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Abstract After Fitzpatrick’s seminal work [MR 1009594], it is known that in a real Banach
space V any maximal monotone operator α : V → P(V ′) may be given a variational rep-
resentation. This is here illustrated on some examples. On this basis, De Giorgi’s notion of
�-convergence is then applied to the analysis of monotone inclusions, like Dt u + α(u) � h.
The compactness and the structural stability are studied, with respect to variations of the
operator α and of the datum h. The possible onset of long memory in the limit is also
discussed.

Mathematics Subject Classification 35K60 · 47H05 · 49J40 · 58E

1 Introduction

A number of equations that include maximal monotone nonlinearities may be set in varia-
tional form. The �-convergence with respect to suitable topologies is here used to study the
compactness and the structural stability of a class of quasilinear monotone flows.

1.1 The Fenchel System

Let V be a real Banach space, and ϕ : V → R ∪ {+∞} be a proper function(al). With
standard notation, we shall denote the subdifferential and the convex conjugate function of
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ϕ respectively by ∂ϕ : V → P(V ′) and ϕ∗ : V ′ → R ∪ {+∞}, see e.g. [22,23,28,36]. A
classical result due to Fenchel [23] mutually relates ϕ, ϕ∗ and ∂ϕ:

ϕ(v)+ ϕ∗(v∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′, (1.1)

ϕ(v)+ ϕ∗(v∗) = 〈v∗, v〉 ⇔ v∗ ∈ ∂ϕ(v). (1.2)

Defining the function

J (v, v∗) := ϕ(v)+ ϕ∗(v∗)− 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′, (1.3)

(1.2) also reads

J (v, v∗) = inf J = 0. (1.4)

We shall label this as a problem of null-minimization.

1.2 The Fitzpatrick theory

It is known that the operator ∂ϕ is cyclically monotone (and maximal monotone if the func-
tion ϕ is proper, convex and lower semicontinuous), see e.g. [22,36]. In [24] Fitzpatrick
extended the system (1.1) and (1.2) to non-cyclically monotone operators. For any proper
operator α : V → P(V ′), he defined the convex and lower semicontinuous function

fα(v, v
∗) : = 〈v∗, v〉 + sup

{〈v∗ − v∗0 , v0 − v〉 : v∗0 ∈ α(v0)
}

= sup
{〈v∗, v0〉 − 〈v∗0 , v0 − v〉 : v∗0 ∈ α(v0)

} ∀(v, v∗) ∈ V×V ′, (1.5)

and proved that, whenever α is maximal monotone,

fα(v, v∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′, (1.6)

fα(v, v∗) = 〈v∗, v〉 ⇔ v∗ ∈ α(v). (1.7)

This result went essentially unnoticed for several years, until it was rediscovered by Marti-
nez-Legaz and Théra [32] and (independently) by Burachik and Svaiter [15]. This started an
intense research, that bridged monotone operators and convex functions; see e.g. [16,25,29–
31,34], and Ghossoub’s monograph [26]—just to mention few contributions from a growing
literature. See also the related notion of bipotential [13,14].

Extending the theorem of Fitzpatrick, whenever a convex and lower semicontinuous func-
tion f : V×V ′ → R ∪ {+∞} fulfills the system (1.6) and (1.7), nowadays one says that f
(variationally) represents the operator α. So e.g., for any convex and lower semicontinuous
function ϕ : V → R ∪ {+∞}, f (v, v∗) := ϕ(v) + ϕ∗(v∗) represents the operator ∂ϕ,
because of (1.1) and (1.2). (We shall refer to f as the Fenchel function of ∂ϕ.) Representable
operators are monotone, but need not be either cyclically or maximal monotone [16].

1.3 �-Convergence

The formulation in terms of null-minimization based on the Fitzpatrick theory offers the pos-
sibility to apply variational techniques to problems that so far did not look prone to that. These
include e.g. first-order monotone flows, that miss a formulation as a minimum problem. We
refer to typically dissipative evolutions, rather than Euler-Lagrange equations associated with
action functionals. This issue has been widely investigated by Ghoussoub and coworkers,
see e.g. [25–27] and references therein. In this paper we illustrate the role that may be played
in this theory by De Giorgi’s notion of �-convergence, see e.g. [2,7,8,18,19]. For instance,
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given a sequence { fn} of representative functions, known results of �-compactness yield the
existence of a �-limit with respect to a suitable weak topology, up to subsequences.

This may provide the structural stability of the corresponding null-minimization problem.
By this we mean that the mapping that transforms any set of data (including the operator)
into the solution is (sequentially) closed with respect to prescribed topologies. The structure
of the problem is thus preserved by perturbations of data and operators. This extends more
customary results on the closure of the dependence of the solution on data, by including
variations of the operator.

If (i) operators, data and solutions range in compact spaces, (ii) the problem is structurally
stable, and (iii) the solution is unique, then it is easily seen that the solution depends contin-
uously on operators and data. The structural stability may be regarded as a surrogate of the
continuous dependence on the operator, whenever the solution is not known to be unique.

The structural stability seems a natural requirement for the applicative soundness of
a model. The approximation of operators may also be of interest for numerical analysis,
where the finite-dimensional approximation of infinite-dimensional differential operators is
ubiquitous.

1.4 Monotone flows

Let us assume that we are given a Gelfand triplet of (real) Banach spaces

V ⊂ H = H ′ ⊂ V ′ with continuous and dense injections, (1.8)

and fix any h ∈ L p′(0, T ; V ′) (2 ≤ p < +∞, p′ = p/(p− 1)) and any u0 ∈ H . Whenever
an operator α : V → P(V ′) is represented by a function fα , the Cauchy problem

{
Dt u + α(u) � h in V ′, a.e. in ]0, T [ (Dt := ∂/∂t),
u(0) = u0 (1.9)

is equivalent to the null-minimization problem of the convex and lower semicontinuous
functional

J :
{
v ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′) : v(0) = u0

}
→ R ∪ {+∞},

J (v) :=
T∫

0

[ fα(v, h − Dtv)− 〈h, v〉] dt + 1
2‖v(T )‖2

H − 1
2‖u0‖2

H . (1.10)

We shall label this equivalence as the extended B.E.N. principle, since it generalizes an
approach that was pioneered by Brezis and Ekeland [11] and by Nayroles [33] in 1976. More
specifically, this combines the original B.E.N. principle (which assumes α to be cyclically
mononotone) with the Fitzpatrick theorem; see the Examples 3.6 and 3.7 in Sect. 3.

A different formulation may also be introduced. By a simple translation, we may assume
u0 ≡ 0. Let us then define the real Banach space

X p
0 :=

{
v ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′) : v(0) = 0

}
(p′ = p/(p − 1)).
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It is easily seen that the operator Dt + α : X p
0 → P((X p

0 )
′) is monotone, and may be

represented by the function

f (v, v∗) :=
T∫

0

fα(v, v
∗ − Dtv) dt + 1

2‖v(T )‖2
H ∀(v, v∗) ∈ X p

0 ×L p′(0, T ; V ′).

(1.11)

The system (1.9) (with u0 ≡ 0) is thus equivalent to the null-minimization of the convex
functional

v �→ J̃ (v, h) := f (v, h)−
T∫

0

〈h, v〉 dt, (1.12)

namely,

u ∈ X p
0 , J̃ (u, h) = inf

v∈X p
0

J̃ (v, h) = 0. (1.13)

Whenever ϕ : V → R∪{+∞} is a proper, convex and lower semicontinuous function(al)
and α = ∂ϕ, the problem (1.9) is a gradient flow, and may also be set in the form

{
u ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′), u(0) = u0,∫ T
0 [ϕ(u)+ 〈Dt u − h, u〉] dt ≤∫ T

0 [ϕ(v)+ 〈Dt u − h, v〉] dt ∀v ∈ L p(0, T ; V ).

(1.14)

This has the form “�u(u) ≤ �u(v) for any v” (a quasi-variational inequality); this sort of
variational structure does not need the use of the Fitzpatrick theory. It is natural to wonder
whether this has consequences for the compactness and structural stability.

1.5 Plan of work

This is part of an ongoing research on the variational representation of (nonlinear) evolution-
ary P.D.E.s, and on the application of variational techniques to the analysis of their structural
stability, see e.g. [42,46,48,49]. A somehow comparable program, based on the use of the
Fitzpatrick theory, has been accomplished for the homogenization of quasilinear flows in
[43–45]. By and large, homogenization might actually be regarded as a problem of structural
stability, since it involves the asymptotic behavior of the operator and of the data. This is
especially clear if one considers the passage from a two-scale to a single-scale formulation.

This article consists of three parts. The first one is an introduction to the Fitzpatrick the-
ory. In Sect. 2 we recall the notion of representative function, and review some results of the
related theory. In Sect. 3 we provide several examples of those functions; in Proposition 3.2
we also extend the B.E.N. principle.

The second part is devoted to the �-convergence of representative functions. In Sect. 4
we introduce some notions of weak convergence in the space V×V ′, that look suited for the
study of representative functions. These include a nonlinear notion of convergence, that we
name π̃-convergence, see (4.1). We study the corresponding �-convergence, and provide a
fairly general result of �-compactness in Theorem 4.4. In that section we extensively refer
to the theory of �-convergence as developed in Dal Maso’s monograph [18]. In Sect. 5 we
show that the family of representative functions is closed under �-convergence with respect
to weak-type topologies, see Theorem 5.1. We also briefly deal with some related issues: the
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convergence of Fenchel functions, the graph convergence of maximal monotone operators,
and the Mosco-convergence. The two latter notions are especially appropriate for the struc-
tural stability of maximal monotone flows, like (1.9); however they miss the compactness
properties, that are at the focus of this work. In Sect.6 we then address the representation
of operators acting on time-dependent functions, and in Proposition 6.3 we mutually relate
pointwise- and global-in-time convergence.

In the third part of this paper we apply the previous results to problems of the form (1.9).
In Sect. 7 first we illustrate what we mean by compactness and structural stability in general.
We then apply these concepts to (1.9), distinguishing some variants:

(i) global- and pointwise-in-time formulations of the time-periodic problem,
(ii) global- and pointwise-in-time formulations of the corresponding initial-value problem.

We consider this time-periodic problem since only in this case we are able to prove a result of
compactness and structural stability without assuming compactness of the injection V → H .
(Notice that this hypothesis involves the structure of the problem, rather than just the regularity
of the data.) By the results of Sects. 4, 5, 6, for each of these four formulations the represen-
tative functions �-converge to representative functions, up to extracting a subsequence. This
allows us to prove the structural stability either of (1.9) or of the corresponding global-in-time
formulation. More specifically, in Sect. 7 we address the periodic flow, whereas in Sect. 8
we deal with the corresponding initial-value problem. In Sect. 8 we also briefly illustrate
how for gradient flows compactness and structural stability may be proved without using the
Fitzpatrick theory.

The asymptotic analysis of the global formulation raises the question of the possible onset
of long memory in the limit, that has been pointed out and studied for a linear problem by
Tartar in [39–41]. In Sect. 9 we illustrate this issue, exhibit examples of monotone problems
either with or without onset of long memory, and discuss the results of the two previous
sections. (In discriminating between these two behaviors, the compactness of the injection
V → H seems to play a more important role than the gradient structure of the operator.)
Finally, we briefly revisit the examples of Sect. 3.

In the author’s opinion, the main results of this work concern the �-compactness of repre-
sentative functions with respect to a nonlinear weak-type topology (Sect. 4 and Theorem 5.1),
and the ensuing structural stability of monotone flows (Sects. 7 and 8). This theory raises
several further questions, that will be addressed apart. These include e.g. the extension of
the results of Sects. 7 and 8 to nonmonotone operators, see [49]; a further analysis of the
onset of long memory in monotone flows; the identification of the �-limit of sequences of
representative functions; and so on.

2 Outline of the Fitzpatrick theory

In this section we briefly review the theory that was pioneered by Fitzpatrick [24] in 1988,
and then developed by several other authors in the last ten years.

2.1 Fitzpatrick functions

Let V be a real Banach space. A (possibly multi-valued) operator α : V → P(V ′) with
graph A := {

(v, v∗) ∈ V×V ′ : v∗ ∈ α(v)} is said monotone if

v∗ ∈ α(v) ⇒ 〈v∗ − v∗0 , v − v0〉 ≥ 0 ∀(v0, v
∗
0) ∈ A. (2.1)
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(It will be convenient to include the empty operator, α ≡ ∅, into the class of monotone
operators.) Whenever the converse implication also holds, α is said maximal monotone,
see e.g. [5,9,12,50]. We shall denote by M(V ) the class of maximal monotone operators
V → P(V ′).

In [24] S. Fitzpatrick associated with any operator with graph A �≡ ∅ the function (now
named the Fitzpatrick function)

fα(v, v
∗) := 〈v∗, v〉 + sup

{〈v∗ − v∗0 , v0 − v〉 : (v0, v
∗
0) ∈ A

}

= sup
{〈v∗, v0〉 − 〈v∗0 , v0 − v〉 : (v0, v

∗
0) ∈ A

} ∀(v, v∗) ∈ V×V ′.
(2.2)

Note that, even if α is nonmonotone,

fα : V×V ′ → R ∪ {+∞} is convex and lower semicontinuous,

fα(v, v∗) ≥ 〈v∗, v〉 if eitherv ∈ α−1(V ′) or v∗ ∈ α(V ). (2.3)

The class of monotone operators will be of interest, because of the following result of Fitz-
patrick.

Theorem 2.1 [24] Let α : V → P(V ′), and denote its Fitzpatrick function by fα . Then:

(i) α is monotone if and only if

∀(v, v∗) ∈ V×V ′, 〈v∗, v〉 = fα(v, v
∗) ⇐ v∗ ∈ α(v); (2.4)

(ii) α ∈M(V ) (α �≡ ∅) if and only if

fα(v, v
∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′, (2.5)

fα(v, v
∗) = 〈v∗, v〉 ⇔ v∗ ∈ α(v). (2.6)

Proof (1) First let us set

π(v, v∗) := 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′, (2.7)

and note that, for any (v, v∗) ∈ V×V ′, by (2.2)

fα(v, v
∗) ≤ 〈v∗, v〉 ⇔ 〈v∗ − v∗0 , v − v0〉 ≥ 0 ∀(v0, v

∗
0) ∈ A. (2.8)

Note that fα ≥ π on A by (2.2) 2, and that α is monotone if and only if fα ≤ π on A
(namely, fα = π on A). Part (i) is thus established.

Let us now assume that α ∈ M(V ). By (2.8), fα(v, v∗) ≤ 〈v∗, v〉 then entails that
(v, v∗) ∈ A. On the other hand, by part (i), (v, v∗) ∈ A entails fα(v, v∗) = 〈v∗, v〉. In
conclusion, fα ≥ π in the whole V×V ′; moreover, fα(v, v∗) = 〈v∗, v〉 entails (v, v∗) ∈ A,
and conversely.

Finally, we show that (2.5) and (2.6) entail that α ∈M(V ). By part (i), (2.6) entails that
α is monotone. For any (v, v∗) ∈ V ×V ′, if 〈v∗ − v∗0 , v − v0〉 ≥ 0 for any (v0, v

∗
0) ∈ A,

then fα(v, v∗) ≤ 〈v∗, v〉 by (2.8). As fα ≥ π , we infer that fα(v, v∗) = 〈v∗, v〉, whence
(v, v∗) ∈ A by (2.6). We conclude that α ∈M(V ). ��
1 This argument is based upon Theorems 3.4, 3.8 and 3.9 of [24], where V is assumed to be a Hausdorff
locally convex space. The subsequent theory was then developed in Banach space, and we shall conform to
this trend.
We display this proof here since this result plays a key role in this work, and the article [24] might not be
easily available to the reader.
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2.2 Representative functions

We shall denote by F(V ) the class of the functions f such that

f : V×V ′ → R ∪ {+∞} is convex and lower semicontinuous, (2.9)

f (v, v∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V×V ′. (2.10)

To any function f ∈ F(V )we shall then associate the operator α such that, for any (v, v∗) ∈
V×V ′,

v∗ ∈ α(v) ⇔ f (v, v∗) = 〈v∗, v〉. (2.11)

The identically empty operator,α ≡ ∅, is thus associated with the identically infinite function,
f ≡ +∞. (Any other operator and any other function will be said to be proper).

Whenever (2.11) holds, we shall say that f ∈ F(V ) (variationally) represents α or that f
is a representative of α, and that α is representable. We shall accordingly refer to F(V ) as
the class of representative functions. We shall also denote by R(V ) the class of representable
operators V → P(V ′) and by Fα(V ) the subclass of the functions that represent some fixed
operator α ∈ R(V ). Note that any function of F(V ) represents just one operator of R(V ),
whereas an operator of R(V )may be represented by several functions of F(V ). Let us denote
by I the permutation operator

I : V×V ′ → V ′×V : (v, v∗) �→ (v∗, v). (2.12)

Obviously, if V is reflexive,

g ∈ F(V ) represents an operator α : V → P(V ′)
⇔ g ◦ I−1 ∈ F(V ′) represents α−1 : V ′ → P(V ). (2.13)

The next statement is also straightforward.

Proposition 2.2 (i) The class F(V ) is convex.
(ii) For any nonempty family F̂ ⊂ F(V ), the mapping f̂ : (v, v∗) �→ sup{ f (v, v∗) : f ∈

F̂} is an element of F(V ).
(iii) The properties (i) and (ii) hold also if F(V ) is replaced by Fα(V ), for any α ∈ R(V ).
(iv) For any f ∈ F(V ) and any convex and lower semicontinuous mapping g : V×V ′ →

R ∪ {+∞}, if f ≤ g pointwise, then g ∈ F(V ) and (denoting by α f and αg the
respective represented operators) graph(αg) ⊂ graph(α f ).

For any f ∈ F(V ) and any closed convex set K ⊂ V×V ′, thus f + IK ∈ F(V ).
In Sect. 5 we shall also see that the class F(V ) is stable by suitable notions of variational

convergence. Here are some further properties:

(i) All representable operators are monotone, see Theorem 3.1 of [16]. (This would hold
even if the representative functions were not assumed to be lower semicontinuous.)

(ii) Not all monotone operators are representable. E.g., the null mapping restricted to V \
{0} is not representable. (This would fail even if the representative function were not
required to be convex.)

(iii) All maximal monotone operators are representable. Actually, by part (ii) of Theo-
rem 2.1, an operator is maximal monotone if and only if it is represented by its Fitzpa-
trick function.
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(iv) Not all representable operators are maximal monotone. E.g., the trivial operator α ≡ ∅
is represented by f ≡ +∞ (an element of F(V )). The nonmaximal monotone operator
with graph A = {(0, 0)} is represented by f1 = I{(0,0)} (2) and, if V is a Hilbert space,
also by f2 : (u, v) �→ ‖u + v‖2/2.

The representable operators thus form a strictly intermediate class between monotone and
maximal monotone operators.

By the latter statement, for any nonempty subset S of RN , a monotone affine mapping
S → RN is representable if and only if S is closed and convex.

Let us set J (v, v∗) = f (v, v∗)− 〈v∗, v〉 for any (v, v∗) ∈ V×V ′, and denote by ∂v and
∂v∗ the partial subdifferential operators. By (2.9)–(2.11), for any f ∈ F(V ) and any (v, v∗)
we have

f (v, v∗) = 〈v∗, v〉 ⇔ J (v, v∗) = inf J = 0 ⇒
{
∂v f (v, v∗) � v∗
∂v∗ f (v, v∗) � v. (2.14)

After [24], the converse of the latter implication also holds whenever f represents a maximal
monotone operator.

It is easy to see that the representable operators share the following properties with the
maximal monotone operators.

Proposition 2.3 ([30]; Proposition 8) If α ∈ R(V ), then:

(i) α(v) and α−1(v∗) are closed and convex, for any v ∈ V and any v∗ ∈ V ′;
(ii) for any sequence {(vn, v

∗
n)} in A, (3)

vn ⇀ v in V, v∗n ⇀∗ v∗ in V ′, lim inf
n→∞ 〈v∗n , vn〉 ≤ 〈v∗, v〉 ⇒ (v, v∗) ∈ A. (2.15)

Notice also that F(V ) is an ordered space, equipped with the natural ordering of the
functions V × V ′ → R ∪ {+∞}: f1 ≤ f2 if and only if f1(v, v

∗) ≤ f2(v, v
∗) for any

(v, v∗) ∈ V×V ′. The next result mirrors the known statement that any monotone operator
has a maximal monotone extension.

Theorem 2.4 ([24]) For any g ∈ F(V ), the class {h ∈ F(V ) : h ≤ g} has at least one
minimal element with respect to the pointwise ordering. If V is reflexive, then any of these
minimal elements is the Fitzpatrick function of a maximal monotone extension of the operator
that is represented by g.

2.3 Duality

In the remainder of this section we shall assume that the real Banach space V is reflexive,
although for some statements this restriction may be dropped. Let us then identify the bidual
space of V with V itself, denote by g∗ : V ′×V → R∪{+∞} the Fenchel-Legendre conjugate
(if it exists) of any proper function g : V ×V ′ → R ∪ {+∞}, by g∗∗ its double conjugate
(assuming that g∗ is proper, too), and by [·, ·] the canonical duality pairing between V×V ′
and V ′×V :

[(v, v∗), (v∗0 , v0)] := 〈v∗0 , v〉 + 〈v∗, v0〉 ∀(v, v∗), (v0, v
∗
0) ∈ V×V ′. (2.16)

2 We denote by IC the indicator function of any set C ; that is, IC = 0 in C and IC = +∞ outside C .
3 We denote the strong, weak, and weak star convergence respectively by→, ⇀, ⇀∗ .
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Note that by (2.6)

f (v, v∗) = 〈v∗, v〉 ⇔ (v∗, v) ∈ ∂ f (v, v∗). (2.17)

(This equality does not follow directly from (2.11), since the joint subdifferential might be
strictly included into the product of the partial subdifferentials.) Let us denote the indicator
function of the graph of α by Iα . As the definition (2.2) also reads

fα(v, v
∗) = sup

{[(v, v∗), (v∗0 , v0)] − 〈v∗0 , v0〉 : v∗0 ∈ α(v0)
}
,

we have

fα(v, v
∗) = (π + Iα)

∗(v∗, v) ∀(v, v∗) ∈ V×V ′, (2.18)

that is, fα = (π + Iα)∗ ◦ I.

Theorem 2.5 (Theorem 3.1 of [16], [29,38]) Let V be a reflexive Banach space. A function
g ∈ F(V ) represents a maximal monotone operator if and only if g∗ ∈ F(V ′).

For instance, as we pointed out above, the nonmaximal monotone operator with graph
A = {(0, 0)} is represented by f = I{(0,0)}. Its convex conjugate reads f ∗ ≡ 0, which is not
a representative function.

Corollary 2.6 Let V be a reflexive Banach space, g ∈ F(V ) and g∗ ∈ F(V ′). If g represents
an operator α, then g∗ represents the inverse operator α−1. (Thus g and g∗ ◦I represent the
same maximal monotone operator, if any.)

Indeed, applying (2.11) and (2.17) to g and g∗,

v ∈ α−1(v∗) ⇔ v∗ ∈ α(v) ⇔ (v∗, v) ∈ ∂ f (v, v∗)
⇔ (v, v∗) ∈ [(∂ f )−1](v, v∗) = ∂g∗(v∗, v). (2.19)

Any α ∈ M(V ) is thus represented by both (π + Iα)∗ ◦ I and (π + Iα)∗∗, see also
[15,34], besides several other functions, e.g. all convex combinations of these two functions.
Moreover,

fα := (π + Iα)
∗ ◦ I ≤ g ≤ sα := (π + Iα)

∗∗ ∀g ∈ Fα(V ), ∀α ∈M(V ). (2.20)

(The function sα was introduced in [15]; see also [34].) In passing note that the domain of
the latter coincides with the closed convex hull of the graph of α in V×V ′.

The next result easily follows from the latter statements.

Corollary 2.7 Let V be a reflexive Banach space. For any convex and lower semicontinuous
function g : V×V ′ → R ∪ {+∞} and any α ∈M(V ),

g ∈ F(V ), g represents α ⇔ fα ≤ g ≤ sα, (2.21)

g represents α ⇔ g∗ represents α−1. (2.22)

Simple examples show that in general the set of the functions that represent a fixed maximal
monotone operator is not totally ordered (with respect to the pointwise ordering).

Theorem 2.8 ([38]) Let V be a reflexive Banach space. Any α ∈M(V )may be represented
by a function g ∈ F(V ) such that g∗ = g ◦ I−1.
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Any maximal monotone operator may thus be represented by a (possibly nonunique) self-
dual function. This class has extensively been studied by Ghoussoub and coworkers, see e.g.
[25,26] and references therein.

Under suitable restrictions, the class F(V ) is stable by linear combinations with non-
negative scalars, and thus forms a convex subcone of the cone of lower semicontinuous
convex mappings V×V ′ → R ∪ {+∞}. Simple rules allow one to construct representative
functions of cone combinations (i.e., linear combinations with nonnegative scalars) of repre-
sentable operators, see e.g. Chap. 5 of [26]. For instance, the extended B.E.N. principle (see
Proposition 3.2 ahead) follows from those rules.

3 Examples of representative functions

In this section we give some examples of representable operators and of their representative
functions. Reference to these examples will only be done in Sect. 8, so that skipping this
section would not impair the comprehension of the remainder.

Example 3.1 (Fenchel Function). Let V be a real Banach space. The subdifferential ∂ϕ :
V → P(V ′) of a proper, convex and lower semicontinuous function ϕ : V → R ∪ {+∞} is
represented by the function

f (v, v∗) = ϕ(v)+ ϕ∗(v∗) ∀(v, v∗) ∈ V×V ′, (3.1)

that we shall refer to as the Fenchel function of the operator ∂ϕ. This f is self-dual, that
is, f ∗ = f in the duality between V ×V ′ and V ′×V . In this case the inequality (2.10) is
a straightforward consequence of the definition of the convex conjugate function ϕ∗, and
(2.11) (with α = ∂ϕ) coincides with the classical Fenchel inequality (1.2) (as here the sign
= is equivalent to ≤).

Next we show that, among the representative functions of maximal monotone operators,
the Fenchel functions are the only ones that have an additive form.

Proposition 3.1 A function f ∈ F(V ) of the form

f (v, v∗) = ϕ1(v)+ ϕ2(v
∗) ∀(v, v∗) ∈ V×V ′, (3.2)

represents some operator α ∈M(V ) (if and) only ifϕ1 andϕ2 are mutually convex conjugate.
In that case, α = ∂ϕ1 = (∂ϕ2)

−1.

Proof Definingπ as in (2.7), setting J := f −π , and recalling (2.14), for any (v, v∗) ∈ V×V ′
we have

v∗ ∈ α(v) ⇔ ∂ J (v, v∗) � 0 ⇔
{
∂ϕ1(v) � v∗
∂ϕ2(v

∗) � v; (3.3)

the latter equivalence follows from the additive form of (3.2). Hence α ⊂ ∂ϕ1; more pre-
cisely α = ∂ϕ1, by the maximality of α. By (3.3) thus (∂ϕ1)

−1 = α−1 ⊂ ∂ϕ2, whence
∂ϕ2 = (∂ϕ1)

−1 by the maximality of α−1. Hence ϕ2 = ϕ∗1 + C for some C ∈ R. By (2.11)
and (3.2) then

ϕ1(v)+ ϕ∗1 (v∗)+ C = 〈v∗, v〉 ∀(v, v∗) ∈ graph(∂ϕ1) (�= ∅). (3.4)

By the classical Fenchel formula (1.2), we conclude that C = 0. ��
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Example 3.2 (Quasilinear Elliptic Operator). Let 	 be a bounded domain of RN (N > 1),
p ∈ ]1,+∞[, and set V := W 1,p

0 (	). Let a maximal monotone mapping �γ : RN → P(RN )

be represented by a function f ∈ F(RN ). If

∃c1, c2 ∈ R+: ∀ �w ∈ RN , ∀�z ∈ γ ( �w), |�z| ≤ c1| �w|p′ + c2, (3.5)

the mapping v �→ −∇ · �γ (∇v) then defines an operator γ̂ : V → P(V ′), which is promptly
seen to be maximal monotone. Indeed, for any λ > 0 and any v∗ ∈ W−1,p′(	), the problem

v ∈ W 1,p
0 (	), −∇ · �γ (∇v)− λ∇ · (|∇v|p−2∇v) = v∗ in D′(	)

has a solution. As v �→ −∇ · (|∇v|p−2∇v) is the duality mapping W 1,p
0 (	)→ W−1,p′(	),

by the classical Minty–Browder theorem (see e.g. [5]) we conclude that γ̂ is maximal mono-
tone. This obviously includes e.g. the case of the p-Laplacian operator, which corresponds
to �γ (�v) = |�v|p−2�v.

Let us assume that f is coercive in the sense that

∃a, b > 0 : ∀(v,w) ∈ R2, f (v,w) ≥ a(|v|p + |w|p′)− b. (3.6)

We claim that γ̂ is then represented by the following function ψ : V×V ′ → R:

ψ(v, v∗) = inf
{ ∫

	

f (∇v, �η) dx : �η ∈ L p′(	)N ,−∇·�η = v∗ in D′(	)
}
, (3.7)

for any (v, v∗) ∈ V×V ′. By the coerciveness of f , this infimum is attained at some �ξv∗ ∈
L p′(	)N . The function ψ is convex, lower semicontinuous (because of (3.6)), and

ψ(v, v∗) =
∫

	

f (∇v, �ξv∗) dx
f ∈F(RN )≥

∫

	

∇v ·�ξv∗ dx = −〈v,∇·�ξv∗ 〉 = 〈v, v∗〉. (3.8)

Thus ψ ∈ F(V ). Moreover, as f (∇v, �ξv∗) ≥ ∇v · �ξv∗ pointwise in 	, equality holds in
(3.8) if and only if f (∇v, �ξv∗) = ∇v · �ξv∗ a.e. in 	. As f represents �γ , this is equivalent
to �ξv∗ ∈ �γ (∇v) a.e. in 	, whence v∗ = −∇ · �ξv∗ ∈ −∇ · �γ (∇v) in W−1,p′(	). We thus
conclude that ψ represents the operator γ̂ . (We could not prescribe �ξv∗ = −∇�−1v∗, since
�ξv∗ ∈ �γ (∇v) need not be curl-free.)

Example 3.3 (Degenerate Quasilinear Elliptic Operator). Let 	 and �γ be as in the latter
example, with N = 3; let us define the Hilbert space V and the maximal monotone operator
γ̂ as follows:

V := {�v ∈ L2(	)3 : ∇ × �v ∈ L2(	)3, �ν×�v = �0 on ∂	
}
,

γ̂ : V → P(V ′) : �v �→ ∇× �γ (∇×�v). (3.9)

The dual space V ′ may thus be identified with
{∇ × �v : �v ∈ L2(	)3

}
. We claim that γ̂ is

represented by the following function ψ ∈ F(V ): for any (�ν, �ν∗) ∈ V×V ′,

ψ(�ν, �ν∗) = inf
{ ∫

	

f (∇×�ν, �η) dx : �η ∈ L2(	)3,∇×�η = �ν∗ in D′(	)3
}
. (3.10)

By the coerciveness of f , this infimum is attained at some �ξ�v∗ ∈ L2(	)N . We then have
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ψ(�v, �v∗) =
∫

	

f (∇×�v, �ξ�v∗) dx
f ∈F(RN )≥

∫

	

∇×�v ·�ξ�v∗ dx = 〈�v,∇×�ξ�v∗ 〉 = 〈�v, �v∗〉; (3.11)

as in the latter example, it is easily checked that ψ ∈ F(V ). As f (∇×�v, �ξ�v∗) ≥ ∇×�v · �ξ�v∗
a.e. in 	, equality holds in (3.11) if and only if f (∇× �v, �ξ�v∗) = (∇× �v) · �ξ�v∗ a.e. in 	.
As f represents �γ , the latter equality is equivalent to �ξ�v∗ ∈ �γ (∇× �v) a.e. in 	, whence
�v∗ ∈ ∇× �γ (∇×�v) in V ′, hence in the sense of distributions.

The degenerate operator γ̂ is also maximal monotone, as it may easily be checked via the
classical Minty–Browder theorem.

Example 3.4 (Time-Derivative). Here we shall refer to the Banach triplet (1.8), fix any T >

0, p ∈ [2,+∞[, and set

X p
0 :=

{
v ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′) : v(0) = 0

}
,

α(v) = Dtv a.e. in ]0, T [,∀v ∈ X p
0 . (3.12)

The initial condition is meaningful, as any element of X p
0 may be identified with a con-

tinuous function [0, T ] → H . The restriction v(0) = 0 provides the monotonicity of the
operator. This condition is not really restrictive, since it may be retrieved by simply shifting the
unknown function; it might be dropped at the expense of replacing X p

0 by the corresponding
affine space of the functions that attain a prescribed initial value.

The triplet (V, H, V ′) induces the triplet

V := L p(0, T ; V ) ⊂ H := L2(0, T ; H) = H′ ⊂ V ′ = L p′(0, T ; V ′) (3.13)

with continuous and dense injections. We have

X p
0 ⊂ V ⊂ H = H′ ⊂ V ′ ⊂ (X p

0 )
′, (3.14)

with continuous and dense injections; but the characterization of the dual space (X p
0 )
′ does

not seem obvious. Let us denote by [·, ·] the duality pairing between (X p
0 )
′ and X p

0 . The
bounded linear operator α : X p

0 → V ′ ⊂ (X p
0 )
′ is monotone, as

[α(v), v] =
T∫

0

〈Dtv, v〉 dt = 1
2‖v(T )‖2

H ≥ 0 ∀v ∈ X p
0 .

By the linearity this operator is then maximal monotone, although not cyclically monotone
as it is not symmetric. It is represented by the function

fα(v, v
∗) = IDt (v, v

∗)+ [v∗, v] = IDt (v, v
∗)+ [Dtv, v]

= IDt (v, v
∗)+ 1

2‖v(T )‖2
H ∀(v, v∗) ∈ X p

0 ×(X p
0 )
′. (3.15)

One might also deal with a nonhomogeneous initial condition v(0) = v0 (prescribed in H );
in this case Dt would be monotone on the affine space X p

0 + v0.

Example 3.5 (Time-Derivative with Periodicity). Let us fix any T ∈ ]0,+∞], and set

X p
� :=

{
v ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′) : v(0) = v(T )},

α(v) = Dtv a.e. in ]0, T [, ∀v ∈ X p
� .

(3.16)
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If T = +∞, then for any v ∈ X p
� it is easily seen that v(t) → 0 in V ′ as t → +∞. The

(degenerate) periodicity condition then reads v(0) = limt→+∞ v(t) = 0, so that

X p
� =

{
v ∈ X p : v(0) = 0

}
if T = +∞; (3.17)

Here the operator α is monotone and skew-symmetric, and we retrieve a limit case of Exam-
ple 3.4.

If T is finite, an equivalent formulation might also be used. Let us first denote by I the
circumference of C with center 0 and radius T/2π , and identify any T -periodic function on
R with a function on I, via the bijective mapping λ : ]0, T ] → I : t �→ y = (T/2π)e2π i t/T .
One may then replace the operator α by

α̃(v) = Dt (v ◦ λ−1) a.e. in I,
∀v ∈ X̃ p := L p(I; V ) ∩W 1,p′(I; V ′). (3.18)

The operator α is represented by the function

fα(v, v
∗) = IDt (v, v

∗)+ [v∗, v] = IDt (v, v
∗)+ [Dtv, v] = IDt (v, v

∗)
∀(v, v∗) ∈ X p

� ×(X p
� )
′.

Example 3.6 (Extended B.E.N. Principle).

Proposition 3.2 ([42]) Let V be a Banach space, and L : V → V ′ be a monotone, bounded,
linear operator. If an operator α : V → P(V ′) is represented by a function fα ∈ F(V ),
then α + L is represented by the function

f (v, v∗) = fα(v, v
∗ − Lv)+ 〈Lv, v〉 ∀(v, v∗) ∈ V×V ′. (3.19)

Proof The function (v, v∗) �→ fα(v, v∗ − Lv) is convex and lower semicontinuous, since it
is the composition of the convex and lower semicontinuous function fα with the linear and
continuous transformation (v, v∗) �→ (v, v∗ − Lv). As the function v �→ 〈Lv, v〉 is also
convex and lower semicontinuous, the same holds for f . It is straightforward to check that
this function represents the operator α + L . ��
The latter result extends the B.E.N. principle of [11,33]; there α is assumed to be cyclic and
maximal monotone, fα is the Fenchel function (3.1), and L is the time-derivative. In this
case Proposition 3.2 is applied to the triplet

V := X p
0 ⊂ H := L2(0, T ; H) = H′ ⊂ V ′,

with X p
0 defined as in (3.12).

Example 3.7 (Abstract Quasilinear Parabolic Operator). In the functional framework of the
Example 3.4, let us assume that

α : V → P(V ′) is represented by a function fα ∈ F(V ), (3.20)

∃C1,C2 > 0 : ∀(v, v∗) ∈ graph(α), ‖v∗‖ ≤ C1‖v‖p−1 + C2, (3.21)

and define V := L p(0, T ; V ) as in (3.13). The operator α : V → P(V ′) is then canonically
associated with an operator ᾱ : V → P(V ′), which is represented by the functional

f̄α : V×V ′ → R ∪ {+∞} : (v, v∗) �→
T∫

0

fα(v, v
∗) dt.
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Dealing with initial-value problems for the operator Dt+α, it seems convenient to use the
space X p

0 , see (3.12). If α is as γ̂ in the Example 3.2, then Dt +α is quasilinear parabolic. As
Dt : V → V ′ is linear and bounded, if ᾱ : Dom(ᾱ) ⊂ V → P(V ′) is maximal monotone then
the same holds for Dt + ᾱ. However, here we shall be concerned with the representability
rather than the maximal monotonicity.

It is easily seen that the restriction of ᾱ to X p
0 , that we denote by α̃ : X p

0 → P(V ′) ⊂
P((X p

0 )
′), is represented by the function

�α̃ : X p
0 ×(X p

0 )
′ → R ∪ {+∞} : (v, v∗) �→

{∫ T
0 fα(v, v∗) dt if v∗ ∈ V ′,
+∞ otherwise.

(3.22)

By the extended B.E.N. principle (see Proposition 3.2), Dt + α̃ is then represented by the
function

� : X p
0 ×(X p

0 )
′ → R ∪ {+∞} : (v, v∗) �→ �α̃(v, v

∗ − Dtv)+ 1
2‖v(T )‖2

H . (3.23)

In a Hilbert space, this is easily extended to an operator of the form �Dt + α̃, provided
that � is a self-adjoint operator.

Example 3.8 (Stefan Operator).This is a particular case of the latter example. Let us select
V = L2(	) and H = H−1(	), and equip H−1(	) with the scalar product (w, v) =
〈−�−1w, v〉 (in the duality pairing between H1

0 (	) and H−1(	)), where θ = −�−1w is
such that θ ∈ H1

0 (	) and −�θ = w in D′(	). For any α ∈ M(V ) with affine growth, it is
easily seen that the operator

X2
0 → P((X2

0)
′) : v �→ Dtv −�α(v) (3.24)

is representable and maximal monotone. If α is not strictly monotone, this operator is degen-
erate. For instance, an operator like this with α constant along an interval occurs in the weak
formulation of the classical (scalar) Stefan problem; in this case α may also be assumed to
be Lipschitz-continuous. This may easily be extended to the vector Stefan problem.

Example 3.9 (Time-Integral). Let V, H, p be as in the Example 3.4, and set

Y p
0 := W−1,p(0, T ; V ) ∩ L p′(0, T ; V ′) (= {

Dtv : v ∈ X p
0

})
,

J v(t) :=
t∫

0

v(τ) dτ for a.e. t ∈ ]0, T [,∀v ∈ Y p
0 . (3.25)

This operator is maximal monotone, and is represented by the function

fJ (v, v∗) = IJ (v, v∗)+ 1
2‖J v(T )‖2

H ∀(v, v∗) ∈ Y p
0 ×(Y p

0 )
′. (3.26)

This setting is closely related to Example 3.4, as Y p
0 = Dt (X

p
0 ) (the image set of the operator

Dt ) and J : Y p
0 → X p

0 is an isomorphism, with inverse Dt . For any linear invertible operator
� : V → V , the operator v �→ �∗J�u is maximal monotone, too.

Example 3.10 (Transport Operator). Let 	 be a domain of RN (N > 1) of Lipschitz class,
assume that

�ν is the outward-oriented unit normal vector-field on ∂	,
−→w ∈ C0,1(	̄)N ∩ L∞(	)N , ∇·−→w ≤ 0 a.e. in 	, (3.27)
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Omitting the trace operator, let us set

� = {
x ∈ ∂	 : �ν ·−→w < 0

}
,

V0 :=
{
v ∈ H1(	) : v = 0 on �

}
,

β(v) := −→w ·∇v (=∑N
i=1wi Div

)
a.e. in 	, ∀v ∈ V0.

(3.28)

The bounded linear operator β : V0 → L2(	) is monotone as
∫

	

β(v)v dx = 1
2

∫

	

−→w ·∇(v2) dx = 1
2

∫

	

[∇ ·(−→w v2)− (∇·−→w )v2] dx

= 1
2

∫

∂	

�ν ·−→w v2 dx − 1
2

∫

	

(∇·−→w )v2 dx ≥ 0 ∀v ∈ V0, (3.29)

by (3.27)2 and (3.28)1. The operator β is then maximal monotone, but not cyclically mono-
tone. Denoting by I−→w ·∇ the indicator function of the graph of the operator �v �→ −→w ·∇�v, β
itself is represented by

fβ(v, v
∗) = I−→w ·∇(v, v∗)+

∫

	

(−→w ·∇v)v dx

= I−→w ·∇(v, v∗)+ 1
2

∫

∂	

�ν ·−→w v2 dx − 1
2

∫

	

(∇·−→w )v2 dx, (3.30)

for any (v, v∗) ∈ V0×V ′0. If	 is an N -dimensional interval, this is easily extended to periodic
boundary conditions.

On the basis of the Examples 3.2, 3.10 and of the extended B.E.N. principle (see Propo-
sition 3.2), one may represent a large class of quasilinear second order elliptic operators, A,
and the associated parabolic operators, Dt + A.

Several linear second order hyperbolic operators are also representable. For instance, this
applies to Dtt + A if A is a positive and self-adjoint operator on a Hilbert space.

Example 3.11 In particular the setting of the latter example applies if	 = ]0, T [. This may
also be extended to vector functions v : [0, T ] → RM (M ≥ 1) Let A : [0, T ] → RM×M be
Lipschitz continuous, symmetric and positive (semi)definite for any t , and such that Dt A is
negative (semi)definite for a.e. t . The operator

v : {v ∈ H1(0, T ) : v(0) = 0} → L2(0, T ) : v �→ A·Dtv (3.31)

is bounded, linear and maximal monotone. This may also be extended to periodicity condi-
tions for a domain of the form 	 = ]a1, b1[× · · · ×]aN , bN [.
Example 3.12 (Saddle Operator). Let B1 and B2 be two real Banach spaces, and at least one
of them be reflexive. Let Ei ⊂ Bi (i = 1, 2) be nonempty, closed and convex sets, and let
L : E1×E2 → R be a saddle function such that

L(·, v2) is convex and lower semicontinuous, ∀v2 ∈ E2,

L(v1, ·) is concave and upper semicontinuous, ∀v1 ∈ E1. (3.32)

Let us denote by ∂1L(∂2 L , resp.) the partial subdifferential (partial supdifferential, resp.) of
L . The operator
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∂̃L : E1 × E2 → P(B ′1)× P(B ′2) :
(
v1

v2

)
�→

(
∂1L(v1, v2)

−∂2 L(v1, v2)

)
(3.33)

is then maximal monotone, but not cyclically monotone; see e.g. p. 137 [6], [35], p. 396 of
[36]. Denoting by 〈〈·, ·〉〉 the duality pairing between B1×B2 and B ′1×B ′2, after (1.5) the
Fitzpatrick function of ∂̃L reads

f
∂̃L(�v, �v∗) :=
〈〈�v∗, �v〉〉 + sup

{〈〈�v∗ − �v∗0 , �v0 − �v〉〉 : �v∗0 ∈ ∂̃L(�v0), �v0 ∈ E1×E2
}

= sup
{〈〈�v∗, �v0〉〉−〈〈�v∗0 , �v0 − �v〉〉 : �v∗0 ∈ ∂̃L(�v0), �v0 ∈ E1×E2

}

∀�v = (v1, v2) ∈ E1×E2, ∀�v∗ = (v∗1 , v∗2) ∈ B ′1×B ′2.

(3.34)

Example 3.13 (Saddle Flow). Here we combine the Example 3.4 with the latter one. In the
functional framework of the Example 3.12, the operator

Dt + ∂̃L :
(
v1

v2

)
�→

(
Dtv1

Dtv2

)
+

(
∂1L(v1, v2)

−∂2 L(v1, v2)

)
(3.35)

is monotone, but not cyclically monotone. The equation (Dt + ∂̃L)(v1, v2) = (h1, h2)

accounts for descent along the convex potential v1 �→ L(v1, v2) − h1 · v1, coupled with
ascent along the concave potential v2 �→ L(v1, v2)+ h2 · v2.

By the extended B.E.N. principle of Proposition 3.2 and by (3.34), the operator Dt + ∂̃L
is easily represented.

3.1 Other classes

Further examples of representable operators may be built by combining the above ones. The
next statement exhibits a further wide class of maximal monotone operators.

Proposition 3.3 Let (V, H, V ′) be a Banach triplet as in (1.8), and an operator α ∈M(V )
be strongly monotone, in the sense that

∃C > 0 : ∀(v1, w1), (v2, w2) ∈ graph(α),

〈w1 − w2, v1 − v2〉 ≥ C‖v1 − v2‖2
V . (3.36)

If γ : V → V ′ is a Lipschitz-continuous operator with Lipschitz constant L ≤ C, then
α + γ ∈M(V ).

Proof Let us denote by J the duality mapping V → V ′. The operator α + γ is obviously
monotone, and for any λ>C, λJ + α + γ is coercive, hence onto V ′. By the classical
Minty–Browder theorem, we then infer that α + γ is also maximal monotone. ��
The class of strongly monotone operators is thus stable under small Lipschitz perturbations.
It is easily seen that this fails if we restrict this class to cyclically monotone operators.

3.2 Strong Monotonicity and Strict Convexity

Next we draw a useful consequence from the extended B.E.N. principle.

Proposition 3.4 Let (V, H, V ′) be a Banach triplet as in (1.8), and α ∈M(V ). If

∃c > 0 : ∀(v1, w1), (v2, w2) ∈ graph(α),

〈w1 − w2, v1 − v2〉 ≥ c‖v1 − v2‖2
H . (3.37)
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then α may be represented by a function f such that f (·, v∗) is strictly convex for any
v∗ ∈ V ′.

(A stronger condition is obviously obtained if ‖v1 − v2‖2
H is replaced by ‖v1 − v2‖2

V in
(3.37), namely if α is strongly monotone.)

Proof Let us denote by L the canonic injection V → V ′, so that 〈Lv, v〉 = ‖v‖2
H for any

v ∈ V . By (3.37) Ã := A − cL is maximal monotone, hence it may be represented by
a function f̃ ∈ F(V ). By the extended B.E.N. principle (see Proposition 3.2), Ã is then
represented by the function

f (v, v∗) = f̃ (v, v∗ − cLv)+ c‖v‖2
H ∀(v, v∗) ∈ V×V ′, (3.38)

As the function v �→ f̃ (v, v∗ − cLv) is convex, the thesis follows. ��

4 �-Compactness of representative functions

In the remainder of this work we shall be concerned with the structural stability of maximal
monotone operators and related equations, via the variational representation that we intro-
duced above. In this section we deal with the variational convergence and compactness of
families of representative functions, via De Giorgi’s notion of �-convergence.

4.1 Some linear and nonlinear topologies

We assume throughout that V is a real Banach space. We shall denote by π̃ the coarsest
among the topologies of V×V ′ that are finer than the product of the weak topology of V by
the weak star topology of V ′, and that make continuous the mapping π (defined in (2.7)).
For any sequence {(vn, v

∗
n)} in V×V ′, thus

(vn, v
∗
n) →̃π (v, v∗) in V×V ′ ⇔

vn ⇀ v in V, v∗n ⇀∗ v∗ in V ′, 〈v∗n , vn〉 → 〈v∗, v〉, (4.1)

and similarly for any net. This topology defines a nonlinear convergence: a linear combina-
tion of two converging sequences need not converge. We shall also use the following linear
topologies:

ω is the product of the weak topology of V by the weak star topology of V ′,
ws is the product of the weak topology of V by the strong topology of V ′,
sw∗ is the product of the strong topology of V by the weak star topology of V ′,
s is the strong topology of V×V ′.
These convergences, with the only exception ofω, are especially appropriate for the analy-

sis of representable operators. For instance, by (2.11) the graph of any representable operator
is closed with respect to the convergences ws, sw∗ and s, but not with respect to ω.

4.2 Metrizability and sequential characterization

We shall say that a topology τ on a Banach space B is locally metrizable if B may be equipped
with a metrizable topology, that has the same restriction as τ to any norm-bounded subset
of B.

Lemma 4.1 (Local Metrizability) If V ′ is separable, then the topologies ω, π̃ , ws and sw∗
are locally metrizable.
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Proof As V ′ is separable the same holds for V . The space V equipped with the weak topology
is then locally metrizable, and the same holds for V ′ equipped with the weak star topology;
see e.g. Sect. III.6 of [10]. Therefore (V×V ′, ω) (namely, V×V ′ equipped with the topology
ω) is also locally metrizable. The same holds for the product topologiesws and sw∗. We are
left with the proof of this property for the topology π̃ .

Let us equip V×V ′×R with the topology ω̄, that is defined as the product of the weak
topology of V , the weak star topology of V ′, and the ordinary topology of R. This product
space is locally metrizable. Let us define the mapping

θ : V×V ′ → V×V ′×R : (v, v∗) �→ (v, v∗, 〈v∗, v〉), (4.2)

and note that (V ×V ′, π̃) is homeomorphic to the image set θ(V ×V ′) equipped with the
topology induced by ω̄, As this set is locally metrizable, we conclude that the topology π̃ is
also locally metrizable. ��

It may be noticed that the mapping θ establishes a one-to-one correspondence between the
nonlinear convergence π̃ in the linear space V×V ′ and a linear convergence in the nonlinear
subset θ(V×V ′) of the linear topological space V×V ′×R (equipped with the topology ω̄).
Note also that bounded subsets of V×V ′ need not be relatively compact with respect to the
topology π̃ (nor ws, sw∗ and s, obviously).

Lemma 4.2 (p. 54 of [18]) For any pair of topologies τ1 ⊂ τ2 over a set X, and any sequence
{ fn} of functions X → R ∪ {+∞},4

�τ1 lim inf
n→∞ fn ≤ �τ2 lim inf

n→∞ fn, �τ1 lim sup
n→∞

fn ≤ �τ2 lim sup
n→∞

fn .

(4.3)

The same then holds for the �-limits, whenever they exist.

We remind the reader that, for functions defined on a topological space, the definition of
�-convergence involves the filter of the neighborhoods of each point; see e.g. p. 25–27 of [2],
p. 38 of [18]. If the space is first-countable (in particular, if it is metrizable), that notion may
equivalently be formulated in terms of the family of converging sequences, but this does not
apply in general; see e.g. p. 270 of [2], Chap. 8 of [18]. We shall refer to these two notions
as topological and sequential �-convergence, respectively. (If it is not otherwise specified,
reference to the topological notion should be understood.)

Proposition 4.3 Let V ′ be separable, and τ be any of the topologies ω, π̃, ws and sw∗ of
V×V ′. Let σ be a metrizable topology on V×V ′ that is locally equivalent to τ (by Lemma 4.1
such a topology exists). Let {ψn} be a sequence of functions V ×V ′ → R ∪ {+∞} that is
equi-coercive, in the sense that

∀C ∈ R, sup
n∈N

{‖v‖V + ‖v∗‖V ′ : (v, v∗) ∈ V×V ′, ψn(v, v
∗) ≤ C

}
< +∞. (4.4)

Thenψn �τ -converges topologically if and only if it �σ -converges sequentially, hence if and
only if it �τ -converges sequentially, that is,

∀(v, v∗) ∈ V×V ′, ∀ sequence {(vn, v
∗
n)} in V×V ′,

(vn, v
∗
n)→τ (v, v∗) in V×V ′ ⇒ lim infn→∞ ψn(vn, v

∗
n) ≥ ψ(v, v∗), (4.5)

4 By �τ lim we shall denote the � limit with respect to a topology τ .
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∀(v, v∗) ∈ V×V ′, ∃ sequence {(vn, v
∗
n)} in V×V ′:

(vn, v
∗
n)→τ (v, v∗) and ψn(vn, v

∗
n)→ ψ(v, v∗). (4.6)

Proof After p. 353 of [1], at p. 93 of [18] this result is proved for the weak topology; see also
p. 285 of [2]. That argument may be extended verbatim to any locally metrizable topology τ
as above. ��
Remark For Proposition 4.3 to hold, the assumption (4.4) is in order when the topologies ω
and π̃ are considered. Dealing with the topology ws, (4.4) might be replaced by the weaker
condition

∀C ∈ R, sup
n∈N,v∗∈V ′

{‖v‖V : v ∈ V, ψn(v, v
∗) ≤ C

}
< +∞, (4.7)

since the strong topology V ′ is already a metric topology. An analogous statement holds for
the topology sw∗, if (4.7) is modified by exchanging the roles of V and V ′. Dealing with the
topology s, (4.4) may be dropped.

This remark will also apply to Theorem 4.4, and to all other results that rest upon Propo-
sition 4.3. ��
4.3 Compactness

The next result will play a key role in the remainder of this work.

Theorem 4.4 Let V ′ be separable, and τ be any of the topologies ω, π̃ , ws and sw∗ of
V×V ′. Let {ψn} be a sequence of functions V×V ′ → R ∪ {+∞} that fulfills (4.4). Then,
up to extracting a subsequence, ψn �τ -converges to some function ψ both topologically and
sequentially.

The same holds for the topology s, and

�ω limψn ≤ �π̃ limψn ≤ min{�ws limψn, �sw ∗ limψn},
max{�ws limψn, �sw ∗ limψn} ≤ �s limψn .

(4.8)

Proof We adapt the argument of Corollary 8.12 of p. 95 of [18] to the present more general
setting. By Lemma 4.1, the space V×V ′ can be equipped with a metrizable topology σ that
is locally equivalent to τ . By the assumption of separability of V ′, (V×V ′, s) is separable,
so that the same holds for any ball B of this product space. As the topology τ is coarser than
s, (B, τ ) is also separable, and the same thus holds for (B, σ ). As V ×V ′ is an increasing
and countable union of balls, the metrizable space (V×V ′, σ ) is an increasing and countable
union of separable subspaces. (V ×V ′, σ ) is then also separable. As any separable metric
space has a countable basis, see e.g. p. 111 of [17], we conclude that (V ×V ′, σ ) has a
countable basis.

By Lemma 4.5 below, {ψn} then has a �σ -convergent subsequence, which is also sequen-
tially �σ -convergent as σ is a metric topology. By Proposition 4.3, this subsequence then
�τ -converges topologically and sequentially. By (4.4), the �-limit does not attain the value
−∞. The thesis is thus established for the topology τ .

For the metric topology s the thesis is a direct consequence of Lemma 4.5; in this case
(4.4) is only used to exclude that the �-limit attain the value −∞, and might be replaced by
a simpler requirement. (4.8) directly follows from Lemma 4.2. ��
Lemma 4.5 (p. 152 of [2], p. 90 of [18]) If a topological space X has a countable basis,
then every sequence { fn} of functions X → R ∪ {±∞} has a �-convergent subsequence.
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Remark (i) As we pointed out above, dealing with the topologies ws and sw∗, in Theo-
rem 4.4 the hypothesis (4.4) might be weakened. In the case of the topology s, it may be
dropped, at the expense of allowing the �-limit to attain the value −∞.

(ii) It is known that a sequence {An} of subsets of a topological space X converges in the
sense of Kuratowski to a (closed) set A with respect to a topology τ if and only if IAn →� IA

with respect to τ ; see e.g. [2,18]. A compactness result analogous to Theorem 4.4 might
then be formulated in terms of the Kuratowski convergence of the indicator functions. For a
sequence {An} of subsets of V×V ′, the sequence {IAn } however fulfills the hypothesis (4.4)
only if these sets are uniformly bounded. This excludes any sequence of maximal monotone
operators. If the Ans are the graphs of a sequence of equi-coercive operators, this might be
remedied; but we shall not delve on this issue here, since a function IA is convex only if A
is linear. ��

5 Stability properties of representative functions

In this section we provide sufficient conditions for the stability of the class of representative
functions and of the class of representable operators, with respect to the notions of weak
convergence that we introduced in the previous section. We then discuss some related con-
cepts: the graph convergence of maximal monotone operators, the convergence of Fenchel
functions, and the Mosco-convergence.

We remind the reader that we denote by F(V ) the class of the representative functions
f : V×V ′ → R∪ {+∞}, namely, the convex and lower semicontinuous functions such that
f (v, v∗) ≥ 〈v∗, v〉 for any (v, v∗) ∈ V×V ′. We denote by R(V ) the class of representable
operators V → P(V ′), and by M(V ) the subclass of maximal monotone operators.

Theorem 5.1 Let V ′ be separable, and τ be any of the topologies π̃ ,ws, sw∗ and s (but not
ω) of V×V ′. Let {ψn} be a sequence in F(V ) that sequentially �τ -converges to a function
ψ . Then:

(i) ψ ∈ F(V ).
(ii) If αn (α, resp.) is the operator that is represented by ψn (ψ , resp.), then for any

sequence {(vn, v
∗
n)} in V×V ′

v∗n ∈ αn(vn) ∀n, (vn, v
∗
n)→τ (v, v∗) ⇒ v∗ ∈ α(v). (5.1)

(This second part may be compared with part (ii) of Proposition 2.3.)

Proof (i) The functionψ is convex and sequentially lower semicontinuous with respect to the
topology τ , since both properties are preserved by passage to the upper �-limit, respectively
in any vector space and in any topological space; see e.g. p. 264 of [2] and p. 57, 126 of [18].

For any (v, v∗) ∈ V×V ′, by (4.6) there exists a sequence {(vn, v
∗
n) ∈ V×V ′} such that

(vn, v
∗
n)→τ (v, v∗) and ψn(vn, v

∗
n)→ ψ(v, v∗); thus 〈v∗n , vn〉 → 〈v∗, v〉. Therefore

〈v∗, v〉 = lim
n→∞ 〈v

∗
n , vn〉

ψn∈F(V )≤ lim
n→∞ψn(vn, v

∗
n) = ψ(v, v∗). (5.2)

Thus ψ ∈ F(V ).
(ii) For any sequence {(vn, v

∗
n) ∈ An} such that (vn, v

∗
n)→τ (v, v∗),

ψ(v, v∗)
(4.5)≤ lim inf

n→∞ ψn(vn, v
∗
n)

v∗n∈αn(vn)= lim inf
n→∞ 〈v∗n , vn〉 = 〈v∗, v〉. (5.3)

Thus v∗ ∈ α(v), as ψ represents α. The implication (5.1) is thus established. ��
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An alternative proof of this theorem proceeds as follows. As π is continuous with respect
to the topology τ ,

ψn − π →� ψ − π sequentially w.r.t. τ . (5.4)

It is known that this entails that the limit of any converging sequence of minimizers ofψn−π
is a minimizer of ψ − π , see e.g. p. 78 of [18]. The same then holds for null-minimizers.
Thus ψ ∈ F(V ) and the implication (5.1) is fulfilled.

In the above theorem, a priori any of the functions ψn and ψ might represent the empty
set. However, in (5.1) v∗n ∈ αn(vn)(v

∗ ∈ α(v), resp.) clearly entails that αn �≡ ∅(α �≡ ∅,
resp.).

Theorems 4.4 and 5.1 yield the next statement.

Corollary 5.2 Let V ′ be separable, and τ be any of the topologies π̃ , ws, sw∗ and s (but not
ω) of V×V ′. Let {ψn} be a sequence in F(V ) that fulfills (4.4). Then there exists ψ ∈ F(V )
such that, up to extracting a subsequence, ψn →� ψ topologically and sequentially with
respect to τ . The property (5.1) then holds.

Next we exhibit a condition that guarantees that a �-limit of representative functions is
strictly convex with respect to its first argument; this will entail uniqueness of the solution v
of the associated equation α(v) � v∗ for a given v∗. Let us denote by L the canonic injection
V → V ′, so that 〈Lv, v〉 = ‖v‖2

H for any v ∈ V .

Proposition 5.3 Let (V, H, V ′) be a Banach triplet as in (1.8), and the canonic injection
V → H be compact. Let {αn} be a sequence in M(V ) such that

∃c > 0 : ∀n, ∀(v1, w1), (v2, w2) ∈ graph(αn),

〈w1 − w2, v1 − v2〉 ≥ c‖v1 − v2‖2
H . (5.5)

For any n, let f̃n represent the maximal monotone operator αn − cL, and set

fn(v, v
∗) = f̃n(v, v

∗ − cLv)+ c‖v‖2
H ∀(v, v∗) ∈ V×V ′, ∀n. (5.6)

(By the extended B.E.N. principle, see Proposition 3.2, fn ∈ F(V ) and fn represents αn.)
Let τ be any of the topologies ω, π̃ , ws, sw∗ and s of V×V ′. If fn either topologically or
sequentially �τ -converges to f , then f (·, v∗) is strictly convex for any v∗ ∈ V ′.

Proof Let us set gn(v, v
∗) = f̃n(v, v

∗ − cLv) and q(v, v∗) = c‖v‖2
H , so that (5.6) also

reads fn = gn + q . By the assumption of compactness, the function q is continuous on
(V×V ′, τ ). The either topological or sequential �τ -convergence of { fn} is then tantamount
to that of {gn}. Each function gn is convex, since it is the composition of f̃n with the linear
transformation (v, v∗) �→ (v, v∗ − cLv). The function g = �τ limn→∞ gn is then convex,
too. By the τ -continuity of q , we have f = g + q . As q is strictly convex, the thesis then
follows. ��
Remark (i) A stronger condition is obviously obtained if in (5.5) ‖v1 − v2‖2

H is replaced
by ‖v1 − v2‖2

V , namely if the operators αns are equi-strongly-monotone.
(ii) The strict convexity obviously entails the uniqueness of the null-minimizer of the

function

V → R ∪ {+∞} : v �→ f (v, v∗)− 〈v, v∗〉.
��
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5.1 Graph convergence of representable operators

Let V ′ be separable, {αn : V → P(V ′)} be a sequence in R(V ), and α ∈ R(V ); let us denote
by An and A the respective graphs. Let τ be any of the topologies π̃ , ws, sw∗, s (but not ω)
of V×V ′, and define the sequential convergence in the sense of Kuratowski:

A = K τ lim
n→∞ An (sequentially) ⇔

(i) ∀(v, v∗) ∈ A, ∃ sequence{(vn, v
∗
n) ∈ An} : (vn, v

∗
n)→τ (v, v∗), and

(ii) (vn, v
∗
n) ∈ An ∀n, (vn, v

∗
n)→τ (v, v∗) ⇒ (v, v∗) ∈ A.

(5.7)

The two latter properties respectively read

A ⊂ K τ lim inf
n→∞ An, K τ lim sup

n→∞
An ⊂ A (both sequentially).

This is equivalent to IAn →� IA sequentially with respect to the topology τ ; this may be
proved along the lines of p. 43 of [18].

Part (ii) of Theorem 5.1 also reads K τ lim supn→∞ An ⊂ A (sequentially). This yields
the next statement, that extends to representable operators a property of maximal monotone
operators, see e.g. p. 361 of [2], and raises the question of deriving sufficient conditions for
getting A ⊂ K τ lim infn→∞ An .

Corollary 5.4 Let the hypotheses of Theorem 5.1 be fulfilled, and denote by An and A the
respective graphs of αn and α. If A ⊂ K τ lim infn→∞ An, namely,

∀(v, v∗) ∈ A, ∃ sequence {(vn, v
∗
n) ∈ An} : (vn, v

∗
n)→τ (v, v∗), (5.8)

then A = K τ limn→∞ An sequentially.

5.2 �-Compactness of Fenchel functions

Next we deal with the properties of�-convergence of the class of Fenchel functions, cf. (3.1).
Let us still assume that V ′ is separable. For any n, let ϕn : V → R∪{+∞} be convex, lower
semicontinuous and proper, and ψn be its Fenchel function:

ψn(v, v
∗) = ϕn(v)+ ϕ∗n (v∗) ∀(v, v∗) ∈ V×V ′, ∀n. (5.9)

We shall assume the following condition of V -equi-coerciveness:

∀C ∈ R, sup
n∈N

{‖v‖V : v ∈ V, ϕn(v) ≤ C
}
< +∞. (5.10)

Theorems 4.4 and 5.1 yield the next statement.

Corollary 5.5 Let V ′ be separable, and τ be any of the topologies π̃ , ws, sw∗, s (but not
ω) of V ×V ′. Let {ϕn} be a sequence in F(V ) such that both {ϕn} and {ϕ∗n } fulfill (5.10)
respectively in V and V ′. Then there exists ψτ such that, up to extracting a subsequence,

ϕn(v)+ ϕ∗n (v∗)→� ψτ (v, v
∗) topologically and sequentially w.r.t. τ. (5.11)

This entails that ψτ ∈ F(V ).

By (4.8), defining ψπ̃ , ψws, ψsw∗, ψs in an obvious way, we have

ψπ̃ ≤ min{ψws, ψsw∗}, max{ψws, ψsw∗} ≤ ψs . (5.12)

Next we see that the Fenchel class is stable for �ws- and �sw∗-convergence.
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Corollary 5.6 Let V be separable and reflexive, and {ϕn} be a sequence of convex, lower
semicontinuous and proper functions V → R ∪ {+∞}, that fulfill (5.10). Then there exists
a convex, lower semicontinuous and proper function ϕ such that, possibly extracting a sub-
sequence,

ϕn + ϕ∗n →� ϕ + ϕ∗ topologically and sequentially w.r.t. the topology ws. (5.13)

A dual statement holds for the topology sw, if the sequence {ϕ∗n } fulfills the dual formulation
of the equi-coerciveness condition (5.10).

Proof By Proposition 8.10 of p. 93 of [18], ϕn →� ϕ topologically and sequentially with
respect to the weak topology, up to extracting a subsequence. By Lemma 5.7 here below,
then ϕ∗n →� ϕ∗ strongly. The two latter statements clearly entail (5.13). ��

The next statement follows from p. 283 of [2] and Proposition 4.3 above.

Lemma 5.7 Let W be a separable and reflexive Banach space, and {θn} be a sequence of
convex, lower semicontinuous and proper functions W → R ∪ {+∞} that fulfills (5.10).
Then

θn →� θ topologically and sequentially weakly in W
⇔ θ∗n →� θ∗ strongly in W ′. (5.14)

At variance with ψws and ψsw∗, the functions ψω and ψs need not be in the Fenchel class:
we shall see a counterexample ahead in this section. To this author it is not clear whether this
property does or does not hold for ψπ̃ .

5.3 Mosco-convergence

Let us us assume that V is reflexive, and denote by ψn →M ψ the convergence in the sense of
Mosco of a sequence {ψn} of functions V×V ′ → R ∪ {+∞}—that is, the �-convergence
of ψn to ψ with respect to both the sequential-weak and the strong topology of V×V ′, see
e.g. [2].

Proposition 5.8 Let V be separable and reflexive, and {ϕn} be a sequence of functions
V×V ′ → R ∪ {+∞}. If

ψn →M ψ in V×V ′, (5.15)

then

ψn →� ψ sequentially w.r.t. each of the topologies π̃ , ws, sw. (5.16)

If ψn ∈ F(V ) for any n, then ψ ∈ F(V ).

Proof As the topologies π̃ , ws, sw are intermediate between the weak and the strong topol-
ogy of V ×V ′, by Lemma 4.2 we infer that ψω ≤ ψτ ≤ ψs for any τ ∈ {π̃ , ws, sw}. By
(5.15), ψω = ψs , and (5.16) follows. The final statement stems from Theorem 5.1. ��

The Mosco-convergence is especially interesting for Fenchel functions. Let us consider
a sequence {ϕn} of convex and lower semicontinuous functions V → R ∪ {+∞}. If V is
reflexive, then after p. 295 of [2]

ϕn →M ϕ in V ⇔ ϕ∗n →M ϕ∗ in V ′. (5.17)
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It follows that ϕn →M ϕ if and only if ϕn + ϕ∗n →M ϕ + ϕ∗; this is easily checked, as the
two addenda act on different variables. For convex and lower semicontinuous functions, still
assuming that the space V is reflexive, we thus have

ϕn →M ϕ in V ⇔
ϕn + ϕ∗n →M ϕ + ϕ∗ in V×V ′ ⇒
ϕn + ϕ∗n →� ϕ + ϕ∗ in V×V ′, sequentially w.r.t. π̃ , ws, sw.

(5.18)

On the other hand, by p. 283 of [2], if ϕn + ϕ∗n sequentially �ω-converges to ϕ + ϕ∗ then it
also �-converges strongly; thus

ϕn + ϕ∗n →� ϕ + ϕ∗ in V×V ′, sequentially w.r.t. ω ⇒
ϕn + ϕ∗n →M ϕ + ϕ∗ in V×V ′. (5.19)

Remark The notion of Mosco-convergence is especially appropriate for the structural stabil-
ity of gradient flows in Hilbert spaces, and entails the convergence in the sense of Kuratowski
of the subdifferentials p. 373 of [2]. It is a rather strong property, that much simplifies the pas-
sage to the limit in the analysis of several nonlinear P.D.E.s; see e.g. [37]. This notion however
misses the compactness property that we pointed out for instance for the �π̃-convergence,
see Theorem 4.4. For this reason in this work we rather use the latter notion.

Dealing with maximal monotone operators, a similar point may be done for the graph
convergence, i.e., the convergence of the graphs in the sense of Kuratowski. This also misses
the compactness property, that is at the focus of this work. ��
5.4 An example

Next we briefly illustrate a simple example which displays some of the above features, and
provides some counterexamples. Let {v̄n} be a weakly vanishing sequence of unit elements
of a Hilbert space H that we identify with its dual, and set

fn(v) := 1
2‖v − v̄n‖2 = 1

2‖v‖2 − (v, v̄n)+ 1
2 ∀v ∈ H, ∀n. (5.20)

This represents the cyclical and maximal monotone operator ∂ fn : v �→ v + v̄n . We have

f ∗n (v∗) = 1
2‖v∗‖2 + (v∗, v̄n) = 1

2‖v∗ + v̄n‖2 − 1
2 ∀v∗ ∈ H,∀n. (5.21)

Both sequences { fn} and { f ∗n } fulfill (5.10), and

fn(v)→� 1
2‖v‖2 =: f (v) weakly in H , (5.22)

fn(v)→� 1
2‖v‖2 + 1

2 =: g(v) strongly in H , (5.23)

f ∗n (v∗)→� 1
2‖v∗‖2 − 1

2 = g∗(v∗) weakly in H , (5.24)

f ∗n (v∗)→� 1
2‖v∗‖2 = f ∗(v∗) strongly in H ; (5.25)

hence

fn + f ∗n →� f + g∗ weakly in H2, (5.26)

fn + f ∗n →� f + f ∗ weakly-strongly in H2, (5.27)

fn + f ∗n →� g + g∗ strongly-weakly in H2, (5.28)

fn + f ∗n →� g + f ∗ strongly in H2, (5.29)

and f + f ∗ = g + g∗. All of these �-convergences are both topological and sequential, by
Proposition 4.3.
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No one of the sequences { fn}, { f ∗n } and { fn + f ∗n } converges in the sense of Mosco, nor
from any of these three sequences a Mosco-convergent subsequence may be extracted. This
confirms the restrictiveness of the Mosco-convergence and of the Mosco-compactness, even
for sequences of convex and lower semicontinuous functions.

The function f +g∗ is not representative, as f (0)+g∗(0) < 〈0, 0〉. The Fenchel function
f + f ∗ = g + g∗ represents the identity operator. The function g + f ∗ = ( f + g∗)∗ is
representative, but it represents the empty operator, as f (v) + g∗(v∗) > 〈v, v∗〉 for any
(v, v∗) ∈ H2; thus this is no Fenchel function. These statements are all consistent with part
(i) of Theorem 5.1.

By Theorem 4.4, there exists a function ψ : H2 → R ∪ {+∞} such that

ψn := fn + f ∗n →� ψ topologically and sequentially w. r. t. the topology π̃ , (5.30)

and by part (i) of Theorem 5.1ψ is representative. One may even be more specific, and show
that

ψ = f + f ∗ (= g + g∗). (5.31)

In order to prove this equality,5 let us select any (v, v∗) ∈ H2, and any sequence {(ξn, ξ
∗
n )}

in H2 such that (v + ξn, v
∗ + ξ∗n ) →̃π (v, v∗); that is, ξn ⇀ 0 in H , ξ∗n ⇀∗ 0 in H , and

(ξ∗n , ξn)→ 0. Note that

fn(v + ξn)+ f ∗n (v∗n + ξ∗n )− f (v)− f ∗(v∗)
= (v, ξn)+ 1

2‖ξn‖2 − (ξn, v̄n)+ (v∗, ξ∗n )+ 1
2 + 1

2‖ξ∗n ‖2 + (ξ∗n , v̄n)+ o(1)

= 1
2‖ξn − ξ∗n ‖2 − (ξ∗n , ξn)− (ξn − ξ∗n , v̄n)+ 1

2 + o(1) (5.32)

= 1
2‖ξn − ξ∗n − v̄n‖2 + o(1) ≥ o(1);

therefore lim infn→∞[ fn(v)+ f ∗n (v∗)] ≥ f (v)+ f ∗(v∗). This corresponds to (4.5) for the
topology τ = π̃ ; by (5.22) and (5.25), the condition (4.6) holds, too. (5.31) is thus established.

5.5 Other examples

Next we display a sequence that converges in V ×V ′ with respect to the topology π̃ , but
neither with respect tows nor sw∗. If V is an infinite-dimensional Hilbert space and is iden-
tified with its dual, it suffices to fix an orthonormal sequence {en} of unit elements, and to
consider the sequence {(en, en+1)} in V 2 = V×V ′. Denoting by τn the translation operator
v �→ v(· − n), for any v ∈ H1(R) and any n ∈ N, the sequence {(τnv, Dtτnv)} is another
example.

6 Representation in spaces of time-dependent functions

In this section we extend some of the previous developments to time-dependent functions,
in view of the analysis of monotone flows in the next section.

Let us fix any finite T > 0, any p ∈ ]1,+∞[ and set V := L p(0, T ; V ). Let us define
the topology π̃ in V×V ′ as in (4.1), by replacing the space V by V and the associated duality

5 The following argument was pointed out by the anonymous reviewer.
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pairing 〈·, ·〉 by

〈〈v∗, v〉〉 :=
T∫

0

〈v∗(t), v(t)〉 dt ∀(v, v∗) ∈ V×V ′.

Definitions and results of Sects. 4 and 5 take over to time-dependent operators and to their
time-integrated representative functions, simply by replacing the space V by V .

Proposition 6.1 Let a function ψ ∈ F(V ) be such that

∀C ∈ R, sup
{‖v‖V + ‖v∗‖V ′ : (v, v∗) ∈ V×V ′, ψ(v, v∗) ≤ C

}
< +∞. (6.1)

Then the functional

�(v, v∗) :=
T∫

0

ψ(v(t), v∗(t)) dt ∀(v, v∗) ∈ V×V ′ (6.2)

is an element of F(V). Moreover, ψ represents an operator α : V → P(V ′) if and only if �
represents the operator

α̂ : V → P(V ′) : v �→ α(v(·)). (6.3)

(The same clearly applies for the double time integration: (v, v∗) �→∫ T
0 (T−t)ψ(v(t), v∗(t)) dt.)

Proof We just check the “if” part of the last assertion, the remainder being pretty obvious.
For any (v, v∗) ∈ V×V ′,

T∫

0

ψ(v(t), v∗(t)) dt ≥ 〈〈v∗, v〉〉, ψ(v(t), v∗(t)) ≥ 〈v∗(t), v(t)〉 for a.e. t ∈ ]0, T [.

Whenever the first inequality is reduced to an equality, the same then applies to the second
one. The function � then represents the operator α̂ only if ψ represents α. ��

We shall relate the π̃ -convergence in V ×V ′ a.e. in ]0, T [ with the π̃-convergence in
V×V ′. First we state an auxiliary result.

Lemma 6.2 Let ε ∈ ]0, 1[ and p ∈ ]1,+∞[. For any σ > ε, there exists a constant Cσ,ε > 0
such that for any (v, v∗) ∈ W σ,p(0, T ; V )×W σ,p′(0, T ; V ′),

‖〈v∗, v〉‖W ε,1(0,T ) ≤ Cσ,ε‖v∗‖W σ,p′ (0,T ;V ′)‖v‖W σ,p(0,T ;V ). (6.4)

Proof Setting f := 〈v∗, v〉 a.e. in ]0, T [, we have

‖ f ‖W ε,1(0,T ) =
T∫

0

| f (t)| dt +
∫ ∫

]0,T [2

| f (t)− f (τ )|
|t − τ |1+ε dtdτ, (6.5)

| f (t)− f (τ )| ≤ |〈v∗(t)− v∗(τ ), v(t)〉| + |〈v∗(τ ), v(t)− v(τ)〉|
≤ ‖v∗(t)− v∗(τ )‖V ′ ‖v(t)‖V + ‖v∗(τ )‖V ′ ‖v(t)− v(τ)‖V

=: I1(t, τ )+ I2(t, τ ) for a.e. t, τ ∈ ]0, T [.
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For any σ > ε, let us set p′ := p/(p − 1) and q ′ := 1/(σ − ε + 1/p′), so that
σ = ε + 1/q ′ − 1/p′ and q := q ′/(q ′ − 1) > p. We then have

∫ ∫

]0,T [2

I1(t, τ )

|t − τ |1+ε dtdτ =
∫ ∫

]0,T [2

‖v∗(t)− v∗(τ )‖V ′

|t − τ |1/q ′+ε · ‖v(t)‖V

|t − τ |1/q dtdτ

≤
∥
∥
∥
‖v∗(t)− v∗(τ )‖V ′

|t − τ |1/q ′+ε
∥
∥
∥

L p′ (]0,T [2)

∥
∥
∥
‖v(t)‖V

|t − τ |1/q
∥
∥
∥

L p(]0,T [2)

=
∥
∥
∥
‖v∗(t)− v∗(τ )‖V ′

|t − τ |1/p′+σ
∥
∥
∥

L p′ (]0,T [2)

( T∫

0

‖v(t)‖p
V

( T∫

0

1

|t − τ |p/q dτ

)
dt

)1/p

≤ C1,σ,ε‖v∗‖W σ,p′ (0,T ;V ′)‖v‖L p(0,T ;V ),

(6.6)

with C1,σ,ε := supt∈]0,T [
(∫ T

0
1

|t−τ |p/q dτ
)1/p

< +∞. Similarly, exchanging the roles of

v, V, p with that of v∗, V ′, p′ (resp.), it is easily seen that there exists a finite constant C2,σ,ε

such that
∫ ∫

]0,T [2

I2(t, τ )

|t − τ |1+ε dtdτ ≤ C2,σ,ε‖v∗‖L p′ (0,T ;V ′)‖v‖W σ,p(0,T ;V ). (6.7)

Finally, (6.5)–(6.7) yield (6.4). ��
Proposition 6.3 Let p ∈ ]1,+∞[, and {(vn, v

∗
n)} be a bounded sequence in W σ,p(0, T ; V )×

W σ,p′(0, T ; V ′) for some σ > 0 and a finite T > 0. If

(vn, v
∗
n) →̃π (v, v∗) in V×V ′, a.e. in]0, T [, (6.8)

then

(vn, v
∗
n) →̃π (v, v∗) in V×V ′. (6.9)

On the other hand (6.9) does not entail (6.8), not even for a subsequence.

Proof (i) First we prove the implication “(6.8)⇒ (6.9)”. Let us denote by [·, ·] the canonic
duality pairing between V×V ′ and V ′×V . For any (ξ∗, ξ) ∈ V ′×V , by (6.8)

[(vn, v
∗
n), (ξ

∗, ξ)] → [(v, v∗), (ξ∗, ξ)] a.e. in ]0, T [.
By the assumption of boundedness, the sequence {[(vn, v

∗
n), (ξ

∗, ξ)]} = {〈vn, ξ
∗〉 + 〈v∗n , ξ 〉}

is bounded in W σ,1(0, T ), and this space has compact injection into L1(0, T ) (as T is finite).
Thus

[(vn, v
∗
n), (ξ

∗, ξ)] → [(v, v∗), (ξ∗, ξ)] strongly in L1(0, T ).

Hence (vn, v
∗
n) → (v, v∗) weakly in V×V ′. By (6.8), 〈v∗n , vn〉 → 〈v∗, v〉 a.e. in ]0, T [.

Moreover, by Lemma 6.2 the sequence {〈v∗n , vn〉} is compact in L1(0, T ). Therefore

T∫

0

〈v∗n , vn〉 dt →
T∫

0

〈v∗, v〉 dt, that is, 〈〈v∗n , vn〉〉 → 〈〈v∗, v〉〉.

This yields (6.9).
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(ii) Next we show by a counterexample that “(6.8) �⇒ (6.9)” for V = H and p = 2. Let
{hn} be an orthonormal basis of H , and set

vn(t) = hn sin(2π t/T ), v∗n(t) = hn sin(4π t/T ) ∀t ∈ ]0, T [, ∀n. (6.10)

Thus

(vn, v
∗
n) →̃π (v, v∗) in L2(0, T ; H)2 = V×V ′,

although

(vn(t), v
∗
n(t)) �→̃π (0, 0) in H2 = V×V ′,∀t ∈ ]0, T [.

��

Remark If {(vn, v
∗
n)} is just bounded in V×V ′, then the implication “(6.9) ⇒ (6.8)” fails.

Here is a simple counterexample for V = R. Let us set

v∗n = vn = 0 in ]0, T − 1
n ], v∗n = vn =

√
n in ]T − 1

n , T [,∀n. (6.11)

Hence (vn, v
∗
n)→ (0, 0) in R2 and v∗n · vn → 0 for any t ∈ ]0, T [; but

∫ T
0 v

∗
n(t)·vn(t) dt = 1

for any n. Thus (vn, v
∗
n) →̃π (0, 0) in R2 a.e. in ]0, T [, but not in L2(0, T ;R2), not even for

a subsequence. ��
Despite of the counterexample (6.10), next we derive (6.8) from (6.9) for {v∗n} = {Dtvn},

under the assumption that the canonic injection V → H is compact.

Lemma 6.4 Let (V, H, V ′) be a Banach triplet as in (1.8), with compact injection V → H;
let p ∈ ]1,+∞[ and T > 0 be finite. If, for some σ > 0,

vn ⇀ v in W σ,p(0, T ; V ) ∩W 1+σ,p′(0, T ; V ′), (6.12)

then

〈Dtvn, vn〉 → 〈Dtv, v〉 in L1(0, T ). (6.13)

Proof By the compactness hypothesis and by the classical Rellich compactness theorem,
vn → v in W σ/2,p(0, T ; H). Hence, possibly extracting a further subsequence, ‖vn‖2

H →‖v‖2
H in L1(0, T ). (For σ = 0 this would fail.) Therefore

〈Dtvn, vn〉 = 1
2 Dt‖vn(t)‖2

H → 1
2 Dt‖v(t)‖2

H = 〈Dtv, v〉 in D′(0, T ). (6.14)

On the other hand, by Lemma 6.2 the sequence {〈Dtvn, vn〉} is bounded in W σ,1(0, T );
(6.13) then follows. ��

7 Compactness and structural stability of periodic monotone flows

In the next two sections we use the results of Sects. 4, 5, 6 to study the compactness and the
structural stability of the variational formulation of flows of the form Dt u + α(u) � h, with
α maximal monotone. In this section we deal with periodic flow, and in the next one with the
initial-value problem.
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7.1 Operator compactness and structural stability

Let us first illustrate a fairly general framework. For a given problem, let us denote

by D the set of the admissible data (e.g., the source term of a P.D.E.),
by O the set of the admissible (either linear or nonlinear) operator(s),
by S the set of the admissible solutions of the problem.

Let us assume that each of these sets is equipped with a topology and that a (possibly multi-
valued) resolution operator R : D×O → S is defined.

We shall say that the class of admissible operators is (sequentially) compact if

any sequence {on} in O accumulates at some o ∈ O, (7.1)

and that the problem is structurally stable if the resolution operator R is (sequentially) closed,
namely, for any sequence {(dn, on, sn)} in D×O×S,

sn ∈ R(dn, on) ∀n, (dn, on, sn)→ (d, o, s) ⇒ s ∈ R(d, o). (7.2)

Certainly, it would also be desirable that

any element s ∈ R(D,O) may be retrieved as in (7.2). (7.3)

If so, no spurious solution might occur by passage to the limit, so that the set of the limits of
solutions would coincide with that of the solutions of the asymptotic problem. If (7.2) holds,
then the property (7.3) is trivially fulfilled whenever the limit problem has only one solution;
otherwise it looks harder to be proved.

7.2 Continuous dependence of solution

The property (7.2) concerns the stability of the solutions with respect to perturbations. This
extends the notion of well-posedness in the sense of Hadamard, by including variations of the
operators. For minimization problems, this similarly extends Tychonov’s generalized notion
of well-posedness, see e.g. [21].

The structural stability may be compared with the property of (sequential) continuous
dependence of the solution on operators and data. By this we mean that the resolution oper-
ator R is single-valued, and that for any sequence {(dn, on)} in D×O,

on → o, dn → d ⇒ sn := R(dn, on)→ R(d, o) =: s. (7.4)

If R is single-valued and maps bounded sets to (sequentially) compact sets, then it is clear that
the structural stability (7.2) entails the continuous dependence (7.4). The structural stability
somehow surrogates this continuous dependence when the uniqueness of the solution fails.

The structural stability and (in case of uniqueness of the solution) the continuous depen-
dence on operators and data look as natural requirements for the applicative soundness of a
model. The finite-dimensional approximability of infinite-dimensional operators looks also
related to these properties: this latter issue is of obvious relevance e.g. for numerical analysis.

7.3 Representable operators

The above program of compactness and structural stability may be applied as follows to
the class of representable operators acting on a reflexive and separable Banach space V . In
this case, the convergence of the operators may be replaced by the �-convergence of the
respective representative functions.
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For any n, let an operator αn ∈ R(V ) be represented by a function ϕn ∈ F(V ). If this
sequence of functions is equi-coercive in the sense of (4.4), and if τ is any of the topologies
π̃ , ws, sw∗, s, then by the compactness Theorem 4.4 ϕn topologically and sequentially �τ -
converges to some ϕ, up to extracting a subsequence. By Theorem 5.1, ϕ then represents an
operator α : V → P(V ′). This provides (7.1), i.e. the compactness of the class of operators.
Whenever v∗n ∈ αn(vn) for any n and (vn, v

∗
n) →τ (v, v∗), by (5.1) we then conclude that

v∗ ∈ α(v); (7.2) is thus established. If we regard v∗ as the datum and v as the solution, this
represents the structural stability of the problem.

In the above scheme the selection of the topology is of course crucial. If the data converge
strongly, i.e. v∗n → v∗ in V ′, then the sequence {v∗n} is bounded. If the inverse operators α−1

n
are equibounded, then the sequence {vn} is bounded, too; up to extracting a subsequence,
it then weakly converges to some v in V . Thus (vn, v

∗
n) → (v, v∗) in the ws-topology of

V×V ′. Next we illustrate some examples associated with evolutionary equations, in which
instead the topology π̃ arises naturally.

7.4 Abstract quasilinear parabolic operators

Let V and H be Hilbert spaces, with V separable and

V ⊂ H = H ′ ⊂ V ′ with continuous and dense injections. (7.5)

Let us assume that we are given a sequence {αn} of operators and one {hn} of functions, such
that

∀n, αn : V → P(V ′) is maximal monotone, (7.6)

∃a, b > 0 : ∀n,∀(v, v∗) ∈ graph(αn), 〈v∗, v〉 ≥ a‖v‖2
V − b, (7.7)

∃C1,C2 > 0 : ∀n,∀(v, v∗) ∈ graph(αn), ‖v∗‖V ′ ≤ C1‖v‖V + C2, (7.8)

∀n, hn ∈ L2(0, T ; V ′). (7.9)

For instance, let	 be a Lipschitz domain of RN (N ≥ 1). If { �γn} is a sequence of maximal
monotone mappings RN → P(RN ), one may take

V = H1
0 (	), H = L2(	), αn(v) = −∇· �γn(∇v) in D′(	). (7.10)

If N = 3, as in the Example 3.3 of Sect. 3, one may also deal with

V = {�v ∈ L2(	)3 : ∇×�v ∈ L2(	)3, �ν×�v = �0 in H−1/2(∂	)3
}
,

H = L2(	)3, −→α n(�v) = ∇ × �γn(∇×�v) in D′(	)3,∀�v ∈ V ; (7.11)

here by �νwe denote the outward-oriented unit normal vector-field on ∂	. If	 is also bounded,
then in (7.10) the inclusion V ⊂ H is compact, at variance with (7.11). However, in the next
section we shall see that a different selection of the pivot space provides the compactness.

We shall consider the structural stability of a time-periodic problem, since in this case
we can prove a result of compactness and structural stability without assuming compactness
of the injection V → H . On the other hand, in the next section addressing the initial-value
problem we shall be able to achieve analogous results only assuming the compactness of that
injection.

Let T ∈ ]0,+∞] (T = +∞ included), and set

X := L2(0, T ; V ) ∩ H1(0, T ; V ′),
H1
� (0, T ; V ′) := {

v ∈ H1(0, T ; V ′) : v(0) = v(T )},
X� := L2(0, T ; V ) ∩ H1

� (0, T ; V ′) (7.12)
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(here we set v(+∞) := limt→+∞ v(t)). Next we shall deal with the flow

un ∈ X�, Dt un + αn(un) � hn in V ′, a.e. in ]0, T [ (n ∈ N). (7.13)

Note that, after (3.17),

X� =
{
v ∈ X : v(0) = 0

}
if T = +∞. (7.14)

In this way the initial-value problem with vanishing Cauchy datum may be regarded as a
periodic problem with infinite period. The condition un(0) = 0 is not really restrictive, since
it may be retrieved by shifting the unknown function u. More specifically, in order to deal
with the initial condition un(0) = u0

n (a prescribed element of V ), it suffices to replace un

by ũn := un − u0
n , and αn by α̃n := αn(· + u0

n). This preserves the properties (7.6)–(7.8).
Next we review an existence and boundedness result.

Lemma 7.1 Let (7.5)–(7.9) be fulfilled and 0 < T ≤ +∞. Then:

(i) For any n, problem (7.13) has a solution. This is unique if either T = +∞ or αn is
strictly monotone. If moreover

sup
n∈N
‖hn‖L2(0,T ;V ′) < +∞, (7.15)

then the sequence {un} is bounded in X�.
(ii) For any n, if hn ∈ H1

� (0, T ; V ′) and

∃ã > 0 : ∀n,∀(v1, v
∗
1), (v2, v

∗
2) ∈ graph(αn),

〈v∗1 − v∗2 , v1 − v2〉 ≥ ã‖v1 − v2‖2
V , (7.16)

then un ∈ H1
� (0, T ; V ). If moreover

sup
n∈N
‖hn‖H1

� (0,T ;V ′) < +∞, (7.17)

then {un} is bounded in H1
� (0, T ; V ).

(iii) If moreover the sequence {αn : V → V ′} is equi-Lipschitz-continuous, i.e.,

∃L > 0 : ∀n,∀v1, v2 ∈ V, ‖αn(v1)− αn(v2)‖V ′ ≤ L‖v1 − v2‖V , (7.18)

then the sequence {un} is also bounded in H2(0, T ; V ′).

7.5 Outline of the proof

Part (i) stems from the classical theory, see e.g. [9]. Part (ii) may also be proved by applying
the time-incremental-ratio operator δh to the equation (7.13), and then multiplying it by δhun .
This yields a uniform estimate for un in W 1,∞(0, T ; H) ∩ H1(0, T ; V ). By (7.18) we have

‖δhαn(un)‖L2(0,T ;V ′) ≤ L‖δhun‖L2(0,T ;V ) ∀n ∈ N.

By comparing the terms of the equation (7.13), a uniform estimate for un in H2(0, T ; V ′)
then follows. ��
Remark (i) Parts (ii) and (iii) of the above lemma take over to fractional derivatives. More
specifically, for any s ∈ ]0, 1[, if (7.16) is fulfilled and the sequence {hn} is bounded in
Hs
� (0, T ; V ′), then {un} is bounded in Hs

� (0, T ; V ). If (7.18) is also fulfilled, then {un}
is bounded in H1+s(0, T ; V ′). The results of this section may easily be extended to these
fractional spaces, too.
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(ii) The assumptions of this lemma are consistent with a number of relevant problems.
But (7.16) excludes for instance the weak formulation of the classical Stefan problem, see
the Example 3.8 of Sect. 3. ��
7.6 Variational formulations

Next we provide two different variational formulations of the inclusion (7.13). Let us first
set V := L2(0, T ; V ) and define the duality pairings 〈·, ·〉 and 〈〈·, ·〉〉 as in Sect. 6. For any
n, let us denote by α̂n the operator V → P(V ′) that is canonically associated with the map-
ping αn as in (6.3). The pointwise-in-time problem (7.13) clearly entails the global-in-time
formulation

un ∈ X�, Dt un + α̂n(un) � hn in V ′. (7.19)

Three representable operators may be singled out from these two equation:

(i) the pointwise-in-time operator αn : V �→ P(V ′), see (7.13);
(ii) the global-in-time operator α̂n : V �→ P(V ′), see (7.19);

(iii) the global-in-time operator Dt + α̂n : X� �→ P(X ′�), see (7.19).

A variational representation is indeed associated with each of these operators; for the third
one, this stems from the extended B.E.N. principle, see Sect. 3. Here we shall just deal with
the first two formulations. Difficulties instead seem to arise in addressing (iii), since in this
case it is not clear how the equi-coerciveness property (4.4) might be established.

Let the sequence {αn} fulfill the conditions (7.5)–(7.8). This entails that

〈v∗, v〉 ≥ a‖v‖2
V − b ≥ aC−2

1 (‖v∗‖V ′ − C2)
2 − b ∀(v, v∗) ∈ V×V ′, v∗ ∈ αn(v), ∀n.

The sequence {π + Iαn } is then V×V ′-equi-coercive, in the sense of (6.1). The same then
applies to the sequence of the Svaiter functions {ψn := (π + Iαn )

∗∗}; thus

∀C ∈ R, sup
n∈N

{‖v‖V + ‖v∗‖V ′ : (v, v∗) ∈ V×V ′, ψn(v, v
∗) ≤ C

}
< +∞. (7.20)

By Proposition 6.1, each α̂n is then represented by the time-integrated functional�n ∈ F(V):

�n(v, v
∗) :=

T∫

0

ψn(v(t), v
∗(t)) dt ∀(v, v∗) ∈ V×V ′, ∀n, (7.21)

and this is V×V ′-equi-coercive, in the sense that

∀C ∈ R, sup
n∈N

{‖v‖V + ‖v∗‖V ′ : (v, v∗) ∈ V×V ′, �n(v, v
∗) ≤ C

}
< +∞. (7.22)

Remark The assumptions (7.5)–(7.8) do not entail the V × V ′-equi-coerciveness of the
sequence of Fitzpatrick functions { fαn := (π + Iαn )

∗}. A trivial counterexample is pro-
vided by the identity mapping for V , which is associated with the Svaiter function

s(x, y) =
{ ‖x‖2

V if x = y
+∞ if x �= y

∀(x, y) ∈ V 2. (7.23)

This corresponds to the Fitzpatrick function

f (x, y) = s∗(x, y) = 1
4‖x + y‖2

V ∀(x, y) ∈ V 2, (7.24)

which indeed is not coercive. ��
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Because of the time-periodicity, Dt : X� → V ′ is skew-adjoint:

〈〈Dtw, v〉〉 =
T∫

0

〈Dtw, v〉 dt = −
T∫

0

〈w, Dtv〉 dt = −〈〈w, Dtv〉〉 ∀w, v ∈ X�

(this applies for any positive T ≤ +∞). Thus

〈〈Dtv, v〉〉 = 0 ∀v ∈ X�, (7.25)

and we get the next statement.

Proposition 7.2 For any n, the problems (7.13) and (7.19) are respectively equivalent to

un ∈ X�, ψn(un, hn − Dt un) ≤ 〈un, hn − Dt un〉 a.e. in ]0, T [, (7.26)

un ∈ X�, �n(un, hn − Dt un) ≤ 〈〈un, hn〉〉. (7.27)

Each of these inequalities is tantamount to the corresponding equality. In particular, (7.27)
is equivalent to the null-minimization (i.e., �n(un) = inf �n = 0) of the functional

�n : X� → R ∪ {+∞} : v �→ �n(v, hn − Dtv)− 〈〈v, hn〉〉. (7.28)

7.7 (i) Global formulation

We shall deal with the dependence of the solution of problem (7.19) on the source term hn

and on the operator αn , assuming that

hn → h in V ′. (7.29)

We shall express the compactness of the operators αns indirectly, via the compactness of a
sequence of associated representative functionals.

Lemma 7.3 (Compactness of {�n}) Let a sequence {αn} of operators fulfill (7.5)–(7.9) (for
any positive T ≤ +∞). For any n, let us define the Svaiter functions ψn := (π + Iαn )

∗∗
(∈ F(V )) and �n (∈ F(V)) as in (7.21). Then there exist ψ ∈ F(V ) and � ∈ F(V) such
that, up to extracting subsequences,

ψn →� ψ sequentially w.r.t. the topology π̃ of V×V ′, (7.30)

�n →� � sequentially w.r.t. the topology π̃ of V×V ′. (7.31)

Proof By Theorem 4.4, there exist ψ and � that fulfill (7.30) and (7.31), up to extracting
subsequences. By Theorem 5.1, ψ ∈ F(V ) and � ∈ F(V). ��
Remark In spite of (7.21), the function � need not be the definite integral of ψ . We shall
see a counterexample in the next section. ��
Theorem 7.4 (Structural Stability of (7.19)) For any n, let (7.5)–(7.9) be fulfilled, and (for
any positive T ≤ +∞) un be a solution of problem (7.13) [which exists by Lemma 7.1],
hence also of problem (7.9). Let {�n} and� be as in Lemma 7.3, and α̂ : V → P(V ′) be the
operator that is represented by �.

If (7.29) is fulfilled, then there exists u ∈ X� such that, possibly extracting a subsequence,

un ⇀ u in X�, (7.32)

u ∈ X�, Dt u + α̂(u) � h in V ′. (7.33)
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If the sequence {ψn} is equi-strongly-monotone in the sense of (5.5), then the solutions of
(7.19) and of (7.33) are unique, and (7.32) holds for the whole sequence.

Proof By part (i) of Lemma 7.1, the sequence {un} is bounded in X�. Hence there exists
u ∈ X� such that, up to extracting a subsequence, (7.32) holds. By (7.25) and (7.29),

〈〈un, hn − Dt un〉〉 = 〈〈un, hn〉〉 → 〈〈u, h〉〉 = 〈〈u, h − Dt u〉〉.
Hence

(un, hn − Dt un) →̃π (u, h − Dt u) in V×V ′. (7.34)

(In passing notice that this sequence need not converge with respect to the topologies ws or
sw.) Therefore

�(u, h − Dt u)
(7.31),(7.34)≤ lim inf

n→∞ �n(un, hn − Dt un)

(7.27)≤ lim inf
n→∞ 〈〈un, hn − Dt un〉〉 (7.34)= 〈〈u, h − Dt u〉〉. (7.35)

As � represents the operator α̂, (7.33) is thus established.
If (5.5) is also fulfilled, then by Proposition 5.3 the functional � is strictly convex with

respect to its first argument. The null-minimizer of the asymptotic functional v �→ �(v, h−
Dtv)− 〈〈v, h − Dtv〉〉 is then unique, and (7.32) holds for the whole sequence. ��
7.8 (ii) Pointwise formulation

The next statement rests upon the compactness of the canonic injection V → H , and the
assumptions (7.16) of equi-coerciveness and (7.18) of equi-Lipschitz-continuity.

Theorem 7.5 (Structural Stability of (7.13)) For any n, let (7.5)–(7.9), (7.16)–(7.18) be
fulfilled, and un be the solution of problem (7.13) [which exists and is unique by Lemma 7.1].

Then there exists u ∈ H1
� (0, T ; V ) such that, possibly extracting a subsequence,

un ⇀ u in H1
� (0, T ; V ) ∩ H2(0, T ; V ′). (7.36)

Let ψ be as in Lemma 7.3, and α : V → P(V ′) be the operator that is represented by ψ .
If

the canonic injection V → H is compact, (7.37)

hn → h in V ′, (7.38)

then

Dt u + α(u) � h in V ′, a.e. in ]0, T [. (7.39)

If (5.5) is also fulfilled, then the solutions of (7.19) and of (7.39) are unique in the space
H1
� (0, T ; V ), and (7.36) holds for the whole sequence.

Proof By Lemma 7.1, the sequence {un} is bounded in H1
� (0, T ; V )∩ H2(0, T ; V ′). Hence

there exists an element u of this space such that (7.36) holds up to extracting a subsequence.
By Lemma 6.4, (7.36) and (7.37),

〈un, Dt un〉 → 〈u, Dt u〉 in L1
loc(0, T ). (7.40)

123



Structural stability

By (7.38) then, up to extracting a further subsequence, 〈un, hn− Dt un〉 → 〈u, h− Dt u〉 a.e.
in ]0, T [. Thus

(un, hn − Dt un) →̃π (u, h − Dt u) in V×V ′, a.e. in ]0, T [. (7.41)

Therefore

ψ(u, h − Dt u)
(7.30),(7.41)≤ lim infn→∞ ψn(un, hn − Dt un)

(7.26)≤ lim infn→∞ 〈un, hn − Dt un〉 (7.41)= 〈u, h − Dt u〉 a.e. in ]0, T [. (7.42)

(7.39) is thus established.
If (5.5) is also fulfilled, then by Proposition 5.3 the functional ψ is strictly convex with

respect to its first argument. The null-minimizer of the asymptotic functional

V → R ∪ {+∞} : v �→ ψ(v, h − Dtv)− 〈v, h − Dtv〉
is then unique a.e. in ]0, T [, and (7.36) holds for the whole sequence. ��

8 Compactness and structural stability of initial-value monotone flows

In this section we study the compactness and the structural stability of the initial-value prob-
lem for flows of the form Dt u + α(u) � h on a bounded time interval ]0, T [.

We shall still assume that u0 ≡ 0. Let us first define the space

X0 :=
{
v ∈ L2(0, T ; V ) ∩ H1(0, T ; V ′) : v(0) = 0

}
, (8.1)

and formulate the initial-value problem

un ∈ X0, Dt un + αn(un) � hn inV ′, a.e. in ]0, T [. (8.2)

Next we assess the existence and boundedness of the solution of this problem, amending
Lemma 7.1.

Lemma 8.1 Let (7.5)–(7.9) be fulfilled. Then:

(i) For any n, problem (8.2) has one and only one solution. If moreover the sequence {hn}
is bounded in L2(0, T ; V ′), then {un} is bounded in X0.

(ii) If the condition (7.16) of equi-strict-monotonicity holds, the sequence {hn} is bounded
in H1(0, T ; V ′), and

∀n, ∃wn ∈ H : wn ∈ hn(0)− αn(0), sup ‖wn‖H < +∞, (8.3)

then {un} is also bounded in W 1,∞(0, T ; H) ∩ H1(0, T ; V ).
(iii) If the condition (7.18) of equi-Lipschitz-continuity is also fulfilled, then the sequence

{un} is also bounded in H2(0, T ; V ′).

We omit this standard argument, that may be found e.g. in [9], and just point out that the
condition (8.3) provides the boundedness of {Dt un(0)} in H .

For any n, let the operator αn be represented by ψn ∈ F(V ). The initial-value problem
(8.2) is thus equivalent to

un ∈ X0, ψn(un, hn−Dt un) ≤ 〈un, hn−Dt un〉 a.e. in ]0, T [. (8.4)
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8.1 (i) Global Formulation

Here it is in order to modify the functional framework. Let us set

H̃ :=
{
v : ]0, T [→ H measurable:

T∫

0
(T − t)‖v(t)‖2

H dt < +∞
}
,

W :=
{
v ∈ H̃ :

T∫

0
(T − t)‖v(t)‖2

V dt < +∞
}
, (8.5)

which are Hilbert spaces equipped with the respective graph norms. Identifying H̃ with its
dual space, we get the Hilbert triplet

W ⊂ H̃ = H̃′ ⊂W ′, with continuous and dense injections. (8.6)

For any n, let us define

Jn(v, v
∗) :=

T∫

0

(T − t)ψn(v(t), v
∗(t)) dt ∀(v, v∗) ∈W×W ′; (8.7)

this is a representative function in W , that is Jn ∈ F(W); in particular,

Jn(v, v
∗) ≥

T∫

0

(T − t)〈v(t), v∗(t)〉 dt ∀(v, v∗) ∈W×W ′,

as the latter integral coincides with the duality pairing in W×W ′. The function Jn indeed
represents an operator α̃n :W → P(W ′), that is defined by the condition

v∗ ∈ α̃n(v) ⇔ Jn(v, v
∗) =

T∫

0

(T − t)〈v(t), v∗(t)〉 dt. (8.8)

By double time integration, for any n the problem (8.4) entails the global-in-time formulation

un ∈ X0, Jn(un, hn−Dt un) ≤
T∫

0

(T − t)〈un, hn−Dt un〉 dt, (8.9)

that is,

u ∈ X0, Dt un + α̃n(un) � h in W ′. (8.10)

Theorem 8.2 (Structural Stability of (8.10)) Let (7.5)–(7.9) be fulfilled, the sequence {hn}
be bounded in L2(0, T ; V ′), and for any n un be the solution of problem (8.2) [which exists
and is unique by Lemma 8.1].

Then there exists u ∈ X0 such that, possibly extracting a subsequence,

un ⇀ u in X0. (8.11)

Moreover, there exists J ∈ F(W) such that

Jn →� J sequentially w.r.t. the topology π̃ of W×W ′. (8.12)
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If

the canonic injection V → H is compact, (8.13)

hn → h in W ′, (8.14)

then, denoting by α̃ :W → P(W ′) the operator that is represented by J ,

u ∈ X0, Dt u + α̃(u) � h in W ′. (8.15)

If the sequence {ψn} is equi-strongly-monotone in the sense of (5.5), then the solutions of
(8.9) and (8.15) are unique, and (8.11) holds for the whole sequence.

Proof By Lemma 8.2, the sequence {un} is bounded in X0. Hence there exists u ∈ X0 such
that, up to extracting a subsequence, (8.11) holds.

By (8.13) the injection X0 → L2(0, T ; H) is compact. By (8.11) then

T∫

0

(T − t)〈Dt un, un〉 dt = 1

2

T∫

0

‖un(t)‖2
H dt

→ 1
2

T∫

0

‖u(t)‖2
H dt =

T∫

0

(T − t)〈Dt u, u〉 dt. (8.16)

By (8.14), we then have

(hn − Dt un, un) →̃π (h − Dt u, u) in W×W ′. (8.17)

As in Lemma 7.3, it is readily seen that there exists J ∈ F(W) as in (8.12). Therefore

J (u, h − Dt u)
(8.12),(8.17)≤ lim inf

n→∞ Jn(un, hn − Dt un)

(8.9)≤ lim inf
n→∞

T∫

0

(T − t)〈un, hn − Dt un〉 dt

(8.17)=
T∫

0

(T − t)〈u, h − Dt u〉 dt a.e. in ]0, T [. (8.18)

(8.15) is thus established.
If (5.5) is also fulfilled, then by Proposition 5.3 the functional J is strictly convex with

respect to its first argument. The null-minimizer of the asymptotic functional

v �→ J (v, h − Dtv)−
T∫

0

(T − t)〈v, h − Dtv〉 dt

is then unique, and (8.11) holds for the whole sequence. ��
8.2 (ii) Pointwise formulation

Next we deal with the problem (8.2), which is tantamount to (8.4).
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Theorem 8.3 (Structural Stability of (8.2)) Let (7.5)–(7.9) and (7.16), (7.18) and (8.3) be
fulfilled, the sequence {hn} be bounded in H1(0, T ; V ′), and for any n let un be the solution
of problem (8.2) [which exists and is unique by Lemma 8.1].

Then there exists u ∈ X0 ∩ H1(0, T ; V ) ∩ H2(0, T ; V ′) such that, possibly extracting a
subsequence,

un ⇀ u in H1(0, T ; V ) ∩ H2(0, T ; V ′). (8.19)

Moreover, there exists ψ ∈ F(V ) such that

ψn →� ψ sequentially w.r.t. the topology π̃ of V×V ′. (8.20)

Let α : V → P(V ′) be the operator that is represented by ψ . If (8.13) and (8.14) are
fulfilled, then u is the unique solution of the problem

u ∈ X0, Dt u + α(u) � h in V ′, a.e. in ]0, T [, (8.21)

and (8.19) holds for the whole sequence.

Proof By part (ii) of Lemma 8.2, the sequence {un} is bounded in X0 ∩ H1(0, T ; V ) ∩
H2(0, T ; V ′). Hence there exists u in this space such that, up to extracting a subsequence,
(8.19) holds. By (8.13) and Lemma 6.4, then 〈Dt un, un〉→ 〈Dt u, u〉 in L1(0, T ). By (8.14),
possibly extracting a further subsequence, we thus have

〈hn − Dt un, un〉 → 〈h − Dt u, u〉 a.e. in ]0, T [, (8.22)

hence

(hn − Dt un, un) →̃π (〈h − Dt u, u) in V×V ′, a.e. in ]0, T [. (8.23)

By Lemma 7.3, there exists ψ ∈ F(V ) such that (8.20) holds. Therefore

ψ(u, h − Dt u)
(8.20),(8.23)≤ lim inf

n→∞ ψn(un, hn − Dt un)

(8.4)≤ lim inf
n→∞ 〈un, hn − Dt un〉

(8.23)≤ 〈u, h − Dt u〉 a.e. in ]0, T [. (8.24)

As the function ψ represents the operator α, (8.21) is thus established.
By the monotonicity of α, the solution of this problem is unique, and (8.19) thus holds

for the whole sequence. ��
8.3 Two degenerate operators

Theorem 7.4 holds for both the elliptic operator (7.10) and the degenerate elliptic operator
(7.11). On the other hand, Theorems 7.5, 8.2 and 8.3 apparently only apply to (7.10), because
the canonic injection V → H is compact just in this case (provided that the domain 	 is
bounded and, e.g., of Lipschitz class).

The formulation (7.11) may however be amended as follows. Let us first define the Hilbert
spaces

H̃ := {�v ∈ L2(	)3 : ∇ ·�v = 0 in D′(	)}, Ṽ := H̃ ∩ H1
0 (	)

3. (8.25)

It is known that H̃ = ∇×H1(	)3, under suitable restrictions on the domain 	; this holds
e.g. if	 is homeomorphic to a convex set. Identifying H̃ with its dual H̃ ′, we get the Hilbert
triplet

Ṽ ⊂ H̃ = H̃ ′ ⊂ Ṽ ′ with continuous and dense injections. (8.26)
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In this framework the injection Ṽ → H̃ is compact, and we may replace (7.11) by

−̃→α n : Ṽ → Ṽ ′ : �v �→ ∇ × �γn(∇×�v). (8.27)

We may thus apply Theorems 7.5, 8.2 and 8.3 to this operator, too.
The Stefan operator (3.24) is also degenerate, see the Example 3.8 of Sect. 3. Theorem 7.4

and 8.2 may be applied to the weak formulation of the Stefan problem. On the other hand, this
operator does not fulfill (7.16), and this excludes the application of Theorems 7.5 and 8.3.

8.4 Gradient flows

For any n, letϕ : V → R∪{+∞} be a proper, convex and lower semicontinuous function(al),
let 2 ≤ p <∞, p′ = p/(p − 1), hn ∈ L p′(0, T ; V ′), and u0

n ∈ H . The Cauchy problem
{

Dt un + ∂ϕn(un) � hn,

un(0) = u0
n

(8.28)

may also be set pointwise in time as
{

un ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′), un(0) = u0
n,

ϕn(un)+ 〈Dt un − hn, un〉 ≤ ϕn(v)+ 〈Dt un − hn, v〉 ∀v ∈ V, for a.e. t ∈ ]0, T [.
(8.29)

Setting �n :=
∫ T

0 ϕn(·) dt for any n, the problem (8.28) may also be reformulated globally
in time as

⎧
⎪⎨

⎪⎩

un ∈ L p(0, T ; V ) ∩W 1,p′(0, T ; V ′), un(0) = u0
n,

�n(un)+ 1
2‖un(T )‖2

H − 1
2‖un(0)‖2

H −
∫ T

0 (T − t)〈un, hn〉 dt

≤ �n(v)+
∫ T

0 (T − t)〈v, hn + Dt un〉 dt ∀v ∈ L p(0, T ; V ).

(8.30)

Compactness and structural stability of these problems may be addressed without using
the Fitzpatrick theory, as here we just outline. Let us assume that the sequence {ϕn} is equi-
coercive on V , in the sense that

∀C ∈ R, sup
n∈N

{‖v‖V : v ∈ V, ϕn(v) ≤ C
}
< +∞; (8.31)

the sequence {�n} is then also equi-coercive on L p(0, T ; V ), i.e.,

∀C ∈ R, sup
n∈N

{‖v‖L p(0,T ;V ) : v ∈ L p(0, T ; V ),�n(v) ≤ C
}
< +∞. (8.32)

By Corollary 8.12 of p. 95 of [18], ϕn (�n , resp.) then weakly �-converges to some
function ϕ : V → R ∪ {+∞} (� : L p(0, T ; V ) → R ∪ {+∞}, resp.), up to extracting
a subsequence. The functions ϕ and � are both convex and lower semicontinuous; under
natural restrictions on {ϕn} they are also proper (i.e., �≡ +∞). In the next section we shall
see that in general however � �= ∫ T

0 ϕ(·) dt .
The structural stability of the global-in-time formulation (8.30) may be established as

follows, assuming that p = 2 for consistency with the above developments. By part (i)
of Lemma 7.1, under natural hypotheses on the data the sequence {un} is bounded in
L2(0, T ; V ) ∩ H1(0, T ; V ′). There exists then u such that un ⇀ u in this space, up to
extracting a subsequence. By an obvious identification,

L2(0, T ; V ) ∩ H1(0, T ; V ′) ⊂ C0
w([0, T ]; H)
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(the space of weakly continuous functions [0, T ] → H ). Therefore un(T ) ⇀ u(T ) in H ,
whence lim infn→∞ ‖un(T )‖2

H ≥ ‖u(T )‖2
H . The form of the global-in-time problem (8.30)

is then preserved in the limit.
An analogous conclusion may be attained for the local-in-time formulation (8.29). Under

further regularity assumptions on the data, by part (iii) of Lemma 7.1 the sequence {un} is
also bounded in H1(0, T ; V ) ∩ H2(0, T ; V ′); hence un ⇀ u in this space, up to extracting
a subsequence. If the injection V → H is compact, by Lemma 6.4 〈Dt un, un〉 → 〈Dt u, u〉
in L1(0, T ). The form of the local-in-time problem (8.29) is then preserved in the limit, too.

There is an obvious analogy between the statements and the arguments of Theo-
rems 7.4, 8.2 and 8.3, and these properties of compactness and structural stability for gradient
flows. One might wonder whether doubling the variables and using representative func-
tions might here provide more precise results. For instance, one may represent the operator
αn = ∂ϕn by the Fenchel function ϕn +ϕ∗n . But in the case of gradient flows this author does
not see any significative advantage in using the Fitzpatrick approach.

9 Long memory and examples

In this section we discuss the possible onset of long memory in the limit for flows of the form
Dt u + α(u) � h, and briefly revisit the examples of Sect. 3.

9.1 Onset of long memory

The global-in-time formulation (7.33) is weaker than the pointwise-in-time problem (7.39),
because at any instant t a priori [̂α(u)](·, t) (∈ V ′) might depend not only on u(·, t) but
also on u|	×]0,T [. This corresponds to the possible onset of long memory through the limit
procedure. In the case of the initial-value problem of Sect. 8, this also raises the issue of the
causality of the operator α̂.

Next we review a simple example that was pointed out by Tartar; see [39,40], Chap. 23
of [41] and references therein. Let us select a bounded sequence {an} of L∞(	), with 	 a
bounded Lipschitz domain of RN . For any n, the short-memory equation

Dt un + an(x)un = 0 in 	×]0, T [ (9.1)

may be interpreted in two different ways: either as an ordinary differential equation param-
eterized by x ∈ 	, or (nonequivalently) as an equation in a space of functions 	 → R.
Assuming the second point of view, the Eq. (9.1) is associated with the linear semigroup

Sn(t) : L p(	)→ L p(	) : v(x) �→ exp{−an(x)t} v(x) ∀p ∈ ]1,+∞[,∀n. (9.2)

If the sequence an converges in L1(	) strongly, the semigroup Sn converges to a semi-
group. In this case the exponential form is preserved in the limit, and with it the first-order
form of the equation Eq. (9.1). If instead an converges in L1(	) just weakly, then the expo-
nential form is necessarily lost in the limit, and a long memory effect occurs. The precise
form of the limit equation may be found in, Chap. 23 of [41]. For the equation (9.1) indeed
there is no way to pass to the limit in the product anun , since both sequences converge weakly
(and there is no property of compensated compactness).

For p = 2, this fits the setup of Sects. 7 and 8 for V = H = L2(	). For any n, the positive
linear operator

αn : L2(	)→ L2(	) : v �→ an(x)v (9.3)
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is variationally represented e.g. by the Fenchel function fαn or by the Svaiter function sαn :

fαn (u, v) = 1
2

∫
	

[
an(x) u(x)2 + an(x)−1 v(x)2

]
dx, (9.4)

sαn (u, v) := (Iαn + π)∗∗(u, v) =
{ ∫

	
an(x) u(x)2 dx if v = anu a.e. in 	

+∞ otherwise,
(9.5)

for any u, v ∈ L2(	). Both sequences are V×V ′-equi-coercive, at variance with the sequence
of the Fitzpatrick functions of the form (7.24). Theorem 7.4 thus applies. On the other hand,
here Theorems 7.5, 8.2 and 8.3 do not apply, because the canonic injection V → H is not
compact.

9.2 No onset of long memory

Next we display a linear equation in which no long memory arises in the limit. Let us select
a bounded sequence {an} of L∞(	) with the ans equi-bounded from below by a positive
constant, and for any n consider the linear equation

Dt un − ∇·[an(x)∇un] = 0 in D′(	), a.e. in ]0, T [. (9.6)

The positive linear operator

α̃n : H1
0 (	)→ H−1(	) : v �→ −∇·[an(x)∇v] (9.7)

may be variationally represented e.g. by the Fenchel and Svaiter functions:

fα̃n (u, v
∗) = inf

{
1
2

∫
	

an(x)
(|∇u(x)|2 dx + |∇η(x)|2) dx :

η ∈ H1
0 (	),−∇·[an(x)∇η] = v∗ in D′(	)

}
, (9.8)

sα̃n (u, v
∗) := (Iα̃n + π)∗∗(u, v∗)
=

{ ∫
	

an(x) |∇u(x)|2 dx if v∗ = −∇·[an(x)∇u] in D′(	)
+∞ otherwise,

(9.9)

for any (u, v∗) ∈ H1
0 (	)× H−1(	). Both sequences are H1

0 (	)× H−1(	)-equi-coercive.
In this case the canonic injection V = H1

0 (	)→ H = L2(	) is compact (provided that 	
is regular enough). Theorems 7.5 and 8.3 may thus be applied, and this excludes the onset of
long memory in the limit. On the other hand, it is indeed possible to pass to the limit in the
Eq. (9.6), via Murat and Tartar’s compensated compactness.

The same conclusion is easily attained if the scalars an(x) are replaced by (possibly
asymmetric) matrices An(x), under standard restrictions.

9.3 Discussion

Tartar’s example (9.1) provides a basis for discussing the application of the results of Sects. 7
and 8.

(i) Let us consider the global-in-time formulation of the periodic problem (7.19), and
define ψn, �n, ψ,� as in (7.21), (7.30), (7.31).

As Tartar’s example (9.1) fits the assumptions of Theorem 7.4, we claim that

the hypotheses of Theorem 7.4 �⇒ � =
T∫

0

ψ(·) dt. (9.10)
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Indeed otherwise the pointwise-in-time formulation would also be preserved in the limit, and
this would exclude the onset of long memory.

(ii) It is not obvious that an analogous conclusion holds for the global-in-time formula-
tion of the initial-value problem (8.2). Theorem 8.2 indeed assumes the compactness of the
injection V → H , and this hypothesis fails in (9.1).

This rather looks as a weakness of the present theory, since there is no apparent reason
why replacing the time-periodicity by the initial condition should make a difference as for
the onset of long memory. A result of compactness and structural stability for this global-in-
time problem without that compactness hypothesis is obtained in [49], via a quite different
approach.

(iii) For any n, the solution of the pointwise-in-time problem (7.13) solves the corre-
sponding global-in-time periodic problem (7.19). By Theorem 7.4 we know that under the
hypothesis (5.5) the asymptotic global-in-time formulation has a unique solution. Under the
stronger hypotheses of Theorem 7.5 (in particular, the compactness of the injection V → H
and enhanced regularity of the data), we then infer that the two asymptotic problems (7.33)
and (7.39) are also mutually equivalent. It follows that

the hypotheses of Theorem 7.5 ⇒ � =
T∫

0

ψ(·) dt. (9.11)

An analogous conclusion may be attained for the initial-value problems (8.15) and (8.21).
(iv) With reference to the discussion of the asymptotic behavior of the gradient flow

(8.28), let us set ϕn(v) = 1
2

∫
	

an(x)v(x)2 dx for any v ∈ L2(	), and denote by ϕ and �
the respective �-limit of the sequences {ϕn} and {�n} in the weak L2-topology.

As Tartar’s example also fits this setup, one may conclude that

for the example (9.1), � �=
T∫

0

ϕ(·) dt. (9.12)

9.4 About the examples of Sect. 3

The selection of the topology is crucial in the analysis of compactness and structural stability
of monotone equations. Let us distinguish two classes of monotone equations:

(i) Equations of the form

α(u) � h with a single operator α ∈M(V ); (9.13)

see e.g. the Examples 3.2– 3.5, 3.9– 3.12 of Sect. 3. If α is represented by a function fα , then
this inclusion is equivalent to fα(u, h) = 〈h, u〉. Here compactness and structural stability
may be studied by using either of the topologies π̃ or ws.

(ii) Equations of the form

α(u)+�u � h

with α ∈M(V ) and � : V → V ′ linear, bounded and positive; (9.14)

see e.g. the Examples 3.6, 3.7, 3.8, 3.13 of Sect. 3. On the basis of the extended B.E.N.
principle of Sect. 3, the operator α +� may be represented by the function

fα+�(u, h) = fα(u, h −�u)+ 〈�u, u〉 ∀(u, h) ∈ V×V ′. (9.15)
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If the operator � is compact, then compactness and structural stability of (9.14) may be
studied by using either of the topologies π̃ or ws, along the lines of Sects. 7 and 8.

Under further regularity hypotheses, the �-compactness with respect to the topology s
may also be used; this excludes the onset of long memory.

9.5 Further monotone flows

The analysis of Sect. 7 may be extended to several other monotone equations. For instance,
by the extended B.E.N. principle, if α : V → P(V ′) is maximal monotone, L : H → H is
positive and self-adjoint and a > 0, then the integro-differential inclusion

L

t∫

0

u(τ ) dτ + aDt u + α(u) � h in V ′, a.e. in ]0, T [ (9.16)

may be reformulated as the null-minimization of the functional

F(v, h) :=
T∫

0

[
fα

(
v, h −L

t∫

0

v(τ) dτ − aDtv
)
− 〈h, v〉

]
dt

+1

2

∥
∥
∥L1/2

T∫

0

v(τ) dτ
∥
∥
∥

2

H
+ a

2
‖v(T )‖2

H −
a

2
‖v(0)‖2

H

∀v ∈ X�,∀h ∈ L2(0, T ; V ′). (9.17)

Of course (9.16) might also be written either as a second-order differential inclusion for
the function w(t) := ∫ t

0 u(τ ) dτ , or as a first-order system for the pair (u, w).
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