Matematica Discreta (II modulo)

Primo appello, a.a.
$$2004/2005$$
 — compito 1
21 giugno 2005

Da svolgersi in tre ore. Al candidato si richiede di svolgere almeno un esercizio di ciascuno dei due gruppi e di rispondere ad almeno una delle domande teoriche. **Tutte le risposte devono essere motivate**.

Non è ammessa la consultazione di libri e/o appunti.

Esercizio 1 Dire se il seguente sistema di congruenze ammette soluzioni ed in tal caso determinarle tutte:

$$\begin{cases} x \equiv 15 & \mod 1386 \\ x \equiv -3 & \mod 180 \end{cases}$$

Esercizio 2 Sia $A = \{u \in \mathbb{Z}/12\mathbb{Z} : u \text{ è invertibile}\}$ e $B = \mathbb{Z}/12\mathbb{Z}$. Determinare la cardinalità dei seguenti insiemi:

- 1. $\{f \in B^A : f \text{ è iniettiva}\}.$
- 2. $\{f \in B^A : f \text{ è iniettiva}, f(\bar{1}) = \bar{0}\}.$
- 3. $\{f \in B^A : f(A) = C\}$, essendo $C = \{\bar{7}, \bar{1}1\}$.

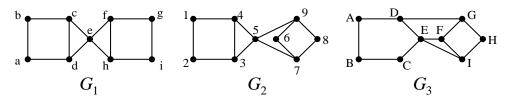
Esercizio 3 Dire, motivando la risposta, quale dei vettori

$$d_1 = (2, 2, 2, 2, 3, 3, 5, 5, 8, 8)$$
 $d_2 = (1, 1, 1, 1, 2, 2, 5, 7)$

è lo score di un grafo e quando ciò è possibile costruire un tale grafo. Si dica inoltre se

- 1. è possibile trovare un tale grafo che sia anche un albero
- 2. è possibile trovare un tale grafo che sia sconnesso
- 3. è possibile trovare un tale grafo che sia 2-connesso

Esercizio 4 Dire, motivando la risposta, quali tra i grafi rappresentati in figura sono tra loro isomorfi e quali no.



Domanda di teoria 1. Si enunci e si provi il teorema di rappresentazione dei numeri naturali in una base fissata. Si descriva un algoritmo ricorsivo per trovare la rappresentazione in una data base di un numero.

Domanda di teoria 2. Si dia la definizione di albero, quindi si enunci e si provi il teorema di caratterizzazione degli alberi finiti (formula di Eulero).

Soluzione dell'esercizio 1 $(1386, 180) = 18 \mid 18 = 15 - (-3)$ quindi il sistema è risolubile. Inoltre, usando l'algoritmo di Euclide, si ottiene $18 = 3 \cdot 1386 + (-23) \cdot 180$ quindi

$$15 - (-3) = 18 = 3 \cdot 1386 + (-23) \cdot 180 - 16 \cdot 81$$

e pertanto $x_0 = 15 - 3 \cdot 1386 = -3 + (-23) \cdot 180 = -4143$ è una soluzione del sistema.

L'insieme delle soluzioni è allora dato da $\{-4143+k[1386,180]\mid k\in\mathbb{Z}\}=\{-4143+k13860\mid k\in\mathbb{Z}\}=\{9717+k13860\mid k\in\mathbb{Z}\}=[9717]_{13860}.$

Soluzione dell'esercizio 2 (1). $\left| \{ f \in B^A : f \in \text{iniettiva} \} \right| = \frac{|B|!}{(|B| - |A|)!} = \frac{12!}{(12 - \Phi(12))!} = \frac{12!$

- (2). Sia $B' = \mathbb{Z}/_{12\mathbb{Z}} \setminus \{\bar{0}\}$ e $A' = (\mathbb{Z}/_{12\mathbb{Z}})^* \setminus \{\bar{1}\}$, allora l'insieme $\{f \in B^A : f \text{ è iniettiva}, f(\bar{1}) = \bar{0}\}$ è evidentemente in bigezione con $\{f \in B'^{A'} : f \text{ è iniettiva}\}$ e quindi $|\{f \in B^A : f \text{ è iniettiva}, f(\bar{1}) = \bar{0}\}| = |\{f \in B'^{A'} : f \text{ è iniettiva}\}| = 11!/8! = 990.$
- (3). L'insieme $\{f \in B^A : f(A) = C\}$ coincide con l'insieme $f \in C^A \mid f$ non è costante $\}$. Quindi la sua cardinalità è pari a $|C|^{|A|} 1 = 2^4 1 = 15$.

Soluzione dell'esercizio 3 Se G=(V,E) è un grafo tale che score $(G)=d_2$ allora |V|=8 e ci sono due vertci, chiamiamoli u e v, di grado rispettivamente 5 e 7. Ma allora i vertci che sono adiacenti sia a u che a v devono essere almeno 4 (in un insieme con 8 elementi due sottinsiemi dicardinalità 5 e 7 hanno intersezione di cardinalità almeno 7+5-8=4) e quindi ci dovrebbero essere almeno 4 vertici diversi da u e v con grado almeno 2. Ciò è in contraddizione con il fatto che di vertici di grado ≥ 2 e diversi da v0 e ne dovrebbero essere soltanto v1.

Per d_1 usiamo il teorema dello score:

$$\begin{array}{lcl} d_1 & = & (2,2,2,2,3,3,5,5,8,8) \\ d_1' & = & (2,1,1,1,2,2,4,4,7) \\ d_1' & = & (1,1,1,2,2,2,4,4,7) \\ d_1'' & = & (1,0,0,1,1,1,3,3) \\ d_1'' & = & (0,0,1,1,1,1,3,3) \\ d_1''' & = & (0,0,1,1,0,0,2) \end{array}$$

Dato che d_1''' è realizzabile come score di un grafo, anche d_1 lo è. La costruzione standard produce il grafo in figura 1 che è 2-connesso.

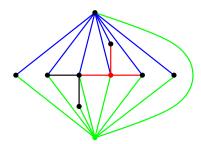


Figura 1: Il grafo costruito per la soluzione dell'esercizio 3. La configurazione di partenza è data dai vertici e lati neri a cui si aggiungono successivamente quelli rossi, quelli blu ed infine quelli verdi.

- (1). La risposta è no. Ogni albero finito havertici di grado 1, mentre in un tale grafo ogni vertice ha grado ≥ 2 ..
- (2). La risposta è no. Se G = (V, E) è un grafo tale che score $(G) = d_1$ allora esiste $v \in V$ tale che $\deg(V) = 8$, ossia ogni altro vertice, tranne uno, è adiacente e quindi congiungibile con v. D'altra parte l'unico vertice non ancora considerato ha grado positivo, e quindi deve essere congiungibile con almeno uno degli altri. Quindi G è connesso.
- (3). Che il grafo di figura 1 sia 2-connesso lo si può vedere ad esempio mostrando che è ottenuto da un ciclo con successive aggiunzioni e suddivisioni di lati. \Box

hamiltoniano (e quindi 2-connesso) in quanto contiene il ciclo (A, B, C, E, F, I, H, G, D, A).

Di conseguenza $G_1 \not\cong G_3$ e $G_2 \not\cong G_3$.

Anche $G_1 \not\cong G_2$, dato che in G_1 ogni vertice di grado 2 è adiacente ad un altro vertice di grado 2, mentre in G_2 i vertici 6 e 8 hanno grado 2 ma sono adiacenti solo a vertici di grado 3.