(T),
(1.256)

∃f∗, f ∗ ∈ V ′ : f∗�f2�f ∗ in D′(�),∀t ∈ [0, T]. (1.257)

Then Problem 1.9.2 has minimal and maximal solutions with respect to the point-
wise ordering. That is, denoting by S the set of all solutions of this problem,

∃(u∗, w∗), (u∗, w∗) ∈ S : ∀(u,w) ∈ S,
u∗�u�u∗, w∗�w�w∗ a.e. in �T.

(1.258)

Moreover, these minimal solutions and a maximal solution have the regularity

u ∈ H1(0, T;H) ∩ L∞(0, T;V), w ∈ H1(0, T;H). (1.259)

PROOF. We follow the argument of [98], and split it into several steps.

(i) Let us first set X := {
(u,w) ∈ V×H : �r(u)�w���(u) a.e. in �

}
; this set

is partially ordered with respect to the natural ordering

(u1, w1) ! (u2, w2) ⇔ u1�u2, w1�w2 a.e. in �.
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For any (u0, w0) ∈ X let us denote by S the solution operator, that maps
(u0, w0) to the solution

u ∈ H1(0, T;H) ∩ L∞(0, T;V), w ∈ L2(�;C0([0, T]))

of Problem 1.9.1 corresponding to the initial values (u0, w0) and to the
source term f , cf. (1.224). Let us then define the Poincaré mapping P :
X → X : (u0, w0) �→ (u(·, T), w(·, T)).
(ii) We claim that for any sequence {(u0

n, w
0
n)} in X and any (u0, w0) ∈ X, if

u0
n → u0 weakly in V, w0

n → w0 weakly in H,

then, setting (un(·, T), wn(·, T)) := P(u0
n, w

0
n) and (u(·, T), w(·, T)) := P(u0,

w0),

un(·, T)→ u(·, T) weakly in V, wn(·, T)→ w(·, T) weakly in H.

After the final statement of Theorem 1.9.1, the uniform estimates that we
derived in the proof of that theorem apply to the sequences {un} and {wn}.
Moreover, as (1.255) entails the Lipschitz-continuity of F , the uniform
boundedness of {un} inH1(0, T;H) yields the same property for {wn}. The
stated convergences then follow.

(iii) Let z∗, z∗ ∈ V be such that

Az∗ = f∗ , Az∗ = f ∗ in V ′.

Then (z∗, �r(z∗)) ((z∗, ��(z∗)), respectively) is a (constant in time) solution
of Problem 1.9.1 associated with the source term f∗ (f ∗, respectively). By
the monotonicity of A−1, (1.257) entails that

z∗�z∗ a.e. in �. (1.260)

(iv) We claim that the sequences {Pn(z∗, �r(z∗))} and {Pn(z∗, ��(z∗))} are
respectively nondecreasing and nonincreasing in V×H, and are bounded
in that space. Moreover,

(z∗, �r(z∗)) ! Pn(z∗, �r(z∗)) ! Pn(z∗, ��(z∗)) ! (z∗, ��(z∗)) ∀n. (1.261)

In order to prove this statement, let us set (u∗, w∗) := S(z∗, �r(z∗)) and
(u∗, w∗) := S(z∗, ��(z∗)). By (1.257), (1.260) and Theorem 1.9.2,

(z∗, �r(z∗)) ! (u∗(·, T), w∗(·, T)) =: P(z∗, �r(z∗))
! (u∗(·, T), w∗(·, T)) =: P(z∗, ��(z∗)) ! (z∗, ��(z∗)).
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By applying the operator S to all these terms, by Theorem 1.9.2 we get

P(z∗, �r(z∗)) ! P2(z∗, �r(z∗)) ! · · · ! Pn(z∗, �r(z∗)) ! · · ·
! Pn(z∗, ��(z∗)) ! · · · ! P2(z∗, ��(z∗)) ! P(z∗, ��(z∗)),

i.e., (1.261).
(v) By the final part of Theorem 1.9.1 the sequences {Pn(z∗, �r(z∗))} and
{Pn(z∗, ��(z∗))} are bounded in V ×H. Therefore there exist (u0∗, w0∗), (u0∗,
w0∗) ∈ X such that

Pn(z∗, �r(z∗))→ (u0∗, w0∗), Pn(z∗, ��(z∗))→ (u0∗, w0∗) weakly in V×H.
By (1.261) then

P(u0∗, w0∗) = (u0∗, w0∗) ! P(u0∗, w0∗) = (u0∗, w0∗).

The solutions (u∗, w∗) and (u∗, w∗) of Problem 1.9.1, that respectively cor-
respond to the initial data (u0∗, w0∗) and (u0∗, w0∗), are then respectively
minimal and maximal solutions of Problem 1.9.2 in the sense of (1.258).
The boundedness of the initial data finally entails the regularity (1.259). ��

1.9.5 AN EQUATION WITH HYSTERESIS IN A COEFFICIENT

Let now a function k be given such that

k ∈ C0(R), ∃k(1), k(2) ∈ R : ∀
 ∈ R, 0 < k(1)�k(
)�k(2). (1.262)

We are interested into the following equation with hysteresis in a coeffi-
cient:

�
�t
[u+ F(u)] − ∇·[k(F(u))∇u] = f in �T. (1.263)

This is a simplified version of an equation we shall encounter in Secction
1.11, dealing with hysteresis in fluid flow through porous media. The
analysis of (1.263) does not seem easy, and even the apparently simpler
equation

�u
�t

− ∇·[k(F(u))∇u] = f in �T (1.264)

looks rather challenging. If the coefficient were of the form k(u), one would
apply the classic Kirchhoff transformation:

K : u �→ U :=
∫ u

0
k(
)d
,
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so that, ∇·[k(u)∇u] = �U. As K is invertible, one would then replace u by
U in the PDE. However, it is not clear how a Kirchhoff-type transformation
might be applied whenever hysteresis occurs in the k versus u constitutive
relation. We then suggest simplifying the problem as follows, by inserting
a regularizing rate-dependent memory effect. We fix a kernel � such that

� ∈ C1
c (R

N), ��0,
∫

RN
�(
)d
 = 1, (1.265)

denote the space convolution by

(f ∗�)(x) :=
∫

RN
f(x − y)�(y)dy ∀x ∈ RN,∀f ∈ L1

loc(R
N),

and deal with the regularized equation

�
�t
[u+ F(u)] − ∇·[k(F(u)∗�

)∇u] = f in �T. (1.266)

(In the convolution, functions defined in �T will automatically be extended
with vanishing value outside �T .) For any g ∈ L∞(�), let us define the
linear and continuous operator Ag : V → V ′ by

〈Agu, v〉 :=
∫

�
g∇u·∇vdx ∀u, v ∈ V.

PROBLEM 1.9.3. Find u : � → C0([0, T]) measurable such that u ∈ L2(0, T;V)
and, setting

w(x, t) := [F(u(x, ·), w0(x)
)]
(t) ∀t ∈ [0, T], for a.a. x ∈ �, (1.267)

g := k(F(u)∗�
)

a.e. in �T, (1.268)

w ∈ L2(0, T;H), u+ w ∈ H1(0, T;V ′), and

�
�t
(u+ w)+ Agu = f in V ′, a.e. in ]0, T[, (1.269)

(u+ w)|t=0 = u0 + w0 in V ′. (1.270)

THEOREM 1.9.6 (Existence). Assume that the hypotheses of Theorem 1.9.1 are ful-
filled, as well as (1.262) and (1.265). Then Problem 1.9.3 has a solution such that
(1.224) holds.



90 CHAPTER 1 Mathematical Models of Hysteresis

Outline of the Proof. This argument is partially analogous to that of The-
orem 1.9.1; here we just illustrate the main differences. In the approximate
problem here we set

gnm := k(wnm∗�) a.e. in �, for n = 1, ...., m, (1.271)

and replace (1.227) by

unm − un−1
m

h
+ wnm − wn−1

m

h
+ A(gn−1

m ) u
n
m = f nm in V ′, for n = 1, ..., m.

(1.272)
Existence of a solution {unm}n=1,...,m can then be proved step by step via
the argument that we used for Problem 1.9.1m. In order to derive a priori
estimates, let us multiply equation (1.272) by

(
unm − un−1

m

)
/gn−1
m (∈ V), and

sum for n = 1, ...., �, for any � ∈ {1, ..., m}. As

‖∇gn−1
m ‖L∞(�)N =

∥∥∥
∫

RN
k(wn−1

m (x − y)) ∇�(y)dy
∥∥∥
L∞(�)N

�k(2)‖∇�‖C1(RN)�C4 ∀n,
we have

〈A(gn−1
m )u

n
m,
unm − un−1

m

gn−1
m

〉 =
∫

�
gn−1
m ∇unm ·∇

unm − un−1
m

gn−1
m

dx

=
∫

�
∇unm ·∇

(
unm − un−1

m

)
dx −

∫

�
∇unm ·

∇gn−1
m

gn−1
m

(
unm − un−1

m

)
dx

�1
2

∫

�

(|∇unm|2 − |∇un−1
m |2)dx − C4

k(1)

∫

�
|∇unm| |unm − un−1

m |dx;

moreover, as ab�ca2 + (4c)−1b2 for any a, b, c ∈ R (c �= 0),

C4

k(1)

∫

�
|∇unm| |unm−un−1

m |dx�C
2
4hk(2)

k2
(1)

∫

�
|∇unm|2 dx+ h

4k(2)

∫

�

∣∣∣
unm − un−1

m

h

∣
∣∣
2

dx.

By the equation (1.272) we then get

h

k(2)

�∑

n=1

∫

�

∣∣∣
unm − un−1

m

h

∣
∣∣
2

dx + 1
2

∫

�

(|∇u�m|2 − |u0|2)dx

�C
2
4hk(2)

(k(1))2

�∑

n=1

∫

�
|∇unm|2 dx + h

4k(2)

�∑

n=1

∫

�

∣
∣∣
unm − un−1

m

h

∣∣
∣
2

dx

+h
�∑

n=1
V′ 〈f nm, unm − un−1

m 〉V .

(1.273)
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The latter term can be estimated similarly to (1.229); a standard calculation
based on the Gronwall lemma then yields an a priori estimate like (1.230).
The remainder follows as in the proof of Theorem 1.9.1. ��
A similar result holds if in (1.268) the convolution in space is replaced by a
convolution in time, cf. Section 1.11.

A Semilinear Parabolic Equation with Hysteresis

Results are also known for initial- and boundary-value problems governed
by semilinear equations like

�u
�t

− �u+ F(u) = f in �T. (1.274)

If the hysteresis operator F is Lipschitz-continuous in C0([0, T]), existence
and uniqueness can be proved via the contraction mapping principle, with-
out assuming any monotonicity property just as it is natural for semilinear
equations [8; Chapter X]. The asymptotic behavior as t→ +∞ can also be
studied by means of classic techniques.

Parabolic Equations with Discontinuous Hysteresis

Several results of this section can be extended to quasilinear and semilinear
parabolic equations like (1.215) and (1.274) with a discontinuous hysteresis
operator F . In this case one of the main difficulties stays in the formulation
of the operator F itself. For the relay and Preisach operators, this can
be achieved via the approach of Section 1.4 (cf. the weak formulation
(1.75)--(1.77)); in Section 1.10 we shall apply this approach to a quasilinear
hyperbolic equation of the second order. For continuous Preisach operators
one can then use either the formulation in terms of hysteresis operators, or
the latter one.

1.10 A QUASILINEAR HYPERBOLIC PDE WITH
HYSTERESIS

In this section we deal with an initial- and boundary-value problem for a
quasilinear hyperbolic equation of second order that contains a hysteresis
operator, F :






�2

�t2
[u+ F(u)] − �u = f in �T,

[u+ F(u)]t=0 = u0 + w0 in �,
�
�t
[u+ F(u)]

∣∣∣
t=0

= u1 + w1 in �.

(1.275)
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If F is replaced by a (nonlinear) superposition operator without mem-
ory, existence of a solution is only known under severe restrictions on the
nonlinearity. On the other hand if F is a Prandtl--Ishlinskiı̆ hysteresis oper-
ator of play-type, cf. Section 1.3, the problem can be reduced to a system of
variational inequalities, and well-posedness can be proved without much
effort [8; Chapter VII].

Along the lines of [41], here we assume that F is a relay operator, cf.
Section 1.4, and prove existence of a weak solution, by means of a technique
that can easily be extended to (either continuous or discontinuous) Preisach
operators and to more general equations as well. In this case, because
of the discontinuity of the hysteresis relation, the equation (1.275)1 is the
weak formulation of a free boundary problem. In fact, if w = ±1 a.e. in
�T , under regularity conditions the space-sets respectively characterized
by w = 1 and w = −1 are separated by an unknown moving front (or free
boundary).

We still denote by � a bounded Lipschitz domain of RN , fix any T > 0,
and set �T := �×]0, T[. We also set

F :=
∫ t

0
f(·, �)d� + u1 + w1 in �T, (1.276)

so that, integrating (1.276)1 in time, we get

�
�t
(u+ w)− �

∫ t

0
u(·, �)d� = F in �T. (1.277)

We define the Hilbert spaces H, V, and the operator A : V → V ′ as in
Section 1.9, assume that

u0, w0 ∈ H, F ∈ L2(0, T;V ′), (1.278)

and formulate an initial- and boundary-value problem for Eqn. (1.275)1.

PROBLEM 1.10.1. Find U ∈ L2(0, T;V) ∩ H1(0, T;H) and w ∈ L∞(�T) such
that, setting u := �U/�t,

U = 0 a.e. in (� × {0}) ∪ (��×]0, T[), (1.279)

|w|�1 a.e. in �T,
�w
�t

∈ C0(�T)′, (1.280)

∫∫

�T

(
(u0 − u+ w0 − w)�v

�t
+ ∇U ·∇v

)
dxd� =

∫ T

0
〈F, v〉d�

∀v ∈ H1(0, T;H) ∩ L2(0, T;V), v(·, T) = 0,
(1.281)
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{
(w− 1)(u− �2)�0

(w+ 1)(u− �1)�0
a.e. in �T, (1.282)

1
2

∫

�

[
u(x, t)2 − u0(x)2 + |∇U(x, t)|2]dx +

∫

�
��(w(x, ·), [0, t])

�
∫ t

0
〈F, u〉d� for a.a. t ∈]0, T[.

(1.283)

Interpretation

Eqn. (1.281) entails

�
�t
(u+ w)+ AU = F in V ′, a.e. in ]0, T[. (1.284)

By differentiating in time and setting f := �F/�t we get (1.275)1; by inte-
grating in time the latter and comparing with (1.281), the initial condition
(1.275)2 is also derived in the sense of traces of H1(0, T;V ′).

Whenever u ∈ L2(0, T;V), we can multiply (1.284) by u = �U/�t, and
integrate in space and time; it is easy to see that (1.283) then reads

∫ t

0
〈 �
��
(u+ w), u〉d��1

2

∫

�

[
u(x, t)2 − u0(x)2

]
dx +

∫

�̄
��(w, [0, t])

for a.a. t ∈]0, T[.
(1.285)

This inequality is meaningful, but this derivation is rigorous only if u ∈
L2(0, T;V), and this regularity property is far from being obvious for Prob-
lem 1.10.1. (1.283) may then be regarded as a weak formulation of the
dissipation condition (1.76) (i.e. (1.74)) a.e. in �. On the other hand, the
system (1.282) is equivalent to the confinement condition (1.75) (i.e. (1.73))
a.e. in �T . In Section 1.4 we saw that (1.75), (1.76) and the initial condition
(1.72) (here rewritten with w0 in place of 
) are equivalent to the hysteresis
relation

w ∈ k�(u,w0) a.e. in �. (1.286)

We conclude that Problem 1.10.1 is the weak formulation of an initial-
and boundary-value problem associated to the system (1.284), (1.286).

Notice that the second order equation (1.275)1 may equivalently be
replaced by a system of two first-order equations, with unchanged
results.
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Applications

For N = 1, Problem 1.10.1 can represent processes in a univariate insulat-
ing ferrimagnetic material; these materials are actually characterized by
a rectangular hysteresis loop. The equation (1.275)1 can be derived from
the Maxwell equations, assuming that the displacement field D is propor-
tional to the electric field E, that there is no electric current, i.e. J ≡ 0. The
magnetic fieldH and the magnetization fieldM are here denoted by u and
w, respectively.

This model can also be extended to univariate conducting ferromag-
netic materials; in this case the Ohm law yields J = �E, and a term pro-
portional to �(u+ w)/�t must be inserted on the left side of (1.275)1; this
corresponds to occurrence of a term proportional to u + w in the time-
integrated equation (1.284). Displaying coefficients the equation reads

�
�2

�t2
(u+w)+ 4��

�
�t
(u+w)− c2 �2

u

�x2
= prescribed field in �T. (1.287)

The electric conductivity � is so large that (denoting the dielectric constant
by �) the term ��2

B/�t2 is not dominated by ��B/�t only for rapidly variable
fields (i.e., high frequencies).

Problem 1.10.1 can also represent evolution in a univariate insulating
ferroelectric material; in this case u and w represent the electric field E
and the polarization field P, respectively. As we already pointed out for
equation (1.275)1, this does not apply toN > 1, for in that case u and w are
vector variables, and the operator −� should be replaced by curl2.

THEOREM 1.10.1 ([41]). Let (1.278) be fulfilled, and

F = F1 + F2, F1 ∈ L1(0, T;H), F2 ∈W1,1(0, T;V ′). (1.288)

Then Problem 1.10.1 has a solution (U,w) such that

U ∈W1,∞(0, T;H) ∩ L∞(0, T;V). (1.289)

PROOF.
(i) Approximation. Let us fix any m ∈ N and set h := T/m,





Fn1m(x) :=

1
h

∫ nh

(n−1)h
F1(x, t)dt for a.a. x ∈ �, Fn2m := F2(nh),

Fnm := Fn1m + Fn2m, u0
m := u0, w0

m := w0, for n = 1, ..., m,
(1.290)
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FIGURE 1.18 Graph of the multivalued function G�(·, 
) for a fixed 
 ∈ [−1, 1].

G�(v, 
) :=






{−1} if v < �1

[−1, 
] if v = �1

{
} if �1 < v < �2

[
, 1] if v = �2

{1} if v > �2

∀(v, 
) ∈ R×[−1, 1], (1.291)

cf. Fig. 1.18. Let us define time-interpolate functions as in (1.188).

PROBLEM 1.10.1m. Find unm ∈ V and wnm ∈ H (n = 1, ..., m) such that, for any n,

wnm ∈ G�(u
n
m,w

n−1
m ) a.e. in �, (1.292)

unm − un−1
m

h
+ wnm − wn−1

m

h
+ h

n∑

j=1

Au
j
m = Fnm in V ′. (1.293)

Existence of an approximate solution can easily be proved step by step, as
G� is maximal monotone.
(ii) A Priori Estimates. Let us multiply the equation (1.293) by hunm, and sum

for n = 1, ..., �, for any � ∈ {1, ..., m}. Setting Unm := h
n∑

j=1
u
j
m a.e. in � for
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n = 1, ..., m, by (1.291) we get

1
2

∫

�

[
(u�m)

2 − (u0)2 + |∇U�m|2
]

dx +
∫

�
��(wm, [0, �h])dx

�h
�∑

n=1

〈Fnm, unm〉�‖F1‖L1(0,T;H) max
n=0,...,�

‖unm‖H
+2‖F2‖W1,1(0,T;V′) max

n=0,...,�
‖Unm‖V for � = 1, ..., m.

(1.294)

A simple calculation then yields

‖Um‖W1,∞(0,T;H)∩L∞(0,T;V) , ‖��(wm, [0, t])‖L∞(0,T;L1(�))
� constant (independent of m).

(1.295)

(iii) Limit Procedure. By the above estimates, there exist U,w such that, as
m→ ∞ along a suitable sequence,

Um → U weakly star in W1,∞(0, T;H) ∩ L∞(0, T;V), (1.296)

wm → w weakly star in L∞(�T), (1.297)

�wm
�t

→ �w
�t

weakly star in C0(�T)′. (1.298)

Setting Um := ∫ t
0 ūm(·, �)d� a.e. in �T , (1.293) and (1.294) also read

�
�t
(um + wm)+ AUm = F̄m in V ′, a.e. in ]0, T[, (1.299)

1
2

∫

�

[
ūm(x, t)

2 − u0(x)2 + |∇ūm(x, t)|2
]
dx +

∫

�
��(wm, [0, t])dx

�
∫ t

0
〈F̄m, ūm〉d� for a.a. t ∈]0, T[;

(1.300)

by passing to the limit in (1.299) and to the inferior limit in (1.300), we then
get (1.281) and (1.283). Finally, (1.292) entails

∫∫

�T
(w̄m − 1) (ūm − �2)�(x, t)dxdt�0

∫∫

�T
(w̄m + 1) (ūm − �1)�(x, t)dxdt�0

∀� ∈ D(�T),��0, (1.301)

and (1.296)--(1.298) allow one to pass to the limit in these inequalities, be-
cause of the following lemma. ��
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LEMMA 1.10.2 ([41]). If two sequences {um}, {wm} are such that

um → u weakly in L2(�T) ∩H−1(0, T;V),
wm → w weakly star in L∞(�T),
∥∥∥
�wm
�t

∥∥∥
L1(�T)

�constant,
(1.302)

then ∫∫

�T
umwm dxdt→

∫∫

�T
uwdxdt. (1.303)

This statement can be proved via Banach-space interpolation [41].
The convergence (1.298) stems from regularizing properties of the relay

operator we met in Section 1.4; this plays a key role in the proof of the above
existence result, which indeed has no analog for quasilinear hyperbolic
equations without hysteresis. Equation (1.275)1 turns out to be one of the
few known examples in which analysis is made easier by occurrence of
hysteresis.

Uniqueness of the solution of Problem 1.10.1 is an open question.

Extensions

Problem 1.10.1 and Theorem 1.10.1 can be extended into two main direc-
tions:

(i) the relay operator can be replaced by the either continuous or
discontinuous Preisach model,

(ii) one can deal with the vector setting, i.e., with u and w ranging in
RN .

The first extension can be pursued without much effort [8]. As for the sec-
ond one, we already mentioned that processes in insulating ferrimagnetic
materials fit into the above picture. Assuming that the field �D is propor-
tional to �E, the Maxwell system yields an equation of the form

�2

�t2
( �H + �M)+ curl2 �H = �f (1.304)

(here written with normalized coefficients). The relation between �M and �H
can be represented by a vector extension of the relay operator, we illustrated
in Section 1.4 [45,48,49]; an initial- and boundary-value problem can be
formulated in the framework of Sobolev spaces, and existence of a solution
can be proved [99].

A different approach to quasilinear hyperbolic equations with hystere-
sis in a single dimension of space was used by Krejčí in a series of papers,
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see [26,5; Chapters III,IV] and references therein. Assuming the convexity
of hysteresis loops and exploiting the dissipativity properties of hystere-
sis, he derived results of existence and uniqueness of the solution, decay
as t → +∞, stability and asymptotic stability, and the existence of peri-
odic solutions. On top of all this, he also studied the Riemann problem in
detail.

1.11 HYSTERESIS IN POROUS-MEDIA FILTRATION

In this section we illustrate hysteresis in unsaturated flow through porous
media, and formulate a relation between saturation and pressure that ac-
counts for rate-dependent decay towards the hysteresis relation. We then
illustrate how existence of a solution can be proved for a boundary- and
initial-value problem, in which that relation is coupled with the law of
mass conservation and Darcy’s law; we refer to [100,120] for details.

Filtration Without Hysteresis

Unsaturated fluid flow through porous media is relevant for engineering,
and has been treated in a large technical literature, cf. e.g. the monographs
[101–104]. If no unsaturated flow occurs, the wet and dry regions are
in contact along an a priori unknown surface (the phreatic surface). This
free boundary problem was studied in a number of mathematical papers,
after Baiocchi formulated it as a variational inequality and proved its well-
posedness in 1972; see e.g. [105–107], the monograph [108] and references
therein. As an alternative, by an approach that was proposed and studied
by W. Alt, one can deal with partially saturated flow [109–112].

Quantitatively relevant hysteresis effects occur in fluid flow through
porous media [101–104,113]. It seems that Poulovassilis was the first one to
apply the Preisach model (under the denomination of independent domain
model) to represent hysteresis in the dependence of saturation on pressure
[114–116]; Muhalem then assumed a specific form of the Preisach density
[117,118]. Apparently these hysteresis effects have not (yet) received much
attention by mathematicians; as far as this author knows, the functional
approach based on the notion of hysteresis operator has been applied only
recently and in few papers [14,100,113,119].

Let a domain � of R3 represent a region occupied by a porous medium
in communication with one or more nonstationary water reservoirs, cf.
Fig. 1.19; let us fix any T > 0, and set �T := �×]0, T[.

Let us denote the saturation of the medium by s, its hydraulic conduc-
tivity by k, its porosity by �, the pressure of the fluid (water, say) by u, its
flux per unit area by �q, its mass density by �, the gravity acceleration by g,
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FIGURE 1.19 A porous dam, with two reservoirs and an impervious bottom.

and the vertical coordinate by z. The equation of mass conservation and
the Darcy law respectively read

�
�s
�t

+ ∇ · �q = 0 in �T (∇· := div), (1.305)

�q = −k∇(u+ �gz) in �T; (1.306)

by eliminating the field �qwe then get

�
�s
�t

− ∇ · [k∇(u+ �gz)] = 0 in �T. (1.307)

(For some phenomena it is possible to neglect the gravitation term; for
instance this applied to two-phase flow of two immiscible fluids of com-
parable densities.)

For a homogeneous medium without hysteresis, s and u are related by
a constitutive law of the form

s(x, t) ∈ �(u(x, t)) ∀(x, t) ∈ �T, (1.308)

where � : R → [0, 1] is a (possibly multivalued) maximal monotone func-
tion, cf. Fig. 1.20. For instance, if � equals the Heaviside graph

H(u) := {0} if u < 0, H(0) := [0, 1], H(u) := {1} if u > 0,

then (1.307) and (1.308) represent unsaturated flow. In this case both (1.305)
and (1.307) should be understood in the sense of distributions, and they
are the weak formulation of a free boundary problem.
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FIGURE 1.20 Saturation versus pressure constitutive relation without hysteresis.

FIGURE 1.21 Hydraulic conductivity versus saturation constitutive relation.

The hydraulic conductivity can be represented as a nonnegative, non-
decreasing function of saturation, cf. Fig. 1.21:

k(x, t) = h(s(x, t)) ∀(x, t) ∈ �T; (1.309)

k is then a (possibly multivalued) function of pressure: k ∈ h(�(u)).
Suitable boundary conditions must be appended to equation (1.307);

these include a no-flux condition on the impervious part of the boundary,
and a Signorini-type (i.e., obstacle-type) condition on the part of the boundary
that is in contact with the atmosphere; this also accounts for occurrence of
overflow along a so-called seepage face. An initial condition must also be
prescribed for s. Aproblem in the framework of Sobolev spaces can then be
formulated for the system (1.307)--(1.309), and can be coupled with these
initial and boundary conditions; existence of a solution was proved in [112].
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Filtration With Hysteresis

The constitutive relation (1.308) is oversimplified: porous media exhibit
quantitatively relevant hysteresis effects, cf. Fig. 1.22. Laboratory mea-
surements actually indicate that at any point x ∈ � and any instant t, the
saturation s(x, t) depends not only on the pressure u(x, t), but also on the
previous evolution of u at the same point, u(x, ·), and on the initial value
s0(x); moreover this dependence is rate-independent.

Accordingly, in place of the constitutive relation (1.308) we consider a
relation of the form

s(t) = [F(u, s0)](t) ∀t ∈ [0, T]; (1.310)

hereF is a hysteresis operator, that we assume to be continuous inC0([0, T])
× R. (More generally, one might assume that F is the sum of a hystere-
sis operator and a possibly multivalued maximal monotone graph [100].)
Whenever this constitutive relation is coupled with the PDE (1.307), one
must account for dependence on the space variable, x ∈ �; here we assume
that x occurs just as a parameter:

s(x, t) = [F(u(x, ·), s0(x))](t) ∀t ∈ [0, T], for a.a. x ∈ �. (1.311)

This excludes any space interaction in the constitutive relation.
By (1.309), hysteresis in the s versus u dependence entails occurrence

of hysteresis in the k versus u relation. (1.307) can then be labeled as a PDE
with hysteresis in a coefficient; the analysis of equations of this type often
exhibits difficulties, cf. Section 1.9.

FIGURE 1.22 Saturation versus pressure constitutive relation with hysteresis.
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The Issue of Existence

To prove the existence of a solution for the corresponding initial- and
boundary-value problem does not seem an easy task. Following a standard
procedure one might approximate this problem, derive a priori estimates,
and then try to pass to the limit. Because of the occurrence of a memory
operator, it seems especially convenient to use time-discretization. Let us
denote the approximation parameter by m ∈ N, and the approximate so-
lution by (um, sm). Uniform estimates for um in L2(0, T;H1(�)

)
can easily

be derived by multiplying the approximate equation by um, and then inte-
grating with respect to space and time. This yields existence of a weakly
convergent subsequence, but does not grant convergence of any subse-
quence of um in C0([0, T]) a.e. in �, and thus does not suffice to pass to
the limit in the memory operator. In order to derive stronger a priori esti-
mates, one might try to multiply the approximate equation by �um/�t, and
again integrate with respect to space and time. But then difficulties arise
in dealing with the elliptic term.

Whenever the dependence of s on u is without memory, of the form
s = �(u) with � continuous and nondecreasing, say, one can apply the
classic Kirchhoff transformation:

K : u �→ w :=
∫ u

0
h(�(
))d
, (1.312)

so that

h(�(u))∇u = ∇w a.e. in �T, ∇·[h(�(u))∇u] = �w in D′(�T).

As h and � are nondecreasing, K is a (possibly multivalued) maximal mono-
tone operator; hence

s = �(u) ∈ (� ◦ K−1)(w) a.e. in �T,

and one can couple this relation with the equation

�
�s
�t

− �w = 0 in D′(�T). (1.313)

This procedure was used in [112] to prove existence of a solution for the
problem without hysteresis. However, it is not clear how the transforma-
tion (1.312) might be extended in the presence of hysteresis in the s versus
u relation.
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A Rate-dependent Correction

The above difficulties induce us to amend the model. First we do so by
inserting a rate-dependent correction into the memory relation. Although
we are not able to derive any uniform estimate on the pressure rate, we
conjecture that this rate should not be too large, even on the (rather slow)
time-scale of filtration phenomena. Along the lines of [100] we then pro-
pose inserting a term which penalizes high pressure rates into the s versus
u constitutive relation. In this way we account for a rate-dependent com-
ponent of memory, aside hysteresis.

Let us assume that the hysteresis operator F is piecewise monotone in
the sense of (1.10); we can then invert it, and write (1.311) in the equivalent
form

u(t) = [G(s, u0)
]
(t) ∀t ∈ [0, T],

G := F−1 being also a hysteresis operator. (Some specifications should be
made as for the initial data u0 and s0, but here we omit these details.) We
then append a time-relaxation term, and write the constitutive relation in
the form

u(t) = [G(s, u0)
]
(t)+ �

ds
dt
(t) =: [G�(s, u

0)
]
(t) ∀t ∈ [0, T], (1.314)

where � is a (small) positive constant. Under natural assumptions, the
rate-dependent operator G�(·, u0) maps H1(0, T) to L2(0, T). If G(·, u0) is
continuous in C0([0, T]), then G� is sequentially weakly continuous: for
any sequence {sn} in H1(0, T),

sn → s weakly in H1(0, T) ⇒
G�(sn, u

0)→ G�(s, u
0) weakly in L2(0, T).

(1.315)

The operator G� can then be extended to the above space-distributed
problem by inserting the dependence on the parameter x:

u(x, t) = [G(s(x, ·), u0(x))
]
(t)+ �

�s
�t
(x, t) ∀t ∈ [0, T], for a.a. x ∈ �.

(1.316)

Estimation Procedure

Multiplying (1.316) by �s/�t and integrating in time we have

∫ t̃

0

�s
�t
udt =

∫ t̃

0

�s
�t
[G(s(·), u0)

]
(t)dt+ �

∫ t̃

0

∣∣∣
�s
�t

∣
∣∣
2

dt ∀t̃ ∈]0, T].
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If G is the inverse of a Preisach-type operator, we get an estimate of the
form

∫ t̃

0

�s
�t
udt��(s(t̃))− �(s0)+ �

(
s
∣∣]0,t̃[

)
dt+ �

∫ t̃

0

∣∣∣
�s
�t

∣∣∣
2

dt ∀t̃ ∈]0, T];

here � and � depend on the operator G = F−1; � is a potential function,
and (loosely speaking) �

(
s
∣∣]0,t̃[

)
measures the total variation of s in the

interval ]0, t̃[, cf. (1.77).
Let us now discretize the equation (1.307) in time, with time-step T/m

(m ∈ N), and denote the corresponding solution by (um, sm). By means
of the latter inequality, multiplying the discretized equation by um and
integrating with respect to space and time, one easily derives uniform
estimates of the form

‖um‖L2(0,T;H1(�)), ‖sm‖H1(0,T;L2(�))�constant (independent of m). (1.317)

Moreover, assuming that the hysteresis operator G(·, u0) is Lipschitz-
continuous in C0([0, T]), by means of (1.316) and of the uniform estimate
on um, one can derive a uniform estimate for sm in H1(0, T;L2(�)) [100].

By these estimates, weak convergence follows for suitable sub-
sequences. The regularity properties of the operator G allow one to pass to
the limit in the time-discretized version of (1.316), and thus to prove exis-
tence of a weak solution. It would then be natural to consider the behavior
of the solution of our problem as the relaxation parameter � vanishes; but,
as may be expected, in this limit one encounters the same difficulties that
we pointed out for the purely hysteretic constitutive relation.

A Different Approach

As an alternative to the modification of the s versus u relation we just
outlined, the analytic difficulties we pointed out for the system (1.307),
(1.309), (1.310) can be overcome by regularizing the k versus s dependence.
More specifically, let us fix a positive and decreasing function � ∈ C1(R+)
such that

∫
R+ �(�)d� = 1 (e.g., �(�) := ae−a� for any ��0, for some a > 0),

extend swith vanishing value for negative times, and set

(s∗�)(x, t) :=
∫

R+
s(x, t− �)�(�)d� for a.a. (x, t) ∈ �T,∀v ∈ L1(�T);

(1.318)
we then replace (1.309) by

k = h(s∗�) a.e. in �T. (1.319)
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As we remarked above, in order to pass to the limit in the hysteresis term
it may be convenient to derive a priori estimates by multiplying the ap-
proximate equation by �um/�t and integrating in time. By doing so one
encounters the term

∫ t̃

0
dt
∫

�
km∇um ·∇ �um

�t
dx = −1

2

∫ t̃

0
dt
∫

�

�km
�t

|∇um|2 dx

+1
2

∫

�

(
km(x, t̃)|∇um(x, t̃)|2 − km(x, 0)|∇u0(x)|2)dx;

if one can show that sm� constant > ŝ, then km is larger than a positive
constant, cf. Fig. 1.21; moreover (this is the key point)

∥∥∥
�km
�t

∥∥∥
L∞(�T)

=
∥∥∥
�h(sm∗�)

�t

∥∥∥
L∞(�T)

� max[0,1] |h
′| sup

R+
|�′| = constant (independent of m).

(1.320)

This allows one to complete the estimate procedure, and then to prove the
existence of a solution for the continuous problem [120]. In this framework
one can also prove that the solution is asymptotically stable; that is, if as
t→ +∞ the level of the reservoirs converges, then the solution (u, s) also
converges to a solution of the limit stationary problem. One can also show
that as the hysteresis operator degenerates into a superposition operator,
the solution of the hysteresis problem tends to that of the problem without
hysteresis.

1.12 CONCLUSIONS

We have dealt with mathematical models of hysteresis, and applied them
to problems arising in continuum mechanics, in ferromagnetism, and in
filtration through porous media.

This survey has partly reviewed the developments of [8]; this applies
especially to Sections 1.1--1.3. Novelties with respect to the author’s 1994
monograph include the following issues:

(i) the concept of the hysteresis relation, as an alternative to that of
the hysteresis operator (Section 1.1);

(ii) the formulation via a single variational inequality of a model of
elasto-plasticity with strain-hardening with no internal variable
(final part of Section 1.3);

(iii) the modification of the classic Landau--Lifshitz equation of mi-
cromagnetism, and the formulation of a rate-independent meso-
scopic model of ferromagnetism, after [61] (Section 1.5);
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(iv) the two-scale approach for the Prandtl--Ishlinskiı̆ and Preisach
models, based on the homogenization viewpoint (Section 1.6);

(v) an answer to the question of the origin of differential equations
with hysteresis, after [97] (Section 1.7);

(vi) the classification of PDEs with hysteresis (beginning of Section
1.8);

(vii) the proof of the existence of minimal and maximal solutions of
the quasilinear parabolic problem with hysteresis, after [98], and
the study of an equation with hysteresis in a coefficient (Section
1.9);

(viii) the proof of the existence of a solution for a second order, quasi-
linear, hyperbolic equation with discontinuous hysteresis, after
[41] (Section 1.10);

(ix) the study of hysteresis in porous-media filtration, via a rate-
dependent correction of the hysteresis relation, after [100,120]
(Section 1.11).

The mathematical analysis of hysteresis and of related PDEs offers many
open questions to the researcher. One of the most evident is that so far
only a few basic models of hysteresis have been discovered and studied.
Confining ourselves to the scalar setting, we encounter the Duhem model
and the somehow related Bouc model (the latter still demands analytic
investigation); the stop, the play and the Prandtl--Ishlinskiı̆ models; the
relay and Preisach models. Then there are the vector extensions of these
models, besides the typical vector constructions like the Landau--Lifshitz
equation and its modified version we outlined in Section 1.5. Relevant
issues like the identification of hysteresis operators, their classification on
the basis of structural criteria, and others, are still largely open.

On the other hand, so far only few hysteresis phenomena have been
studied in some detail: elasto-plasticity, ferromagnetism, undercooling
and superheating, shape memory, damage and fatigue, superconductivity,
and not many others. The analysis of further phenomena, or the formula-
tion of new viewpoints for known ones, may be expected to offer a source
of new models, as has already happened in the past. In any case even the
analysis of the above outlined models of elastoplasticity, ferromagnetism
and hysteresis in porous-medium filtration is far from complete; this es-
pecially applies to the latter. The study of these phenomena should be
enriched, e.g., with the analysis of the asymptotic behavior as t→ +∞, of
their control, and especially with their numerical analysis.

Most of the developments we have reviewed above were based on
Krasnosel’skiı̆’s notion of the hysteresis operator; alternative approaches
have been considered in Sections 1.4, 1.5 and 1.10, and look promising for
future research.



1.13 APPENDIX. ELEMENTS OF CONVEX CALCULUS 107

In recent years a different approach to hysteresis has been proposed by
Mielke, Theil, Levitas and other researchers, see e.g. [121–125], to model
hysteresis in quasistatic evolution; that approach does not involve hystere-
sis operators, and is based on coupling the energy balance with a stability
condition. A similar formulation has also been applied to model frac-
ture dynamics by Francfort, Marigo, Dal Maso, Toader and others, see e.g.
[126,127]. There are similarities between this model and the formulation
of the relay operator of (1.79) and (1.80) above. This method looks capable
of providing a rather general framework for hysteresis, and indeed applies
to a large number of phenomena, although so far it has just been used to
represent quasistatic evolution.

1.13 APPENDIX. ELEMENTS OF CONVEX CALCULUS

In this Appendix we review some properties of convex, lower semicontin-
uous functions, the Legendre--Fenchel transformation, and the notions of
subdifferential, of Gâteaux differential, of support function, and of varia-
tional inequality.

Infinite dimensional spaces are a natural environment for this theory,
especially in view of application to the analysis of PDEs; nevertheless here
we deal with the Euclidean space RN , we denote by B. The finite dimen-
sional setting indeed suffices for grasping almost all of the results of convex
calculus we use in this survey; moreover it is slightly simpler, and may be
closer to the interests of nonmathematical readers.

Dealing with RN , we might identify the dual of B (that we denote by
B∗) with B; but we refrain from doing so, in order to help the reader in
distinguishing the different roles these two spaces play. Anyway we shall
identify B∗∗, the bidual of B, with B.

1.13.1 CONVEX AND LOWER SEMICONTINUOUS FUNCTIONS

We denote the extended real line R∪{+∞} by R̃. For any function F : B→
R̃, we set

Dom(F) := {v ∈ B : F(v) < +∞} : (effective) domain of F, (A.1)

epi(F) := {(v, a) ∈ B×R : F(v)�a} : epigraph of F. (A.2)

For any set K ⊂ B, we also define its indicator function:

IK : B→ R̃ : v �→
{

0 if v ∈ K
+∞ if v �∈ K.

(A.3)



108 CHAPTER 1 Mathematical Models of Hysteresis

The use of these functions is especially convenient for minimization prob-
lems, for this allows reduction of constrained problems to unconstrained
ones. In fact, for any function F : B→ R̃ and any set K ⊂ B,

u = inf
K
F ⇔ u = inf

B
(F + IK). (A.4)

A set K ⊂ B is said to be convex if

�v1 + (1 − �)v2 ∈ K ∀v1, v2 ∈ K,∀� ∈ ]0, 1[.
By convention, the empty set is also included among the convex sets. A
function F : B→ R̃ is said to be convex whenever

F
(
�v1 + (1 − �)v2

)
��F(v1)+(1−�)F(v2) ∀v1, v2 ∈ B,∀� ∈]0, 1[. (A.5)

If the inequality (A.5) is strict for any v1 �= v2, the function F is said to be
strictly convex. A function F : B → R̃ is said to be lower semicontinuous
if for any a ∈ R the set {v ∈ B : F(v)�a} is closed. F is said to be proper if
F(B) is not identically equal to +∞.

PROPOSITION A.1. (i) A function F : B → R̃ is convex (lower semicontinuous,
respectively) if and only if epi(F) is convex (closed, respectively).
(ii) A set K ⊂ B is convex (closed, respectively) if and only if IK is convex (lower
semicontinuous, respectively).

PROPOSITION A.2. (i) If {Fi : B→ R̃}i∈I is a family of convex (lower semicontinu-
ous, respectively) functions, then their upper hull F : v �→ supi∈I Fi(v) is convex
(lower semicontinuous, respectively).
(ii) If {Ki}i∈I is a family of convex (closed, respectively) subsets of B, then their
intersection ∩i∈IKi is convex (closed, respectively).

Let us denote by �(B) the class of functions F : B → R̃ that are the upper
hull of a family of affine functions B→ R.

PROPOSITION A.3. �(B) consists of the class �0(B) of convex, lower semicontinu-
ous, proper functions, and of the function identically equal to +∞.

For any set K ⊂ B, the smallest convex and closed subset of B that contains
K is convex and closed. It is named the closed convex hull of K, and is
denoted by co(K).

Similarly, let us consider any function F : B →] −∞,+∞] which has
a convex lower bound. (This assumption allows one to exclude e.g. the
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function x �→ −‖x‖2.) The upper hull of all affine lower bounds of F is
convex and lower semicontinuous. It is the largest lower bound of F in
�(B), and is named the �-regularized function of F. Its epigraph coincides
with the closed convex hull of the epigraph of F.

1.13.2 THE LEGENDRE--FENCHEL TRANSFORMATION

Let F : B→ R̃ be a proper function. The function

F∗ : B∗ → R̃ : u∗ �→ sup
u∈B

{u∗ ·u− F(u)} (A.6)

is named the (convex) conjugate (or polar) function of F. If F∗ is proper, its
conjugate function

F∗∗ : B→ R̃ : u �→ sup
u∗∈B∗

{u∗ ·u− F∗(u∗)} (A.7)

is named the biconjugate (or bipolar) function of F.

THEOREM A.4. For any proper F : B→ R̃ such that F∗ is also proper,

F∗ ∈ �(B∗); F∗∗�F; F∗∗ = F ⇔ F ∈ �(B); (F∗)∗∗ = F∗. (A.8)

Moreover, F∗∗ coincides with the �-regularized function of F (Fenchel--Moreau
theorem).

The conjugacy transformation F �→ F∗ is a bijection between �0(B) and
�0(B

∗).

1.13.3 THE SUBDIFFERENTIAL

Let F : B→ R̃ be proper. We define its subdifferential �F : Dom(F) ⊂ B→
2B

∗
(the power set) as follows:

�F(u) := {u∗ ∈ B∗ : u∗ ·(u− v)�F(u)− F(v), ∀v ∈ B}
∀u ∈ Dom(F), (A.9)

cf. Fig. A.1. �F∗ : Dom(F∗) ⊂ B∗ → 2B is similarly defined:

�F∗(u∗) := {u ∈ B : u·(u∗ − v∗)�F∗(u∗)− F∗(v∗), ∀v∗ ∈ B∗}
∀u∗ ∈ Dom(F∗). (A.10)

�F(u) = ∅ is not excluded; in particular, we set �F(u) := ∅ for any
u ∈ B \ Dom(F). One can then take the subdifferential even of either
nonconvex or non-lower-semicontinuous functions at any point of their
domain, cf. Fig. A.1.
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FIGURE A.1 The straight line represents a supporting hyperplane to the epigraph
of F. It is characterized by the equation z = u∗ ·(v − u) + F(u), or equivalently by
z = u∗ ·v− F∗(u∗), where u∗ ∈ �F(u).

THEOREM A.5. Let F : B→ R̃. Then for any u ∈ B and any u∗ ∈ B∗:

F(u)+ F∗(u∗)�u∗ ·u (Fenchel inequality), (A.11)

u∗ ∈ �F(u) ⇔ F(u)+ F∗(u∗) = u∗ ·u (Fenchel equality), (A.12)

u∗ ∈ �F(u) ⇒ u ∈ �F∗(u∗), (A.13)

[F(u) = F∗∗(u), u ∈ �F∗(u∗)] ⇒ u∗ ∈ �F(u), (A.14)

F ∈ �0(B) ⇒ �F∗ = (�F)−1. (A.15)

The operator �F is monotone, that is,

(u∗1 − u∗2)·(u1 − u2)�0 ∀ui ∈ Dom(�F),∀u∗i ∈ �F(ui)(i = 1, 2). (A.16)

By (A.11), the Fenchel equality (A.12) also reads as

u∗ ∈ �F(u) ⇔ F(u)+ F∗(u∗)�u∗ ·u. (A.17)

THEOREM A.6 (Rockafellar). Let F1, F2 : B→ R̃. Then

�F1(u)+ �F2(u) ⊂ � (F1 + F2) (u) ∀u ∈ Dom(F1) ∩ Dom(F2). (A.18)

The opposite inclusion holds if F1 and F2 are both convex and lower semicontinu-
ous, and either F1 or F2 is continuous at some point u0 ∈ Dom(F1) ∩ Dom(F2).
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The latter condition cannot be dropped. As a counter example let us take
B = R,

F1(x) := +∞ ∀x < 0, F1(x) := −√
x ∀x�0, F2(x) := F1(−x) ∀x ∈ R.

Then (F1 + F2)(0) = 0 and (F1 + F2)(x) = +∞ for any x �= 0; hence
�(F1 + F2)(0) = R, whereas �F1(0)+ �F2(0) = ∅ + ∅ = ∅.

PROPOSITION A.7. Let F : B → R̃ be convex and proper. Then F is locally
Lipschitz-continuous at the interior of Dom(F), and there �F �= ∅.

1.13.4 EXAMPLES

(i) The Fenchel inequality (A.11) extends the classic Young inequality: for
any p ∈]1,+∞[,

1
p
‖u‖p + p− 1

p
‖v‖p/(p−1)�u·v ∀u, v ∈ RN; (A.19)

the Fenchel equality (A.12) here reads

1
p
‖u‖p + p− 1

p
‖v‖p/(p−1)=u·v ⇔ v = u‖u‖p−2 ∀u, v ∈ RN. (A.20)

(ii) Let 1�p < +∞ and set Fp(u) := ‖u‖p/p for any u ∈ B. If p > 1, then
�Fp(u) = {‖u‖p−2u} for any u ∈ B. On the other hand, for p = 1

�F1(u) = {‖u‖−1u} ∀u ∈ B \ {0}, �F1(0) = {v ∈ B∗ : ‖v‖�1}. (A.21)

In particular, if B := R then �F1 = sign, where

sign(x) := {−1} if x < 0, sign(0) := [−1, 1], sign(x) := {1} if x > 0.
(A.22)

PROPOSITION A.8. For any proper, convex, lower semicontinuous function F :
B→ R̃, any u ∈ B and any u∗ ∈ B∗, the following properties are equivalent:

u∗ ∈ �F(u), (A.23)

u ∈ �F∗(u∗), (A.24)

u∗ ·(u− v)�F(u)− F(v) ∀v ∈ B, (A.25)

u·(u∗ − v∗)�F∗(u∗)− F∗(v∗) ∀v∗ ∈ B∗, (A.26)

u·u∗ = F(u)+ F∗(u∗), (A.27)

u·u∗�F(u)+ F∗(u∗). (A.28)
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The equivalence between (A.23) and (A.24) follows from (A.14). The
inclusions (A.23) and (A.24) are equivalent to the variational inequalities
(A.25) and (A.26) by definition of �F and �F∗, respectively. The equality
(A.27) directly follows from the previous one, and (A.28) is equivalent to
(A.27) because of (A.11).

The next statement is just a particular case of the latter one.

PROPOSITION A.9. For any (nonempty) closed convex set K ⊂ B, any u ∈ B and
any u∗ ∈ B∗, the following properties are equivalent:

u∗ ∈ �IK(u), (A.29)

u ∈ �I∗K(u
∗), (A.30)

u ∈ K, u∗ · (u− v)�0 ∀v ∈ K, (A.31)

u·(u∗ − v∗)�I∗K(u∗)− I∗K(v∗) ∀v∗ ∈ B∗, (A.32)

u ∈ K, u·u∗ = I∗K(u∗), (A.33)

u ∈ K, u·u∗�I∗K(u∗). (A.34)

1.13.5 THE GÂTEAUX DIFFERENTIAL

A function F : B → R̃ is said to be (strongly) Gâteaux differentiable at
u ∈ Dom(F) if

∃u∗ ∈ B∗ : ∀v ∈ B, F(u+ �v)− F(u)
�

→ u∗ ·v as � → 0. (A.35)

Such u∗ is necessarily unique; it is named the (strong) Gâteaux differential
of F at u, and is denoted by F′(u).

PROPOSITION A.10. Let F : B→ R̃ be convex, and u ∈ Dom(F). If F is Gâteaux
differentiable at u, then �F(u) = {F′(u)}. Conversely, if �F(u) is a singleton, then
it is Gâteaux differentiable at u and �F(u) = {F′(u)}.

PROPOSITION A.11. Let F : B → R̃ be Gâteaux differentiable at any point of
Dom(F), and the set Dom(F) be convex. Then F is convex if and only if F′ is
monotone; that is, if and only if

[F′(u1)− F′(u2)]·(u1 − u2)�0 ∀u1, u2 ∈ Dom(F). (A.36)



1.13 APPENDIX. ELEMENTS OF CONVEX CALCULUS 113

1.13.6 SUPPORT FUNCTIONS

For any set K ⊂ B, the conjugate of the indicator function IK ,

I∗K : B→ R̃ : u∗ �→ sup
v∈K

u∗ ·v, (A.37)

is named the support function of the set K, and is also denoted by �K . For
instance, �∅ ≡ −∞ and �B ≡ +∞. Assuming that all the Ki are nonempty,
closed, convex subsets of B, the following formulas hold

�K1��K2 ⇔ K1 ⊂ K2, (A.38)

�aK1+bK2 = a�K1 + b�K2 ∀a, b�0, (A.39)

sup
i

�Ki = �∪iKi . (A.40)

A function B→]−∞,+∞] is said positively homogeneous of degree
one (here written phd1) whenever �K(�u) = ��K(u) for any u ∈ B and any
� > 0.

PROPOSITION A.12. For any nonempty set K∗ ⊂ B∗, the function �K∗ := I∗K∗ is
convex and phd1. Conversely, if � : B →] −∞,+∞] is convex and phd1, then
� = �K∗

�
, where

K∗
� := {u∗ ∈ B∗ : u∗ ·v��(v), ∀v ∈ B} (= Dom(�∗)) (A.41)

is closed, convex and nonempty.

1.13.7 CONES

A nonempty set C ⊂ B is named a cone (with vertex at the origin) if �C = C
for any ��0. For instance, any linear subspace ofB is a cone. The domain of
any proper phd1 function F : B→]−∞,+∞] is a cone in B; the graph and
the epigraph of F are cones in B×R. For any K ⊂ B and any u ∈ Dom(�IK),
�IK(u) is named the normal cone to K. For any nonempty set K ⊂ B,⋃

��0 �K is the smallest cone which contains K (i.e., the cone generated by
K).

Convex analysis has been the object of a large literature. We just quote
some monographs: Aubin [128], Barbu and Precupanu [129], Borwein
and Lewis [130], Castaing and Valadier [131], Ekeland and Temam [132],
Hiriart-Urruty and Lemarechal [133,134], Hörmander [135], Ioffe and Ti-
homirov [136], Kusraev and Kutateladze [137], Moreau [138], Rockafellar
[139,140], Rockafellar and Wets [141], Willem [142].
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Kiado, Budapest (1997).

10. J. D. Kraus and D. A. Fleisch, Electromagnetics, McGraw-Hill, Boston
(1999).

11. R. Bouc, “Solution périodique de l’équation de la ferrorésonance avec
hystérésis”, C.R. Acad. Sci. Paris, Série A 263, 497--499 (1966).

12. R. Bouc, Modèle mathématique d’hystérésis et application aux
systèmes à un degré de liberté, Thèse, Marseille (1969).

13. M. A. Krasnosel’skiı̆, B. M. Darinskiı̆, I. V. Emelin, P. P. Zabreı̆ko, E. A.
Lifsic, and A. V. Pokrovskiı̆, ‘Hysterant operator’ Soviet Math. Dokl.
11, 29--33 (1970).

14. A. Beliaev, ‘Homogenization of two-phase flow in porous media with
hysteresis in the capillary relation’, Euro. J. Applied Math. 14, 61--84
(2003).



REFERENCES 115

15. P. Duhem, The Evolution of Mechanics, Sijthoff and Noordhoff, Alphen
aan den Rijn (1980). (Original edition: L’évolution de la méchanique.
Joanin, Paris, 1903).
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