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The Lazard correspondence

Definition. The Lazard correspondence is an isomorphism between
the categories of nilpotent Lie rings with order pn and nilpotency
class c and finite p-groups with the same order and nilpotency
class, provided c < p.

Using the Baker-Campbell-Hausdorff formula and its inverses, it is
possible to define:

a group structure on a Lie ring of order pn and nilpotency
class < p;

a Lie ring structure on a p-group of class < p.

These operations are mutually inverse. The same set gets the
structure of a Lie ring and of a p-group.

We have developed algorithms to carry out this correspondence.
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The Baker-Campbell-Hausdorff formula

Let x and y be non-commutative indeterminates over Q, then

exey 6= ex+y .

The product exey was studied by Campbell in 1898, Baker in 1905
and Hausdorff in 1906.

The BCH-formula asserts exey = ez(x ,y), with

z(x , y) = x + y +
1

2
[x , y ] +

1

12
[x , x , y ]− 1

12
[y , x , y ]

− 1

24
[y , x , x , y ]− 1

720
[x , x , x , x , y ] + . . . .

where the bracket is the commutator defined as [x , y ] := xy − yx
and we use the right normed convention.
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Many authors, as Dynkin in 1947, Goldberg in 1956, Reinsch in
2000 and Casas and Murua in 2009, found methods to compute
the coefficients of z(x , y).

Remark. For x and y in a nilpotent Lie ring, z(x , y) is a finite sum
and the denominators of the coefficients only have prime factors
smaller then c + 1.

Example. If c = 5, we have

z(x , y) = x + y +
1

2
[x , y ] +

1

12
[x , x , y ]− 1

12
[y , x , y ]− 1

24
[y , x , x , y ]

− 1

720
[x , x , x , x , y ]− 1

120
[x , y , x , x , y ]− 1

360
[x , y , y , x , y ]

+
1

360
[y , x , x , x , y ] +

1

120
[y , y , x , x , y ] +

1

720
[y , y , y , x , y ]

where all denominators involve only prime factors 2, 3 and 5.
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Commutators

A similar formula follows from z for the commutator:

Jex , ey K := e−xe−yexey = ew(x ,y),

where w(x , y) is an infinite sum of Lie elements.

We have found a method for computing explicitly this formula.

The first few components of w are given by:

w(x , y) = [x , y ]− 1

2
[x , x , y ]− 1

2
[y , x , y ] +

1

6
[x , x , x , y ]

+
1

4
[y , x , x , y ] +

1

6
[y , y , x , y ]− 1

24
[x , x , x , x , y ] + . . . .
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We use z and w to go from a Lie ring L of order pn and nilpotency
class c < p to a p-group, with the same order and nilpotency class,
in the following way:

ab = z(a, b) = a + b +
1

2
[a, b] +

1

12
[a, a, b]− 1

12
[b, a, b]

− 1

24
[b, a, a, b]− 1

720
[a, a, a, a, b] + . . . ,

Ja, bK = w(a, b) = [a, b]− 1

2
[a, a, b]− 1

2
[b, a, b] +

1

6
[a, a, a, b]

+
1

4
[b, a, a, b] +

1

6
[b, b, a, b]− 1

24
[a, a, a, a, b] + . . . ,

for all a, b ∈ L.
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The inverse formulas

We can invert the previous formulas to go from a p-group to a Lie
ring.

We have found a general formula for the repeated commutators of
ex and ey :

Jexik , . . . , exi1 , ex , ey K = eV ,

where xik , . . . , xi1 ∈ {x , y} and V is an infinite sum of Lie elements.

This formula is obtained inductively, that is, if we put

Jexik−1 , . . . , exi1 , ex , ey K = eV
′
,

we have
eV = Jexik , eV

′
K = ew(xik ,V

′).
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The first inverse formula is

ex+y = h1(ex , ey ) = exey
∏
i≥2

eαiVi ,

where eVi are commutators in ex and ey and the exponents αi are
in Q (they depend on the order in which the Vi are listed).

Similarly, the second inverse formula is

e [x ,y ] = h2(ex , ey ) = Jex , ey K
∏
i≥3

eβiVi .
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We have found a method for computing explicitly h1 and h2.

Theorem. To find the αi for all commutators of length t in h1 we
have to solve the following equation:[

exey
∏
i≥2

eαiVi

]
t

=
1

t!
(x + y)t .

Similarly to find the βi for the length t in h2 the equation is:

[
Jex , ey K

∏
i≥3

eβiVi

]
t

=


1

( t
2 )!

[x , y ]
t
2 , if t is even,

0, otherwise.
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Constructing h1

For t = 2 we put eV2 := ew = Jex , ey K. We consider[
exeyeα2w

]
2

=
[
(1 + z +

1

2
z2)(1 + α2w)

]
2
.

Expanding the equation becomes

1

2
[x , y ] +

1

2
(x + y)2 + α2[x , y ] =

1

2
(x + y)2 ⇒ α2 = −1

2
.

For t = 3 we put eV3 := Jex , ex , ey K and eV4 := Jey , ex , ey K. Then[
exeye−

1
2 weα3V3eα4V4

]
3

=
[
(1+z+

1

2
z2+

1

6
z3)(1−1

2
w)(1+α3V3)(1+α4V4)

]
3
,

and we obtain(
α3 +

1

12

)
[x , x , y ]+

(
α4 −

1

12

)
[y , x , y ] = 0⇒ α3 = − 1

12
and α4 =

1

12
.
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For t = 4, we put eV5 := Jex , ex , ex , ey K, eV6 := Jey , ex , ex , ey K,
eV7 := Jex , ey , ex , ey K, eV8 := Jey , ey , ex , ey K.

The equation becomes(
α5 +

1

24

)
[x , x , x , y ]+(α6 + α7) [y , x , x , y ]+

(
α8 −

1

24

)
[y , y , x , y ] = 0,

hence α5 = − 1
24 , α6 + α7 = 0 e α8 = 1

24 .

If we choose α6 = α7 = 0 we obtain

h1(ex , ey ) = eze−
1
2
V2e−

1
12
V3e

1
12
V4e−

1
24
V5e

1
24
V8 · · · .
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The first few components of h1 are given by:

h1(ex , ey ) = exey Jex , ey K−
1
2 Jex , ex , ey K−

1
12 Jey , ex , ey K

1
12

Jex , ex , ex , ey K−
1

24 Jey , ey , ex , ey K
1

24

Jex , ex , ex , ex , ey K−
19

720 · · · .

For h2 we have:

h2(ex , ey ) = Jex , ey KJex , ex , ey K
1
2 Jey , ex , ey K

1
2 Jex , ex , ex , ey K

1
3

Jey , ex , ex , ey K
1
4 Jey , ey , ex , ey K

1
3

Jex , ex , ex , ex , ey K
1
4 · · · .
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Setting up the correspondence

We use h1 and h2 to go from a p-group G of order pn and
nilpotency class c < p to a Lie ring of the same order and
nilpotency class in the following way:

g + h = h1(g , h) = ghJg , hK−
1
2 Jg , g , hK−

1
12 Jh, g , hK

1
12

Jg , g , g , hK−
1

24 Jh, h, g , hK
1

24 Jg , g , g , g , hK−
19

720 · · · ,

[g , h] = h2(g , h) = Jg , hKJg , g , hK
1
2 Jh, g , hK

1
2 Jg , g , g , hK

1
3

Jh, g , g , hK
1
4 Jh, h, g , hK

1
3 Jg , g , g , g , hK

1
4 · · · ,

for all g , h ∈ G .
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Let G be a p-group of nilpotency class c < p. There is a
presentation of G , called the power-commutator presentation, with
generators g1, . . . , gn and relations

gp
i = g

α
(i)
i+1

i+1 · · · g
α

(i)
n

n , for 1 ≤ i ≤ n and α
(i)
k < p;

Jgj , giK = g
β

(i,j)
j+1

j+1 · · · g
β

(i,j)
n

n , for 1 ≤ i < j ≤ n and β
(i ,j)
k < p.

For all g ∈ G , there are λ1, . . . , λn < p such that

g = gλ1
1 · · · g

λn
n .
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Theorem. Let g = gλ1
1 · · · gλnn ∈ G , for λ1, . . . , λn < p. There are

µ1, . . . , µn < p such that

g = µ1g1 + . . .+ µngn.

Proof. By the Lazard correspondence

g = z(gλ1
1 , gλ2

2 · · · g
λn
n ) ⇒ g = λ1g1 + g ′ ⇒ g ′ = −λ1g1 + g

gλ1
1 = λ1g1 ⇒ g ′ = g−λ1

1 + g .

Hence
g ′ = h1(g−λ1

1 , g) = g−λ1
1 gg̃ = gλ2

2 · · · g
λn
n g̃ ,

where g̃ ∈ 〈g3, . . . , gn〉. It follows that g ′ ∈ 〈g2, . . . , gn〉 and we
can repeat the reasoning for g ′ an so on. �
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In order to compute the Lie ring structure of G we transform the
relations of G into relations that hold in the Lie ring.

For 1 ≤ i < j ≤ n we have

pgi = gp
i = g

αi+1

i+1 · · · g
αn
n = βi+1gi+1 + . . .+ βngn,

and

[gj , gi ] = h2(gj , gi ) = g
γj+1

j+1 · · · g
γn
n = δj+1gj+1 + . . .+ δngn,

for some αk , βk , γk , δk < p.

Remark. Once we have the Lie ring structure on G we have two
representation of a g ∈ G , a product representation (coming from
the group structure) and a sum representation (coming from the
Lie ring structure).
We can use the BCH-formula to efficiently switch between the
representations.
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Implementations

We have implemented the algorithms in Magma with a 3.16 GHz
processor.

h1 h2 BCH

weight time # terms time # terms time # terms

12 526 1519 433 1517 0.13 985
13 2329 3055 2013 3053 0.47 2521
14 11137 6111 12493 6109 0.92 4056

Remark. The number of terms of the BCH-formula roughly
doubles with each increase of the weight. The running times much
more than double. So it will be possible to go a bit further (until
weight 15 or 16), but we cannot realistically hope to go much
beyond that.
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The main operation for performing the Lazard correspondence is
the evaluation of the BCH-formula for given x , y of a nilpotent Lie
ring, and the formulae for h1 and h2 for given g , h of a p-group.

In order to do this efficiently, we encode these formulae as labeled
binary trees.

Figure: Tree corresponding to the part of the BCH-formula up to weight 5
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The edges of the tree are labeled x or y ;

the root of the tree corresponds to [x , y ];

every node corresponds to a commutator;

every node has a label, which is the coefficient of the
corresponding commutator in the BCH-formula;

in order to determine the commutator corresponding to any
other node, we take the path to the root, and record the
labels.
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Main advantage: when evaluating z(x , y) we find that a certain
commutator u in x and y is zero, then we can discard the entire
subtree below the node corresponding to u.

If, for example, [y , x , x , y ] = 0 the tree becomes:
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A GAP package: LieRing

We have written a GAP package, LieRing that contains, among
other things, an implementation of the algorithms for computing
the Lazard correspondence. The package is able to deal with
groups and rings up to class 14.

In particular it contains two functions:

PGroupToLieRing: it computes the Lie ring structure of a
p-group of class < p.

LieRingToPGroup: it computes the group structure of a Lie
ring of order pn and class < p.
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The functions PGroupToLieRing and LieRingToPGroup both
return a record with 4 components:

pgroup: the group;

liering: the Lie ring;

GtoL: a function mapping elements of the group to elements
of the Lie ring;

LtoG: a function mapping elements of the Lie ring to elements
of the group.
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Example. We take a 13-group G of class 5.

gap> F := FreeGroup(IsSyllableWordsFamily,"a","b","c","d", "e", "f", "g");;

gap> a := F.1;; b := F.2;; c := F.3;; d := F.4;; e := F.5;; f := F.6;; g:=F.7;;

gap> rels := [ a^13, b^13/g, c^13, d^13, e^13, f^13, g^13,

> Comm(b,a)/c, Comm(c,a)/d, Comm(d,a)/e, Comm(e,a)/f, Comm(f,a), Comm(g,a),

> Comm(c,b)/(g^11), Comm(d,b)/g, Comm(e,b)/g, Comm(g,b), Comm(d,c)/(g^12),

> Comm(e,c), Comm(f,c), Comm(g,c), Comm(e,d), Comm(f,d), Comm(g,d), Comm(f,e),

> Comm(g,e), Comm(g,f)];;

gap> G := PcGroupFpGroup( F/rels );

<pc group of size 62748517 with 7 generators>

gap> r:= PGroupToLieRing(G);

rec( pgroup := <pc group of size 62748517 with 7 generators>,

liering := <Lie ring with 6 generators>,

GtoL := function( g0 ) ... end, LtoG := function( x0 ) ... end )

gap> f:= r.GtoL; h:= r.LtoG;

function( g0 ) ... end

function( x0 ) ... end

gap> L:= r.liering;

<Lie ring with 6 generators>

gap> b:= Basis(L);

Basis( <Lie ring with 6 generators>, [ v_1, v_2, v_3, v_4, v_5, v_6 ] )

gap> h(b[1]);

a^12*c*d^5*e^3*f^8*g^7

gap> f(h(b[1]));

v_1
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Example. We take a nilpotent Lie ring K of class 4 and order 77.

gap> L:= FreeLieRing( Integers, ["a","b","c"] );;

gap> a:= L.1;; b:= L.2;; c:= L.3;;

gap> rels:= [ (b*a)*b, c*a, c*b-(b*a)*a, 7^2*a, 7*b-((b*a)*a)*a, 7*c-((b*a)*a)*a];;

gap> K:= FpLieRing( L, rels );

<Lie ring with 5 generators>

gap> r:= LieRingToPGroup(K);

rec( pgroup := <pc group of size 823543 with 7 generators>,

liering := <Lie ring with 5 generators>,

LtoG := function( x0 ) ... end, GtoL := function( g0 ) ... end )

gap> G:= r.pgroup;; f:= r.LtoG;; h:= r.GtoL;;

gap> u:= Random(K);

6*v_1+3*v_2+6*v_3+46*v_4+47*v_5

gap> f(u);

f1^6*f2^4*f3^5*f4^2*f5^4*f6^5*f7^4

gap> h(f(u));

6*v_1+3*v_2+6*v_3+46*v_4+47*v_5

Serena Cicalò University of Cagliari (Italy)



An application of the Lazard correspondence:
non-commuting graphs

Definition. Let G be a non abelian group with center Z (G ). The
non-commuting graph of G , denoted by Γ(G ), is the graph with
vertices the elements of G \ Z (G ) and where

g ∼ h ⇔ Jg , hK 6= 1.

Problem. Is it possible that two non-isomorphic groups have
isomorphic non-commuting graphs?

Answer. Yes!

We prove that by means of 6-dimensional nilpotent Lie rings and
the Lazard correspondence.

Definition. Let L be a Lie ring with center Z (L). The
non-commuting graph of L, denoted by Γ(L), is the graph with
vertices the elements of L \ Z (L) and

x ∼ y ⇔ [x , y ] 6= 0.
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Consider the nilpotent Lie rings L1 6∼= L2 of order p6, class 3 < p:

L1 := 〈y1, . . . , y6 | [y1, y2] = y4, [y1, y3] = y5, [y2, y4] = y6, [y3, y5] = y6〉,
L2 := 〈x1, . . . , x6 | [x1, x2] = x4, [x1, x3] = x5, [x2, x4] = x6, [x3, x5] = 2x6〉.

Claim. Γ(L1) ∼= Γ(L2).

Proof. Let u1 = α1x1 + . . .+ α6x6, u2 = β1x1 + . . .+ β6x6 ∈ L2.

[u1, u2]L2 = (α1β2 − α2β1)x4 + (α1β3 − α3β1)x5

+(α2β4 − α4β2 + 2α3β5 − 2α5β3)x6.

Let ψ : L2 → L1 with ψ(x5) = 2y5 and ψ(xi ) = yi for i 6= 5.

[ψ(u1), ψ(u2)]L1 = (α1β2 − α2β1)y4 + (α1β3 − α3β1)y5

+(α2β4 − α4β2 + 2α3β5 − 2α5β3)y6.

⇒ u1 ∼ u2 ⇔ ψ(u1) ∼ ψ(u2) ⇒ Γ(L2) ∼= Γ(L1). �
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By the Lazard correspondence, to L2 and L1 correspond two
p-groups G2 and G1.

Remark. Let L be a Lie ring of order pn and nilpotency class at
most c < p and let G be the p-group that corresponds to L. For
all x , y ∈ L we have

0 7→ 1, Z (L) 7→ Z (G ), and [x , y ] = 0 ⇔ Jg , hK = 1

where x 7→ g and y 7→ h.

Conclusion. G2 6∼= G1 and Γ(G2) ∼= Γ(G1).
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Thank you!
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