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Abstract We present some meeting points between two function theories, the Fueter
theory of regular functions and the recent theory of quaternionic slice regular func-
tions, which includes polynomials and power series with quaternionic coefficients.
We show that every slice regular function coincides up to the first order with a
unique regular function on the three-dimensional subset of reduced quaternions. We
also characterize the regular functions so obtained. These relations have a higher
dimensional counterpart between the theory of monogenic functions on Clifford al-
gebras and the one of slice regular functions of a Clifford variable. We define a first
order differential operator which extends the Dirac and Weyl operators to functions
that can depend on all the coordinates of the algebra. The operator behaves well both
w.r.t. monogenic functions and w.r.t. the powers of the (complete) Clifford variable.
This last property relates the operator with the recent theory of slice monogenic and
slice regular functions of a Clifford variable.

1 Introduction

The aim of this work is to illustrate some unexpected links between two function
theories, one of which is well developed and dates back to the 1930’s, while the
other has been introduced recently but has seen rapid growth. The first is the Fueter
theory of regular functions defined by means of the Cauchy-Riemann-Fueter dif-
ferential operator, while the second is the theory of quaternionic slice regular func-
tions, which comprises polynomials and power series with quaternionic coefficients
on one side. These links have a higher dimensional counterpart between the the-
ory of monogenic functions on Clifford algebras, defined in terms of the Dirac and
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Cauchy-Riemann operators, and the one of slice regular functions of a Clifford vari-
able.

In order to obtain the promised relations between the two quaternionic function
theories, we use a modified Cauchy-Riemann-Fueter operator D, defined as:

D=
1
2

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3

)
,

where x0,x1,x2,x3 are the real coordinates of an element q = x0 + ix1 + jx2 + kx3
of the quaternionic space H w.r.t. the basic elements i, j,k. We refer e.g. to [31,
16] and [21] for some properties of this and other related differential operators on
H. The choice of D is justified by the fact that it behaves better than the standard
Cauchy-Riemann-Fueter operator w.r.t. the powers of the quaternionic variable q.
Moreover, the theory of functions defined by D has interesting relations with classes
of holomorphic maps of two complex variables (see Sect. 2.1.1 for more details).

In general, the product of two Fueter regular functions is not Fueter regular. The
same holds for functions in the kernel of D. In particular, even if the identity func-
tion is regular, i.e. D(q) = 0, the higher powers of q are not regular. Nevertheless,
we are able to prove that for every positive power m, D(qm) vanishes on the three-
dimensional subset H3 = 〈1, i, j〉 of reduced quaternions. This property extends to
polynomials and convergent power series of the form ∑m qmam and more generally
to slice regular functions.

The concept of slice regularity for functions of one quaternionic, octonionic or
Clifford variable has been introduced recently by Gentili and Struppa in [7, 8] and
by Colombo, Sabadini and Struppa in [4] and further extended to real alternative
∗-algebras in [9, 10].

An application of the Cauchy-Kowalevski Theorem to the operator D assures
that the restriction of any slice regular function to H3 has a unique regular (i.e. in
the kernel of D) extension to an open set. This extension gives an embedding of the
space of slice regular functions into the space of regular functions.

The characterization of the image of this embedding is given by means of holo-
morphicity of the differentials w.r.t. the complex structures defined by left multipli-
cation by imaginary reduced quaternions. It is based on a criterion for holomorphic-
ity in the class of regular functions, which was proved in [22, 23] using the concept
of the energy quadric of a function. The energy quadric is a positive semi-definite
quadric, constructed by means of the Lichnerowicz homotopy invariants.

The second part of the paper is dedicated to the higher dimensional situation. We
study some basic properties of a first order differential operator on the real Clifford
algebra Rn of signature (0,n) which generalizes the Weyl operator used in the the-
ory of monogenic functions (for which we refer to [1], [3], [12]). While monogenic
functions are usually defined on open subsets of the paravector space, the operator
we consider acts on functions that can depend on all the coordinates of the alge-
bra. This is similar to what happens in the quaternionic space H ' R2, where the
Cauchy-Riemann-Fueter operator acts on the whole space, not only on the reduced
quaternions H3. Our starting point is the modified Cauchy-Riemann-Fueter operator



Fueter regularity and slice regularity: meeting points for two function theories 3

D. When written in the notation of the Clifford algebra R2, D becomes the operator

D2 =
1
2

(
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
− e12

∂

∂x12

)
.

If D1 =
1
2

(
∂

∂x0
+ e1

∂

∂x1

)
and D1,2 =

1
2

(
∂

∂x2
+ e1

∂

∂x12

)
are the one-variable Cauchy–

Riemann operators w.r.t. the complex variables z1 = x0 +e1x1, z2 = x2 +e1x12, then
D2 =D1 +e2D1,2. This observation suggests a recursive definition of a differential
operator Dn on Rn. Even if this definition of Dn is not symmetric w.r.t. the basis
vectors, the operator we obtain is symmetric, and has the following explicit form:

Dn =
1
2 ∑

K
e∗K

∂

∂xK

where e∗K = (−1)
k(k−1)

2 eK is obtained by applying to a basis element eK the reversion
anti-involution.

When restricted to functions of a paravector variable, Dn is equal (up to a factor
1/2) to the Weyl (cf. e.g. [3, §4.2]), or Cauchy-Riemann (as in [12, §5.3]) operator
of Rn. Therefore every Rn-valued monogenic function defined on an open domain
of the paravector subspace Rn+1 of Rn is in the kernel of Dn. Moreover, the identity
function x of Rn is in the kernel of Dn, while its restriction to the paravector variable
is not monogenic. The operator Dn behaves well also w.r.t. powers of the (complete)
Clifford variable x. We show that every power xm is in the kernel of Dn when n is
odd. For even n, the same property holds on the so-called quadratic cone of the
algebra (cf. [9, 10]). These properties link the operators Dn to the recent theory of
slice monogenic [4] and slice regular functions on Rn [9, 10].

Operators similar to Dn have already been considered in the literature (e.g. in
[28], [14] and [29]). However, it seems that the operators Dn are particularly well
adapted to the theory of polynomials ∑m xmam or more generally of slice regular
functions on a Clifford algebra.

On the negative side, the operator Dn is not elliptic for n > 2 and its kernel is
very large if we do not restrict the domains where functions are defined. In the last
section, we focus on the case n = 3 and show a more strict relation of D3 with the
Weyl operator. This suggests to consider a proper subspace of the kernel of D3,
where the condition of Cliffordian holomorphicity [17] has a role. We get in this
way the real analyticity in R3 and an integral representation formula on domains of
polydisc type.

Some of the results of the present work have been presented in [26].

2 Fueter regularity and slice regularity

We begin recalling some results of the Fueter theory of regular functions. We then
introduce some definitions of the recent theory of quaternionic slice regular func-
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tions. Our approach uses a modification of the Fueter construction based on stem
functions. We then present some meeting points between the two function theories.
We show that every slice regular function coincides, up to the first order, with a
unique regular function on the three-dimensional subset H3 = 〈1, i, j〉 of reduced
quaternions.

2.1 Fueter regular functions

We identify the space C2 with the set H of quaternions by means of the mapping that
associates the pair (z1,z2) = (x0 + ix1,x2 + ix3) with the quaternion q = z1 + z2 j =
x0 + ix1 + jx2 + kx3 ∈ H. Given a bounded domain Ω in H ' C2, a quaternionic
function f = f1 + f2 j of class C1 on Ω will be called (left) regular on Ω if it is in
the kernel of the (modified) Cauchy-Riemann-Fueter operator

D=
∂

∂ z̄1
+ j

∂

∂ z̄2
=

1
2

(
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
− k

∂

∂x3

)
on Ω . (1)

We will denote by R(Ω) the real vector space of regular functions on Ω . The space
R(Ω) contains the identity mapping and every holomorphic mapping ( f1, f2) on Ω

(w.r.t. the standard complex structure) defines a regular function f = f1 + f2 j.
Given the decomposition in real components f = f 0 + i f 1 + j f 2 +k f 3 of f , the

operator D has the form:

2D( f ) =
∂ f 0

∂x0
− ∂ f 1

∂x1
− ∂ f 2

∂x2
+

∂ f 3

∂x3
+ i
(

∂ f 1

∂x0
+

∂ f 0

∂x1
+

∂ f 3

∂x2
+

∂ f 2

∂x3

)
+ j
(

∂ f 2

∂x0
− ∂ f 3

∂x1
+

∂ f 0

∂x2
− ∂ f 1

∂x3

)
+ k

(
−∂ f 3

∂x0
− ∂ f 2

∂x1
+

∂ f 1

∂x2
+

∂ f 0

∂x3

)
.

We recall some properties of regular functions, for which we refer to the papers
of Naser [19], Nōno [20], Sudbery [33], Shapiro and Vasilevski [31], Kravchenko
and Shapiro [16]:

1. Every regular function is harmonic: DD=DD= 1
4 ∆4, where

D=
1
2

(
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
+ k

∂

∂x3

)
. (2)

2. The space R(Ω) of regular functions on Ω is a right H-module with integral
representation formulas.

3. Given the decomposition in complex components f = f1+ f2 j, f is regular if and
only if ∂ f1

∂ z̄1
= ∂ f2

∂ z2
, ∂ f1

∂ z̄2
=− ∂ f2

∂ z1
.

4. The complex components f1, f2 are both holomorphic or both non-holomorphic.
5. If Ω is pseudoconvex, every complex harmonic function is a complex component

of a regular function on Ω .
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The definition of regularity is equivalent to a notion introduced by Joyce [15] in
the setting of hypercomplex manifolds. A hypercomplex structure on the manifold
H is given by the complex structures J1,J2 on the tangent bundle TH ' H defined
by left multiplication by i and j. Let J∗1 ,J

∗
2 be the dual structures on T ∗H ' H and

set J∗3 := J∗1 J∗2 , which is equivalent to J3 =−J1J2. A function f is regular if and only
if f is q–holomorphic, i.e. its differential d f satisfies the equation

d f + iJ∗1 (d f )+ jJ∗2 (d f )+ kJ∗3 (d f ) = 0 (3)

or, equivalently,
d f 0 = J∗1 (d f 1)+ J∗2 (d f 2)+ J∗3 (d f 3) . (4)

In complex components f = f1 + f2 j, we can rewrite the equations of regularity as

∂ f1 = J∗2 (∂ f 2), (5)

where ∂ = ∑
2
i=1

∂

∂ zi
dzi and ∂ = ∑

2
i=1

∂

∂ z̄i
dz̄i are the Cauchy-Riemann differential

operators on C2 w.r.t. the standard complex structure.

Remark 1. The original definition of regularity given by Fueter (cf. e.g. [33, 12])
considered the differential operator

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3
, (6)

which differs from D in the sign of the last derivative. If γ denotes the real reflection
of C2 ' R4 defined by γ(z1,z2) = (z1, z̄2), then a C1 function f is regular on the
domain Ω if and only if f ◦ γ is Fueter–regular on γ(Ω) = γ−1(Ω), i.e. it satisfies
the differential equation(

∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
+ k

∂

∂x3

)
( f ◦ γ) = 0 (7)

on γ−1(Ω). The reflection γ has an algebraic interpretation. It can be seen as the
reversion anti-involution q 7→ q∗ of the Clifford algebra R2 'H, defined by

q∗ = (x0 + ix1 + jx2 + kx3)
∗ = x0 + ix1 + jx2− kx3 . (8)

2.1.1 Holomorphic functions w.r.t. a complex structure Jp

Let Jp = p1J1 + p2J2 + p3J3 be the orthogonal complex structure on H defined by
a quaternion p = p1i+ p2 j + p3k in the sphere S = {p ∈ H | p2 = −1} ' S2 of
quaternionic imaginary units. In particular, J1 is the standard complex structure of
C2 'H. Let Cp = 〈1, p〉 be the complex plane spanned by 1 and p and let Lp be the
complex structure defined on T ∗Cp'Cp by left multiplication by p. Then Lp = Jp∗ ,
where p∗ = p1i+ p2 j− p3k.
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Let Holp(Ω ,H) be the space of holomorphic maps between the (almost) complex
manifolds (Ω ,Jp) and (H,Lp):

Holp(Ω ,H) = { f : Ω →H | ∂ p f = 0 on Ω}= Ker∂ p , (9)

where ∂ p is the Cauchy–Riemann operator

∂ p =
1
2
(
d+ pJ∗p ◦d

)
. (10)

These functions will be called Jp–holomorphic maps on Ω . For any positive or-
thonormal basis {1, p,q, pq} of H defined by a orthogonal pair p,q ∈ S2, let
f = f1 + f2q be the decomposition of f with respect to the orthogonal sum

H= Cp⊕ (Cp)q . (11)

Let f1 = f 0 + p f 1, f2 = f 2 + p f 3, with f 0, f 1, f 2, f 3 the real components of f w.r.t.
the basis {1, p,q, pq}. Then the equations of regularity can be rewritten in complex
form as

∂ p f1 = J∗q (∂p f 2), (12)

where f 2 = f 2− p f 3 and ∂p =
1
2

(
d− pJ∗p ◦d

)
. Therefore every f ∈ Holp(Ω ,H) is

a regular function on Ω .

Remark 2. We refer to [22, 25] for the following properties of Jp-holomorphic maps.

1. The identity map belongs to the spaces Holi(H,H) and Hol j(H,H) but not to
Holk(H,H).

2. For every p ∈ S2, the spaces Hol−p(Ω ,H) and Holp(Ω ,H) coincide.
3. Every Cp–valued regular function is a Jp–holomorphic function.
4. If f ∈ Holp(Ω ,H)∩Holq(Ω ,H), with p 6= ±q, then f ∈ Holr(Ω ,H) for every

r = α p+βq
‖α p+βq‖ (α,β ∈ R) in the circle of S2 generated by p and q.

In [23] was proved that on every domain Ω there exist regular functions that are
not Jp-holomorphic for any p. For example, the linear function f = z1 + z2 + z̄1 +
(z1 + z2 + z̄2) j is regular on H, but not holomorphic. The criterion for holomorphic-
ity is based on an energy–minimizing property of holomorphic maps (see Sect. 2.4.4
for definitions and properties of the energy quadric of a quaternionic function f ).

We can obtain regular functions also when considering non-constant (almost)
complex structures. If p = p(z)∈ S varies smoothly with z∈Ω , the almost complex
structures Jp(z) and Lp(z) are not constant, i.e. not compatible with the hyperkähler
structure of H. Note that in this case the structures are not necessarily integrable. Let
f ∈C1(Ω). We shall say that p is f -equivariant if f (z) = f (z′) implies p(z) = p(z′)
for z,z′ ∈Ω . This property allows to define p̃ : f (Ω)→ S2 such that p̃◦ f = p on Ω .
In [22] was proved that Jp(z)-holomorphic maps f : (Ω ,Jp(z))→ (H,Lp( f (z))) give
rise to regular functions:

Proposition 1. [22, Proposition 1] If f ∈C1(Ω) satisfies the equation
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∂ p(z) f =
1
2

[
d f (z)+ p(z)J∗p(z) ◦d f (z)

]
= 0 (13)

at every z ∈ Ω , then f is a regular function on Ω . If, moreover, the structure p is
f -equivariant and p̃ admits a continuous extension to an open set U ⊇ f (Ω), then
f is a (pseudo)holomorphic map from (Ω ,Jp) to (U,Lp̃).

For example, the function f (z) = z̄1 + z2
2 + z̄2 j is regular on H. On the set Ω =

H\{z2 = 0} f is holomorphic w.r.t. the almost complex structure Jp(z), where

p(z) = 1√
|z2|2+|z2|4

(
|z2|2i− (Imz2) j− (Rez2)k

)
. (14)

2.2 Fueter construction

In 1934, Rudolf Fueter [6] proposed a simple method, which is now known as
Fueter’s Theorem, to generate quaternionic regular functions by means of complex
holomorphic functions. Given a holomorphic “stem function”

F(z) = u(α,β )+ iv(α,β ) (z = α + iβ complex, u,v real-valued)

defined in the upper complex half-plane, real-valued when restricted to the real line,
the formula:

f (q) := u(x0, | Im(q)|)+ Im(q)
| Im(q)|

v(x0, | Im(q)|) (15)

(with q = x0 + x1i + x2 j + x3k ∈ H, Im(q) = x1i + x2 j + x3k) defines a radially
holomorphic function on H, whose Laplacian ∆ f is Fueter regular (now called the
Fueter transform of F). Fueter’s construction was later extended to higher dimen-
sions by Sce [30], Qian [27] and Sommen [32] in the setting of octonionic and
Clifford analysis. Fueter’s Theorem and its generalizations provides a link between
slice regular functions and Fueter regular (resp. monogenic) functions. In the next
sections, we will present a relation of a different kind between these function theo-
ries.

2.3 Quaternionic slice regular functions

A modification of the Fueter construction can be applied to give a new approach
(cf. [9, 10]) to the concept of “slice regularity” for functions of one quaternionic,
octonionic or Clifford variable, which has been recently introduced by Gentili and
Struppa in [7, 8] and by Colombo, Sabadini and Struppa in [4]. We start with a
holomorphic function F(z) with quaternionic-valued components u,v:

F(z) = u(α,β )+ iv(α,β ) (z = α + iβ complex, u,v H-valued)
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defined on a subset of the upper complex half-plane, real-valued on R. Formula (15)
defines then a slice regular (or Cullen regular) [7, 8] function on an open subset of
the quaternionic space. We now make more precise this idea.

Let qc = x0 − ix1 − jx2 − kx4 denote the quaternionic conjugation. Let HC =
H⊗RC be the complexified quaternion algebra. We will use the representation

HC = {w = x+ iy | x,y ∈H} . (16)

HC is a complex algebra with unity w.r.t. the product defined as follows:

(x+ iy)(x′+ iy′) = xx′− yy′+ i(xy′+ yx′) . (17)

In HC two commuting operations are defined: the anti-involution

w 7→ wc = (x+ iy)c = xc + iyc (18)

and the complex conjugation

w 7→ w = x+ iy = x− iy . (19)

Definition 1. Let D ⊆ C be an open subset. If a function F : D→ HC is complex
intrinsic, i.e. it satisfies the condition F(z) = F(z) for every z ∈ D such that z ∈ D,
then F is called a stem function on D.

Remark 3.
1. In the preceding definition, there is no restriction to assume that D is symmetric

w.r.t. the real axis, i.e. D = conj(D) := {z ∈ C | z̄ ∈ D}.
2. A function F is a stem function if and only if the H-valued components F1,F2 of

F = F1 + iF2 form an even–odd pair w.r.t. the imaginary part of z:

F1(z) = F1(z) , F2(z) =−F2(z) for every z ∈ D . (20)

3. By means of a real basis B of H, F can be identified with a complex intrinsic
curve FB in C4.

Given an open subset D of C, let ΩD be the open subset of H obtained by the
action on D of the square roots of −1:

ΩD := {q = α +β p ∈ Cp | α,β ∈ R, α + iβ ∈ D, p ∈ S} . (21)

Sets of this type will be called circular sets in H.

Definition 2. Any stem function F : D→HC induces a left slice function f = I(F) :
ΩD→H. If q = α +β p ∈ Dp := ΩD∩Cp, with p ∈ S, we set

f (q) := F1(z)+ pF2(z) (z = α + iβ ∈ D) .
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Note that if q = x0 + ix1 + jx2 + kx3 = x0 + Im(q) and Im(q) 6= 0, then p =
± Im(q)/| Im(q)|. If Im(q) = 0, then every choice of p ∈ S can be done. The com-
plex intrinsicity of the stem function F assures that the definition of f is well posed.

There is an analogous definition for right slice functions when p is placed on the
right of F2(z). In what follows, the term slice functions will always mean left slice
functions.

We will denote the real vector space of (left) slice functions on ΩD by S(ΩD). We
will denote by S1(ΩD) := { f = I(F)∈ S(ΩD) | F ∈C1(D)} the real vector space of
slice functions with stem function of class C1. It can be shown (cf. [10]) that every
f ∈ S1(ΩD) is of class C1 on ΩD.

Definition 3. Let f = I(F) ∈ S1(ΩD). We set

∂ f
∂q

:= I

(
∂F
∂ z

)
,

∂ f
∂qc := I

(
∂F
∂ z̄

)
.

These functions are continuous slice functions on ΩD.

We now introduce slice regularity. Left multiplication by i defines a complex
structure on HC. With respect to this structure, a C1 function F = F1+ iF2 : D→HC
is holomorphic if and only if its components F1,F2 satisfy the Cauchy–Riemann
equations:

∂F1

∂α
=

∂F2

∂β
,

∂F1

∂β
=−∂F2

∂α
, i.e.

∂F
∂ z̄

= 0 . (22)

Definition 4. A (left) slice function f ∈ S1(ΩD) is (left) slice regular if its stem
function F is holomorphic. We will denote the real vector space of slice regular func-
tions on ΩD by SR(ΩD) := { f ∈ S1(ΩD) | f = I(F), F : D→HC holomorphic}.

Polynomials p(q) = ∑
d
m=0 qmam = I(∑d

m=0 zmam) with right quaternionic coef-
ficients can be considered as slice regular functions on H. More generally, every
convergent power series ∑m qmam is a slice regular function on an open ball of H
centered in the origin with (possibly infinite) positive radius.

Proposition 2. [10, Proposition 8] Let f = I(F) ∈ S1(ΩD). Then f is slice regular
on ΩD if and only if for every p ∈ S the restriction fp := f |Cp∩ΩD : Dp = Cp ∩
ΩD → H is holomorphic with respect to the complex structure Jp defined by left
multiplication by p.

Proposition 2 means that if D intersects the real axis, f is slice regular on ΩD
if and only if it is Cullen regular in the sense introduced by Gentili and Struppa in
[7, 8].
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2.4 A 3D-meeting point for two function theories

We start by computing the values of D(qm). The crucial observation is that these
values vanishes on the subspace of reduced quaternions. This property allows to
extend the restriction to H3 of a slice regular function to a regular function.

2.4.1 Computation of D(qm)

In general, the product of two Fueter regular functions is not Fueter regular. The
same holds for functions in the kernel of the modified Cauchy-Riemann-Fueter op-
erator D. In particular, even if the identity function is regular, i.e. D(q) = 0, the
higher powers of q are not regular. Nevertheless, we can show that D(qm) vanishes
on a three-dimensional subset of H for every positive power m.

Proposition 3. Let D be the Cauchy-Riemann-Fueter operator of Sect. 2.1. Given
two functions f ,g of class C1, the operator D satisfies the following product for-
mula:

D( f g) =D( f )g+
1
2

(
f

∂g
∂x0

+ i f
∂g
∂x1

+ j f
∂g
∂x2
− k f

∂g
∂x3

)
. (23)

As a consequence, we get the following power formula for the (modified) Cauchy-
Riemann-Fueter operator:

D(qm) =D(qm−1)q+qm−1− (qm−1)∗ (24)

where q∗ = x0+ ix1+ jx2−kx3 is obtained applying the reversion anti-involution to
q (cf. Remark 1).

Proof. The product formula (23) follows immediately from the definition of D.
When applied to qm = qm−1q it gives:

D(qm) =D(qm−1)q+
1
2
(
qm−1 + iqm−1i+ jqm−1 j− kqm−1k

)
. (25)

For every quaternion p = x0 + ix1 + jx2 + kx3, the sum p+ ipi+ jp j− kpk is equal
to 4kx3 = 2(p− p∗), from which (24) follows. ut

Let H3 = 〈1, i, j〉 be the real vector subspace of reduced quaternions. It is well
known (cf. e.g. [13]) that the powers of a reduced quaternion are still reduced quater-
nions. This follows easily from the fact that reduced quaternions are characterized
by the condition q = q∗. Therefore, if p,q ∈H3, (pq)∗ = q∗p∗ = qp, and then pq is
still reduced if and only if p and q commute, i.e. q ∈ Cp.

Corollary 1. Let m be a positive integer. Then D(qm) vanishes on H3.

Proof. Since the power function q 7→ qm maps H3 into H3, qm−1−(qm−1)∗ vanishes
on H3 for every m≥ 1. We conclude by induction on m starting from D(q) = 0 and
using (24). ut
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Corollary 2. For every convergent power series f (q) = ∑m qmam with quaternionic
coefficients, D( f ) vanishes on the intersection of the ball of convergence with the
real vector space H3 ' R3 of reduced quaternions. ut

Corollary 3. Assume that ΩD is connected and ΩD∩R 6= /0. Let f ∈ SR(ΩD). Then
D( f ) vanishes at every point of Ω̃D := ΩD∩H3.

Proof. Every slice regular function f ∈ SR(ΩD) has convergent power series ex-
pansions ∑m(q− r)mam centered at real points r of ΩD [7, 8]. Since every power
(q− r)m is a polynomial in q, the thesis follows from Corollary 1. ut

We observe that the previous results are not true for the standard (not modified)
Cauchy-Riemann-Fueter operator.

2.4.2 Regular extension of slice-regular functions

Let f ∈ SR(ΩD). Then f is real analytic on ΩD (cf. [10, Proposition 7]). We can
apply the Cauchy-Kowalevski Theorem (see for example [5]) to the initial values
problem {

D(g) =−D( f ) on ΩD

g = 0 on Ω̃D = ΩD∩H3
(26)

and obtain a real analytic solution in the neighborhood of every point of the intersec-
tion of ΩD with the hyperplane H3. By taking the union of all these neighborhoods,
we get the existence of a solution of problem (26) on a open set Ω ′ ⊂ H such that
Ω ′∩H3 = Ω̃D.

Since D( f ) = 0 and g = 0 on Ω̃D, also the normal derivative

∂g
∂x3

= 2kD(g)+ k
(

∂g
∂x0

+ i
∂g
∂x1

+ j
∂g
∂x2

)
=−2kD( f )+ k

(
∂g
∂x0

+ i
∂g
∂x1

+ j
∂g
∂x2

)
(27)

vanishes on Ω̃D. Therefore g = 0, dg = 0 on Ω̃D. This implies that the slice regular
function f ∈ SR(ΩD) and the regular function f + g ∈ R(Ω ′) ⊂ Ker(D) coincide
up to the first order on the three-dimensional set Ω̃D. We summarize the result in
the following statement.

Proposition 4. Assume that ΩD is connected and ΩD ∩R 6= /0. Let f ∈ SR(ΩD).
Then there exists an open (relative to H) neighborhood Ω ′ of ΩD∩H3 and a regular
function f̃ ∈R(Ω ′) such that f = f̃ on Ω ′∩H3 = ΩD∩H3 up to the first order. ut

For polynomials f (q) = ∑m qmam, the solution to problem (26) can be obtained
explicitly in a finite number of steps by means of one-variable integrations w.r.t. the
normal coordinate x3. Consider the approximate problems:
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∂g(h+1)

∂x3
=−2kD( f +∑

h
l=1 g(l)) on H

g(h+1) = 0 on H3

(28)

for h = 1, . . . ,deg( f ), starting with the function g(1) ≡ 0. We are looking for poly-
nomial solutions g(h) with deg(g(h))≤ h.

At the first step, since x3 divides the polynomial D( f ) (from Corollary 1), x2
3

divides the first solution g(2) of (28). Therefore x2
3 divides also D( f +g(2)), since

2D( f +g(2)) = k
∂g(2)

∂x3
+2D(g(2)) =

∂g(2)

∂x0
+ i

∂g(2)

∂x1
+ j

∂g(2)

∂x2
(29)

and g(2) = 0 on H3. By induction on h, we get by the same reasoning that the power
xh

3 divides g(h) and D( f +∑
h
l=1 g(l)) for every h = 1, . . . ,deg( f ). At the last step, we

get that xdeg( f )
3 divides D( f +∑

deg( f )
i=1 g(i)), but then it has to be D( f +∑

deg( f )
i=1 g(i)) =

0 for degree reasons. Observe that x2
3 divides every partial solution g(h).

The polynomial f̃ := f +∑
deg( f )
i=1 g(i) is regular on the whole space, has the same

degree as f , and coincides with f up to first order on H3.
As an illustration of this procedure, we compute the extension f̃ for the first three

powers of q:

1. f (q) = q is regular, so f̃ = f .
2. f (q) = q2 has regular extension f̃ = q2 +2x2

3.
3. f (q) = q3 has regular extension f̃ = q3 + x2

3(6x0 +2x1 i+2x2 j+ 2
3 x3 k).

2.4.3 The embedding SR ↪→ R

Definition 5. Assume that ΩD is connected and ΩD ∩R 6= /0. Given f ∈ SR(ΩD),
denote by Reg( f ) the unique regular function defined on a maximal domain and
satisfying

f = Reg( f ), d f = dReg( f ) at every point of ΩD∩H3 .

Uniqueness follows from the identity principle for regular functions. Let

R̃(ΩD) := {g ∈ R(Ω ′) |Ω ′ open and connected in H s.t. Ω
′∩H3 = ΩD∩H3} .

In the space R̃(ΩD) we identify two functions if they coincide on the intersection of
the domains of definition. The mapping f 7→ Reg( f ) is an injective (right) H-linear
operator, giving an embedding SR(ΩD) ↪→ R̃(ΩD).
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2.4.4 Characterization of Reg(SR(ΩD)) in R̃(ΩD)

Assume ΩD ∩R 6= /0. Let f ∈ SR(ΩD) be slice regular and x ∈ H3 \R, let p :=
Im(x)/| Im(x)| ∈ S. From Proposition 2 we get that the restriction

fp := f |Cp∩ΩD : Cp∩ΩD→H

is holomorphic with respect to the complex structure Jp defined by left multipli-
cation by p. Moreover, at every x ∈ Ω̃D = ΩD ∩H3, because of Proposition 4 the
differential map

d fx = dReg( f )x

is a regular linear function on H. These two properties can be strengthened in the
sense explained by the next statement.

Theorem 1. If f ∈ SR(ΩD) and x ∈ Ω̃D \R = (ΩD ∩H3)\R, then the differential
map d fx belongs to the space HolJp(H,H)⊂ R(H), where p := Im(x)/| Im(x)|, i.e.
the linear map

d fx : (H,Jp)→ (H,Jp)

is holomorphic.

The proof of Theorem 1 is based on a criterion for holomorphicity in the space
R(ΩD), which was proved in [22, 23] using the concept of the energy quadric of
a function. The energy quadric of a regular function f is a positive semi-definite
quadric, constructed by means of the Lichnerowicz homotopy invariants.

We recall some definitions and results from [22, 23]. The energy density of a map
f : Ω →H, of class C1(Ω), w.r.t. the euclidean metric, is the function

E( f ) := 1
2‖d f‖2 = 1

2 tr(Jac( f )Jac( f )
T
) ,

where Jac( f ) is the Jacobian matrix of f . Assume Ω relatively compact. The energy
of f ∈C1(Ω) on Ω is the integral defined by

EΩ ( f ) :=
∫

Ω

E( f )dV .

Let A = (aαβ ) be the 3×3 matrix with entries the real functions

aαβ =−〈Jα , f ∗Liβ 〉, where (i1, i2, i3) = (i, j,k) .

(these numbers are the analogues of the Lichnerowicz invariants (cf. [18] and [2])
For f ∈C1(Ω), we set

AΩ :=
∫

Ω

AdV and MΩ := 1
2 ((trAΩ )I3−AΩ ) ,

where I3 denotes the identity matrix.
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Theorem 2 ([23]). If f ∈ C1(Ω) is regular on Ω , then it minimizes energy in its
homotopy class (relative to ∂Ω ).

Theorem 3 ([23]). Let f ∈C1(Ω). The following facts hold:

1. f is regular on Ω if and only if EΩ ( f ) = trMΩ .
2. If f ∈ R(Ω), then MΩ is symmetric and positive semidefinite.
3. If f ∈R(Ω), then f belongs to some space Holp(Ω ,H) (for a constant structure

Jp) if and only if detMΩ = 0. More precisely, Xp = (p1, p2, p3) is a unit vector in
the kernel of MΩ if and only if f ∈ Holp(Ω ,H).

The criterion of holomorphicity holds also pointwise: let Ω be connected and f ∈
C1(Ω). Consider the matrix of real functions on Ω :

M := 1
2 ((trA)I3−A) .

Theorem 4 ([22]). Let f ∈C1(Ω). The following facts hold:

1. f is regular on Ω if and only if E( f ) = trM at every point z ∈Ω .
2. If f ∈ R(Ω), then M is a 3×3 symmetric and positive semidefinite matrix.
3. If f ∈ R(Ω), then detM = 0 on Ω if and only if there exists an open, dense

subset Ω ′ ⊆ Ω such that f is a (pseudo)holomorphic map from (Ω ′,Jp(z)) to
(H,Lp( f (z))) for some p(z).

Now we come to the proof of Theorem 1. To this end, we compute the energy
quadric of f at x ∈ ΩD ∩H3. Since f coincides with Reg( f ) up to first order on
ΩD ∩H3, from Theorem 4 we get that E( f ) = trM( f ) on ΩD ∩H3 and that M( f )
is positive semidefinite at every point x ∈ ΩD ∩H3. Let us denote by π1( f ) = f1
and π2( f ) = f2 the complex components of f . From [22] we get the following ex-
pression of the energy quadric M( f ) at x ∈ΩD∩H3 in terms of f1 and f2 and their
complex derivatives:

M( f ) =

 2|c|2 Im〈c,a−b〉 Re〈c,a+b〉
Im〈c,a−b〉 1

2 |a−b|2 − Im〈a,b〉
Re〈c,a+b〉 − Im〈a,b〉 1

2 |a+b|2

 , (30)

where

a =

(
∂ f1

∂ z1
,

∂ f2

∂ z1

)
, b =

(
∂ f̄2

∂ z̄2
,−∂ f̄1

∂ z̄2

)
, c =

(
∂ f̄2

∂ z1
,−∂ f̄1

∂ z1

)
are all computed at x ∈ΩD∩H3. We now show that the vector (x1,x2,0) belongs to
the null space of the matrix M(qm). If (x1,x2,0) 6= (0,0,0), it is possible to find a
similarity of the space 〈i, j,k〉'R3, with rotational component induced by a reduced
quaternion a ∈ H3, which sends (x1,x2,0) in (1,0,0). The transformation property
of the energy quadric w.r.t. rotations (see [24, Theorem 4]) implies that (x1,x2,0) ∈
Ker(M(qm)) at x = x0 + ix1 + jx2 if and only if (1,0,0) ∈ Ker(M(qm)) at x0 + i.

In view of (30), in order to show that the vector (1,0,0) belongs to the null space
of M(qm) at x0+ i it suffices to prove that c̄=

(
∂π2(qm)

∂ z̄1
,− ∂π1(qm)

∂ z̄1

)
vanishes at x0+ i.

This is a consequence of the following Lemma.
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Lemma 1. For every positive integer m, z2 divides on the left the partial derivative
∂qm

∂ z̄1
, i.e. ∂qm

∂ z̄1
= z2 g for a quaternionic function g.

Proof. For m > 1 the following product formula can be easily obtained:

∂qm

∂ z̄1
=

∂qm−1

∂ z̄1
q+

1
2
(
qm−1 + iqm−1i

)
=

∂qm−1

∂ z̄1
q+π2(qm−1) j . (31)

Using (31) and the equation

π2(qm) = π2
((

π1(qm−1)+π2(qm−1) j
)
(z1 + z2 j)

)
= z2π1(qm−1)+π2(qm−1)z̄1 ,

(32)
we get the thesis by induction on m. ut

Let x ∈ H3 \R be fixed. From Theorem 3 we get that (dqm)x ∈ Holp(H,H),
where p := Im(x)/| Im(x)|. Since f ∈ SR(ΩD) has a series expansion, we get that
also d fx belongs to Holp(H,H) for every x ∈ (ΩD ∩H3) \R. To finish the proof
of Theorem 1, we observe that Jp = Lp, since x ∈ H3. Therefore the linear map
d fx : (H,Jp)→ (H,Jp) is holomorphic. ut

From the holomorphycity of the differentials d fx at a reduced quaternion x, we
get immediately the following properties for the real Jacobian matrix of f .

Corollary 4. If f ∈ SR(ΩD) and x ∈ Ω̃D \R= (ΩD∩H3)\R, then

1. det(Jac( f ))≥ 0 at x.
2. rank(Jac( f )) is even at x.

The characterization of Reg(SR(ΩD)) in R̃(ΩD) is completed by the following
converse statement.

Proposition 5. Assume ΩD connected and ΩD ∩R 6= /0. Let f ∈ R(ΩD). If d fx ∈
Holp(H,H) for every x ∈ (ΩD∩H3)\R, with p := Im(x)/| Im(x)| then there exists
a (unique) slice regular function g on ΩD, such that g and f are equal up to the first
order on ΩD∩H3.

Proof. For every p ∈ S∩H3 and any x ∈ (ΩD∩Cp)\R, the restriction fp = f|Cp :
Cp → H is holomorphic w.r.t. the structure Jp, since Cp is a complex subspace of
H w.r.t. Jp and the differential d fx ∈ Holp(H,H) by hypothesis. As proven in [10,
Corollary 9], this implies that the restriction of f to ΩD ∩H3 is a slice monogenic
function (cf. [4]) when H is identified with the Clifford algebra R2 and H3 is identi-
fied with the subspace of paravectors in R2. As seen in [10], every slice monogenic
function on ΩD ∩H3 can be uniquely extended to a slice regular function on ΩD.
Since D(g− f ) = 0 on ΩD∩H3, g = f up to the first order on ΩD∩H3. ut

3 The full Dirac operators

We now look at the higher dimensional situation. Our starting point is the modified
Cauchy-Riemann-Fueter operator D. If we consider the quaternionic space as the
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real Clifford algebra R2, we can give a new look at D in terms of the algebraic
involutions of the algebra. This reinterpretation of D suggests to study a new first
order differential operator on the Clifford algebras Rn, which behaves well w.r.t.
monogenic functions and also w.r.t. the powers of the (complete) Clifford variable.
This last property relates the operator with the theory of slice monogenic and slice
regular functions.

3.1 The operators Dn

Denote by e1, . . . ,en the generators of Rn. Let x = ∑K xKeK be a Clifford number,
where K = (i1, . . . , ik) is a multiindex, with 0≤ |K| := k≤ n, the coefficients xK are
real numbers and eK is the product of basis elements eK = ei1 · · ·eik .

Definition 6. Let D1 = 1
2

(
∂

∂x0
+ e1

∂

∂x1

)
and D1,2 = 1

2

(
∂

∂x2
+ e1

∂

∂x12

)
. For n > 1,

define recursively
Dn :=Dn−1 + enDn−1,n . (33)

Here we consider Rn−1 embedded in Rn and Dn−1,n is the operator defined as Dn−1
w.r.t. the 2n−1 variables xn,x1n,x2n, . . . ,x12n, . . . ,x12···n. Since Dn depends on all the
basis coordinates of Rn, we call it the full Dirac operator on Rn.

Remark 4. The operator D1 is the standard Cauchy–Riemann operator on the com-
plex plane C' R1. The operator D2 is the same as the modified Cauchy-Riemann-
Fueter operator D on H' R2:

D2 =
1
2

(
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
− e12

∂

∂x12

)
. (34)

D3 =D2 + e3D2,3 has the following expression

D3 =
1
2

(
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
− e12

∂

∂x12
− e13

∂

∂x13
− e23

∂

∂x23
− e123

∂

∂x123

)
.

Despite its recursive definition, the operator Dn is symmetric w.r.t. the basis el-
ements e1, . . . ,en. More precisely, it has the following expression involving the re-
version anti-involution of Rn.

Proposition 6. The operator Dn can be written in the following form:

Dn =
1
2 ∑
|K|≤n

e∗K
∂

∂xK
(35)

where e∗K = (−1)
k(k−1)

2 eK is obtained by applying to eK the reversion anti-involution
x 7→ x∗. Moreover,

Dn−1,n =
1
2 ∑

H 63n
e∗H

∂

∂x(Hn)
. (36)
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Proof. D1 and D1,2 have the required form. Equations (35) and (36) follows from
an easy inductive argument. ut

On functions depending only on paravectors, the operator Dn acts as 1
2Wn, where

Wn is the Weyl (or Cauchy-Riemann) operator on Rn:

Wn =
∂

∂x0
+

n

∑
i=1

ei
∂

∂xi
. (37)

Corollary 5. Every monogenic function (i.e. in the kernel of Wn) defined on an open
subset of the paravector subspace Rn+1 ⊂ Rn can be identified with an element of
kerDn.

We can define also the conjugated operator Dn and the auxiliary operator D∗n.

Definition 7.{
D1 =

∂

∂ z1
= 1

2

(
∂

∂x0
− e1

∂

∂x1

)
, D∗1 =

∂

∂ z̄1
= 1

2

(
∂

∂x0
+ e1

∂

∂x1

)
Dn =Dn−1− enD

∗
n−1,n, D∗n =D∗n−1 + enDn−1,n

where D∗n−1,n and Dn−1,n are defined as D∗n−1 and Dn−1 w.r.t. the 2n−1 variables
xn,x1n, . . ., x12n,. . . ,x12···n.

Still by induction, we obtain the following explicit forms for the operators Dn
and D∗n, now involving the principal involution of Rn.

Proposition 7.

Dn =
1
2 ∑
|K|≤n

ẽK
∂

∂xK
, (38)

where ẽK = (−1)keK is obtained by applying to eK the principal involution x 7→ x̃.
Moreover,

D∗n =
1
2 ∑
|K|≤n

eK
∂

∂xK
and D∗n−1,n =

1
2 ∑

H 63n
eH

∂

∂xHn
. (39)

The differential operator

D∗n =
1
2 ∑
|K|≤n

eK
∂

∂xK

has already been considered in the literature (cf. [28] and [14]). The behavior of Dn
w.r.t. power functions (see below Theorem 5) and the property stated in the next
remark indicate that the operators Dn are better suited than D∗n or Dn to the theory
of polynomials or more generally slice regular functions on a Clifford algebra. In
[29] Dirac operators on the subspace of l-vectors have been studied. They coincide
(up to sign) with the restriction of Dn to l-vectors. Since we are interested in the
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global behavior of the operator on the algebra, the choice of the grade-depending
sign for the coefficients of Dn is essential.

Remark 5. The identity function x of R3 belongs to the kernel of D2 and D3 (and
of course of the Cauchy-Riemann operator D1). Starting from D1x = 0, D1,2x = 0
on R2, we get recursively that Dnx = 0 on Rn for every n. Observe that even if
D∗1x =D∗1,2x = 0, the identity function does not belong to the kernels of D∗n or Dn
for every n.

3.2 Slice regularity and the full Dirac operators

We are interested in the values of Dn on polynomials ∑m xmam in the complete
Clifford variable x. We start from the powers of x. To express our computation, we
need some definitions and results from the theory of slice regular functions on Rn
(see [9, 10] where the theory of slice regularity is constructed in a greater generality,
for functions defined on a real alternative ∗-algebra).

Definition 8. Let t(x) = x+ x̄ be the trace of x and n(x) = xx̄ the (squared) norm of
x ∈ Rn. The quadratic cone of Rn is the subset

Qn := R∪{x ∈ Rn | t(x) ∈ R, n(x) ∈ R,4n(x)> t(x)2} .

(It can be seen that the last condition is automatically satisfied on Rn)
Let Sn := {J ∈ Qn | J2 =−1}= {x ∈ Rn | t(x) = 0, n(x) = 1}. The elements of Sn
are called square roots of −1 in the algebra Rn.

Proposition 8 ([9, 10]). The quadratic cone Qn satisfies the following properties:

1. Qn = Rn only for n = 1,2.
2. Qn contains (properly) the subspace of paravectors

Rn+1 := {x = ∑K xKeK ∈ Rn | xK = 0 for every K such that |K|> 1} .

3. Qn is the real algebraic subset (proper for n > 2) of Rn defined by the equations

xK = 0, x · (xeK) = 0 ∀eK 6= 1 such that e2
K = 1 , (40)

where x · y denotes the euclidean scalar product on Rn ' R2n
.

4. For J ∈ Sn, let CJ = 〈1,J〉 ' C be the subalgebra generated by J. Then

Qn =
⋃

J∈Sn

CJ (41)

and CI ∩CJ = R for every I,J ∈ Sn, I 6= ±J. As a consequence, if x belongs to
Qn, also the powers xm belong to the quadratic cone Qn.
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Slice regular functions are defined only on subdomains of the quadratic cone (we
refer to [9, 10] for full details). However, if the domain intersects the real axis, then
the class of slice regular functions coincides with the one of functions having local
power series expansion centered at real points.

Now we compute the values of Dn(xm). We already know the result for n = 2
(cf. Corollary 1): D2(xm) = 0 on the subset of reduced quaternions H3 ⊂ H ' R2.
We can show that the behavior of Dn on the powers depends on the parity of n (as
many other properties of Rn). In this scheme the quaternions (n = 2) are in some
sense exceptional.

Theorem 5. Let x = ∑|K|≤n xKeK be the complete Clifford variable in Rn. The fol-
lowing facts hold:

1. If n is an odd integer, then Dn(xm) = 0 on the whole algebra Rn for every integer
m≥ 1.

2. If n is an even integer, n > 2, then Dn(xm) = 0 on the quadratic cone Qn of Rn
for every integer m≥ 1.

3. D2(xm) = 0 on the subset of reduced quaternions H3 ⊂ R2 for every integer
m≥ 1.

In the proof of Theorem 5 we will apply the following algebraic Lemma:

Lemma 2. Let N = (1, . . . ,n). For every x ∈ Rn, it holds

∑
H 63n

e∗HxeH = 2n−1(xnen + x(1···n−1)e(1···n−1)) for odd n , (42)

∑
H 63n

e∗HxeH = 2n−1(xnen + xNeN) for even n . (43)

Proof. Let h = |H|, k = |K| and let σH,K be the sign such that eHeK = σH,KeKeH .
Then it holds

e∗HxeH = (−1)
h(h−1)

2 ∑
K

xKσH,KeKe2
H = (−1)

h(h−1)
2 ∑

K
xKσH,KeK(−1)

h(h+1)
2

= (−1)h
∑
K

xKσH,KeK . (44)

If i is the cardinality of H ∩K, then σH,K = (−1)hk+i. Therefore

∑
H 63n

e∗HxeH = ∑
K

(
∑

H 63n
(−1)h(k+1)+i

)
xKeK . (45)

If k is even, then ∑H 63n(−1)h(k+1)+i = ∑H 63n(−1)h+i = ∑H 63n(−1)h−i counts the dif-
ference between the number of the even and the odd subsets of the set {1, . . . ,n−
1}\K. Therefore the sum is zero unless n is odd and K = (1, . . . ,n−1) or n is even
and K = (1, . . . ,n). In both cases the sum is equal to 2n−1.
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If k is odd, then ∑H 63n(−1)h(k+1)+i = ∑H 63n(−1)i counts the difference between
the number of even and odd subsets of K ∩ {1, . . . ,n− 1}. Then it is zero unless
K = (n). In this case, the sum is 2n−1.

From these and (45) we get the statement of the lemma. ut

Proof of Theorem 5.
The third case (n = 2) has already been proved in Corollary 1.
Case (1): n odd. We show by induction on m that Dn−1xm = −enDn−1,nxm. Since
Dnx = 0 (cf. Remark 5), the equality is valid for m = 1. Take m > 1 and assume that
Dn−1xm−1 = −enDn−1,nxm−1. We have the following product formula (obtained in
a way similar to the n = 2 case of Proposition 3):

Dn−1,nxm = (Dn−1,nxm−1)x+
1
2 ∑

H 63n
e∗Hxm−1e(Hn)

= (Dn−1,nxm−1)x+
1
2

(
∑

H 63n
e∗Hxm−1eH

)
en . (46)

Since, from Lemma 2,(
∑

H 63n
e∗HxeH

)
en = 2n−1(−xn + x(1···n−1)eN) , (47)

the last term in equation (46) belongs to the center 〈1,eN〉 of Rn. Therefore, from
(46) we get

−enDn−1,nxm =−en(Dn−1,nxm−1)x+
1
2 ∑

H 63n
e∗Hxm−1eH . (48)

On the other hand, we also have

Dn−1xm = (Dn−1xm−1)x+
1
2 ∑

H 63n
e∗Hxm−1eH (49)

and then the inductive hypothesis gives the equality Dn−1xm =−enDn−1,nxm, which
is equivalent to Dnxm = 0.
Case (2): n even, greater than 2. We show that

Dnxm = (Dnxm−1)x+2n−1 [xm−1]
N eN , (50)

where [a]N denotes the coefficient of the pseudoscalar eN of the element a ∈ Rn. If
m = 1, the equality (50) is true since Dnx = 0. Let m > 1. Then it holds
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Dnxm =Dn−1xm + enDn−1,nxm

= (Dn−1xm−1)x+ 1
2 ∑

H 63n
e∗Hxm−1eH + en((Dn−1,nxm−1)x

+ 1
2 ∑

H 63n
e∗Hxm−1eHen) . (51)

From Lemma 2, since n is even we have

∑
H 63n

e∗Hxm−1eH + en ∑
H 63n

e∗Hxm−1eHen = 2n [xm−1]
N eN (52)

and therefore, from (51) and (52)

Dnxm = (Dnxm−1)x+2n−1 [xm−1]
N eN . (53)

Now we prove by induction on m that Dnxm vanishes on the quadratic cone Qn. For
m = 1, Dnx = 0 on the whole algebra. Let m > 1 and assume that Dnxm−1 = 0 at
every point of Qn. Since the power function maps Qn in Qn, for every x ∈ Qn we
have

[
xm−1

]
N = 0. The equality (53) and the inductive hypothesis allow to conclude

that Dnxm = 0 at x ∈ Qn. ut
From the right linearity of the operators Dn, we get the following result.

Corollary 6. Let n ≥ 3. Let p(x) = ∑
d
m=0 xmam be a polynomial in the complete

Clifford variable x = ∑|K|≤n xKeK with right Clifford coefficients. If n is odd, then
p is in the kernel of Dn. If n is even, then the restriction of Dn(p) to the quadratic
cone Qn vanishes.

Polynomials p(x) = ∑
d
m=0 xmam and convergent power series ∑k xkak with right

Clifford coefficients are examples of slice regular functions on the intersection of
Qn with a ball centered in the origin (cf. [9, 10]. If n≥ 3, slice regularity generalizes
the concept of slice monogenic functions introduced in [4]: if f is slice regular on
a domain which intersects the real axis, then the restriction of f to the set of pa-
ravectors is a slice monogenic function. Conversely, every slice monogenic function
is the restriction of a unique slice regular function. Since every slice monogenic
function has a power expansions in the paravector variable, centered at points of the
real axis (cf. [4]), every slice monogenic f function has an extension f̃ to on open
domain in Rn which satisfies the property stated in Corollary 6: if n is odd, then f̃ is
in the kernel of Dn. If n is even, then the restriction of Dn( f̃ ) to the quadratic cone
Qn vanishes.

The same property holds for slice regular functions on a domain Ω in Qn with
non empty intersection with R. If f is slice regular then it has local power series
expansion (in the complete Clifford variable) on an open neighborhood of every
real point. This can be seen using the Clifford operator norm (see [11, 7.20]) of Rn,
which reduces to the Clifford norm on the quadratic cone Qn.

Remark 6. For n = 1,2 the operators Dn are elliptic, since in this case

4DnDn = 4DnDn = ∆R2n . (54)
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For n = 3 it holds
4D3D3 = 4D3D3 = ∆R8 +L3, (55)

where

L3 =−2
(

∂

∂x0

∂

∂x123
− ∂

∂x1

∂

∂x23
+

∂

∂x2

∂

∂x13
− ∂

∂x3

∂

∂x13

)
e123 . (56)

For n≥ 4,
4DnDn = ∆R2n +Ln and 4DnDn = ∆R2n +L′n , (57)

where

Ln = ∑
H 6=K

t(e∗H ẽK)
∂

∂xH

∂

∂xK
and L′n = ∑

H 6=K
t(ẽHe∗K)

∂

∂xH

∂

∂xK
(58)

(the summations are made over multindices H,K without repetitions). For n≥ 4 the
operators Ln and L′n are different. In particular, for n ≥ 3 the operators Dn are not
elliptic. Note that the symbol of the differential operator L3 is, up to a multiplicative
constant, the polynomial x0x123−x1x23+x2x13−x3x12 whose zero set is the normal
cone of the Clifford algebra R3 (cf. [10] for its definition). A similar relation holds
for the symbols of Ln and L′n and the equations of the normal cone of Rn for n > 3.

3.3 The case of D3

In R3 can be introduced a particular algebraic decomposition in terms of paravector
variables. Denote by I = e123 the pseudoscalar of R3. The central idempotents I± =
1
2 (1± I) satisfy the properties

I2
+ = I+, I2

− = I−, I+I− = I−I+ = 0, I++ I− = 1 . (59)

Let X = x0+x1e1+x2e2+x3e3 be the paravector variable and X ′= x−X = x12e12+
x13e13 + x23e23 + x123e123. We can define two new (rotated) paravector variables
Y = y0 + y1e1 + y2e2 + y3e3 and Z = z0 + z1e1 + z2e2 + z3e3 by setting

Y = 1
2 (X +X ′I), Z = 1

2 (X−X ′I) , (60)

from which we get the decomposition

x = X +X ′ = Y +Z +(Y −Z)I = 2Y I++2ZI− . (61)

Since the multiplication by I± gives two orthogonal projections, for every positive
integer m it holds

xm = (2Y )mI++(2Z)mI− , (62)
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and therefore for every polynomial, power series or in general for a slice regular
function f on a domain which intersects the real axis, we can write

f (x) = f (2Y )I++ f (2Z)I− . (63)

The operator D3 decomposes as D3 =
1
2 (∂X−∂X ′), where ∂X = ∂x0 +e1∂x1 +e2∂x2 +

e3∂x3 is the Weyl operator of R3 and ∂X ′ = e12∂x12 + e13∂x13 + e23∂x23 + e123∂x123 .
Denote by ∂Y and ∂Z the Weyl operators w.r.t. Y and Z respectively. Then

∂X = 1
2 (∂Y +∂Z), ∂X ′ =

1
2 (∂Y −∂Z)I , (64)

and therefore in the variables Y,Z the operator D3 has the following form:

D3 = I−∂Y + I+∂Z = ∂Y I−+∂ZI+ . (65)

This decomposition implies that a function f belongs to the kernel of D3 if and
only if its projections f− := f I− and f+ := f I+ belong to the kernels of the Weyl
operators ∂Y and ∂Z respectively. In particular, every pair of arbitrary functions g(Y ),
h(Z) define a function f (Y,Z) = I−h(Z)+ I+g(Y ) in the kernel of D3. This property
shows again that D3 is not an elliptic operator, as can be seen also when formula
(55) is expressed in the variables Y,Z:

4D3D3 = 4D3D3 =
1
2 (∆Y +∆Z)− 1

2 (∆Y −∆Z)I = I−∆Y + I+∆Z , (66)

where ∆Y is the Laplacian w.r.t. the variables y0,y1,y2,y3 and similarly for ∆Z .

3.4 The space F(Ω)

In view of the non-ellipticity of D3, we consider a proper subspace of kerD3. As we
will see in Corollary 7, this space extends the one of monogenic functions. Consider
the Laplacians ∆X = ∂X ∂ X , ∆X ′ = ∂X ′∂ X ′ and ∆ = ∂X ∂ X +∂X ′∂ X ′ = ∆R8 .

Definition 9. Let Ω be an open subset of R3. We define

F(Ω) := { f ∈C1(Ω) |D3 f = 0, ∆X ∂X f = 0 on Ω} .

The space F(Ω) can be expressed in the paravector variables Y,Z in the way
described by the next Proposition.

Proposition 9. Let Ω ⊆ R3 be open. Then

F(Ω) = { f ∈C1(Ω) |D3 f = 0, ∆Y ∂Y f = ∆Z∂Z f = 0 on Ω} .

Every f ∈ F(Ω) is biharmonic on Ω (i.e. ∆ 2 f = 0) and also biharmonic w.r.t. the
variables Y and Z separately. In particular, it is real analytic on Ω . Moreover, f =
f−+ f+ ∈ F(Ω) if and only if its projections f− and f+ satisfy
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∂Y f− = ∆Z∂Z f− = 0 , ∂Z f+ = ∆Y ∂Y f+ = 0 . (67)

Proof. If D3 f = 0, then ∂X f = ∂X ′ f . Therefore ∆ f = (∂X ∂ X + ∂X ′∂ X ′) f = 2∆X f .
Moreover, from (64) it follows that ∂Z f = (∂X − I∂X ′) f = (∂X − I∂X ) f = 2I−∂X f .
Then

∆Z f = ∂Z∂ Z f = 4I−∂X ∂ X f = 4∆X f− = 2∆ f− (68)

and therefore ∆Z∂Z f = 8∆X ∂X f−. A similar computation gives ∆Y ∂Y f = 8∆X ∂X f+.
Then ∆X ∂X f = 0 if and only if ∆Z∂Z f = ∆Y ∂Y f = 0.

If f ∈ F(Ω), then 0 = ∂ Z∂Z∆Z f = ∆ 2
Z f and 0 = ∂Y ∂Y ∆Y f = ∆ 2

Y f . From these
equalities we get 4∆ 2 f− = ∆ 2

Z f = 0, 4∆ 2 f+ = ∆ 2
Y f = 0 and then ∆ 2 f = 0: f is

biharmonic on Ω .
The last statement is immediate from the decomposition (65) of D3. ut

Remark 7. The preceding Proposition tells that every function in the space F(Ω) is
(separately) holomorphic Cliffordian [17] in the paravector variables X , Y and Z.

Corollary 7. Every polynomial p(x) = ∑
d
m=0 xmam in the complete Clifford variable

x = ∑|K|≤3 xKeK belongs to F(R3). The same holds for every slice regular function
on a domain in the quadratic cone Q3 intersecting the real axis. If f (X) is a function
depending only on the paravector variable X of R3, then f ∈ F if and only if it is
monogenic, i.e. ∂X f = 0.

Proof. From the algebraic decomposition (62), every power of x can be expressed
by means of powers of Y and Z. Since every power of a paravector variable X is
holomorphic Cliffordian (cf. [17]), i.e. ∆X ∂X f = 0, the first two statements follow
from Theorem 5 and Corollary 6. The last statement is an immediate consequence
of Corollary 5. ut

Let B denote the eight-dimensional unit ball in R3. Let T ' S3×S3 be the subset
of the unit sphere ∂B defined by T := {|Y | = |Z| = 1/2} and P := {|Y | < 1/2}∩
{|Z| < 1/2}. Since |x|2 = 2|Y |2 + 2|Z|2, P ⊂ B and T ⊂ ∂P. We will call T the
distinguished boundary of P. Note that T is contained in the normal cone N3 of R3
(cf. [10]), which has equation |Y |= |Z| in the variables Y,Z.

Proposition 10 (Integral Representation Formula). There is an integral represen-
tation formula for functions f ∈ F(P)∩C2(P) with the distinguished boundary T as
domain of integration. The values of f on P are determined by the values on T of f ,
∂X f and the second derivatives ∂

∂xK
(∂X f ) for multiindices K with |K| ≤ 3.

Proof. Consider the component f− ∈ F(P). Since ∂Y f− = 0, we can apply the rep-
resentation formula for the Weyl operator ∂Y (cf. [1]) and reconstruct f− on the set
{|Y | < 1/2, |Z| = 1/2}. On functions in the class F(P), the operators ∂Y and ∂Z
commute (see the proof of Proposition 9). Since ∂Y ∂Z f− = ∂Z∂Y f− = 0, we can re-
construct also ∂Z f− on the set {|Y | < 1/2, |Z| = 1/2}. Since ∆Z∂Z f− = 0, we can
now apply the integral representation formula for holomorphic Cliffordian functions
(see [17]) w.r.t. the paravector variable Z and obtain the values of f− on P. A similar
reasoning for f+ gives the result. ut



Fueter regularity and slice regularity: meeting points for two function theories 25

Acknowledgements This work was partially supported by MIUR (PRIN Project “Proprietà geo-
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30. Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici. Atti Accad. Naz. Lincei.
Rend. Cl. Sci. Fis. Mat. Nat. (8) 23, 220–225 (1957)

31. Shapiro, M.V., Vasilevski, N.L.: Quaternionic ψ-hyperholomorphic functions, singular inte-
gral operators and boundary value problems. I. ψ-hyperholomorphic function theory. Com-
plex Variables Theory Appl. 27(1), 17–46 (1995)

32. Sommen, F.: On a generalization of Fueter’s theorem. Z. Anal. Anwendungen 19(4), 899–902
(2000)

33. Sudbery, A.: Quaternionic analysis. Math. Proc. Cambridge Philos. Soc. 85(2), 199–224
(1979)


