On the minimal permutation degrees of abelian quotients of finite p-groups

Clara Franchi

Trento, June 8th 2012

Definitions

All groups are finite.
Definition
For a group G, the minimal faithful permutation degree is

$$
\mu(G):=\min \{n \mid G \hookrightarrow \operatorname{Sym}(n)\} .
$$

Definition

A minimal (faithful) permutation representation of G is a faithful permutation representation of G of degree $\mu(G)$

A general formula

$$
\mu(G)=\min \left\{\sum_{i=1}^{k}\left|G: H_{i}\right| \mid H_{i} \leq G \text { and } \bigcap_{i=1}^{k} \bigcap_{g \in G} H_{i}^{g}=1\right\}
$$

Theorem (D.L. Johnson (1971))
We can always choose a minimal representation of G where point stabilizers are meet-irreducible subgroups.

Definition

A subgroup H of a group G is called meet-irreducible if it is not the intersection of two proper subgroups of G containing H properly.

Bounds on $\mu(G)$

- $\mu(G) \leq|G| \leq \mu(G)$! (Cayley's theorem)
- $|G|=\mu(G)!\Longleftrightarrow G=\operatorname{Sym}(\mu(G))$.

Theorem (D.L. Johnson (1971))
$\mu(G)=|G| \Longleftrightarrow G$ is one of the following

1. cyclic of prime power order,
2. generalized quaternion 2-group,
3. Klein 4-group.

Abelian groups

A. Povsner (1937), O. Ore (1939), G.I. Karpilovsky (1970), D.L. Johnson (1971)

$$
A=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{r}^{\alpha_{r}}} \Longrightarrow \mu(A)=p_{1}^{\alpha_{1}}+\cdots+p_{r}^{\alpha_{r}}
$$

Direct products

For any groups G and H we have

$$
\mu(G \times H) \leq \mu(G)+\mu(H)
$$

equality holds provided

- $(|G|,|H|)=1$ (D.L. Johnson 1971)
- G and H are nilpotent non-trivial groups (D. Wright 1975)

If T_{i} are simple groups, $\mu\left(T_{1} \times \ldots \times T_{k}\right)=\mu\left(T_{1}\right)+\ldots+\mu\left(T_{k}\right)$.
(Easdown, Praeger 1989)

Subgroups and quotients

Clearly

$$
H \leq G \Longrightarrow \mu(H) \leq \mu(G)
$$

What about quotients?
If G is abelian, for any $N \leq G$ we have

$$
\mu(G / N) \leq \mu(G)
$$

But, this bound does not hold in general!

Examples

$$
\begin{gathered}
G=<x, y \mid x^{8}=y^{4}=1, x^{y}=x^{-1}> \\
Z(G)=<x^{4}, y^{2}>\cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
N:=<x^{4} y^{2}>\leq Z(G) \\
G / N=<\bar{x}, \bar{y} \mid \bar{x}^{8}=1, \bar{x}^{4}=\bar{y}^{2}, \bar{x}^{\bar{y}}=\bar{x}^{-1}>
\end{gathered}
$$

is a generalized quaternion 2-group of order 16 .
We have that $\mu(G)=12$, in fact a faithful representation of degree 12 is given by

$$
\begin{gathered}
x \mapsto(1,2,3,4,5,6,7,8) \\
y \mapsto(1,8)(2,7)(3,6)(4,5)(9,10,11,12)
\end{gathered}
$$

while $\mu(G / N)=|G / N|=16$.

- (P. M. Neumann,1987)

Let

$$
G=\underbrace{D_{8} \times D_{8} \times \ldots \times D_{8}}_{m} \leq \operatorname{Sym}(4 m) .
$$

G has a normal subgroup N such that G / N is extraspecial and $\mu(G / N)=2^{m+1}$.

'Good' cases

$$
\mu(G / N) \leq \mu(G)
$$

provided:

- G is abelian;
- G / N is cyclic
(if $G / N=<g N>$, then $\mu(G / N) \leq \mu(<g>) \leq \mu(G)$);
- G / N is an elementary abelian p-group (Kovács \& Praeger, 1989)
- G / N has no non-trivial abelian normal subgroups (Kovàcs \&

Praeger 2000)

Theorem (D.F. Holt \& J. Walton, 2002)
There exists a constant $c,(c \sim 5.34)$ such that in any finite group
G we have

$$
\mu(G / N) \leq c^{\mu(G)-1} .
$$

A conjecture

Conjecture (D. Easdown, C. Praeger, 1987)
$\mu(G / N) \leq \mu(G)$ whenever G / N is abelian.

Call G a minimal counterexample if it is a counterexample to the conjecture with minimal degree and minimal order and let N be a normal subgroup of G such that $\mu(G / N)>\mu(G)$. Then

- G is a non-abelian p-group (D. Easdown, C. Praeger 1988)
- $N=G^{\prime}$
- $\mu\left(G / G^{\prime}\right)=\mu(G)+p($ L. Kovàcs, C. Praeger 2000).

Related results

Theorem (M. Aschbacher, R. Guralnick, 1989)
Let G be a primitive permutation group of degree n. Then $\left|G / G^{\prime}\right| \leq n$.

Theorem (M. Aschbacher, R. Guralnick, 1989) If n is an odd power of 2, there exists a transitive 2-group G of degree n such that $\left|G / G^{\prime}\right| \geq 2^{n / 2 \log _{2} n}$.

Theorem (R. Guralnick, 2000)
Let G be a transitive group of degree $n>1$ and let N be a normal subgroup of G with G / N cyclic. Then $|G / N| \leq n$.

p-groups with an abelian maximal subgroup

Theorem (F. 2011)
Let G be a non-abelian finite p-group with an abelian maximal subgroup. Then $\mu\left(G / G^{\prime}\right) \leq \mu(G)$.

Proof.
Ingredients

- If G is transitive of degree p^{n} with meet-irreducible point stabilizer, then

$$
\mu\left(G / G^{\prime}\right) \leq p^{n-1}+p
$$

and every section of G^{\prime} which is central in G has order at most p.

- G has no abelian transitive constituent.
- Good knowledge of subdirects products.
- Induction on the number of orbits.

p-groups with a 'large' abelian normal subgroup

Proposition (F. 2012)

Let P be a non-abelian p-group which is a transitive permutation group of degree $p^{n}, n \geq 2$, with meet-irreducible point stabilizer.
Suppose that P contains a normal abelian subgroup M such that G / M is cyclic of order $p^{k}, k \leq n$. Then

1. every section of P^{\prime} which is central in P has order at most p^{k};
2. $\left|P / P^{\prime}\right| \leq p^{n}$;
3. $\mu\left(P / P^{\prime}\right) \leq p^{n-1}+p$.

Lemma

Let $W_{1}=C_{p^{m}}$ 〕 $C_{p^{k}}$, and let B denote the base subgroup of W_{1}. Then

1. every section of B which is central in W_{1} has order at most p^{m};
2. every section of W_{1}^{\prime} which is central in W_{1} has order at most

$$
\left|W_{1}^{\prime} \cap Z\left(W_{1}\right)\right| \leq \min \left\{p^{k}, p^{m}\right\} \leq p^{k}
$$

Proposition (F. 2012)

Let G be a non-abelian p-group with a normal abelian subgroup M such that G / M is cyclic of order at most p^{2}.

Suppose that G has a faithful representation of degree $d=k_{2} p^{2}+k_{3} p^{3}+\ldots+k_{n} p^{n}$, with k_{i} orbits of length p^{i}, for each $i=2, \ldots, n$.

Suppose that each point stabilizer is meet-irreducible and that G has no abelian transitive constituent. Then

$$
\left|G / G^{\prime}\right| \leq p^{2 k_{2}+3 k_{3}+\ldots+n k_{n}} .
$$

Proposition (F. 2012)

Let P be a non-abelian p-group which is a transitive permutation group of degree $p^{n}, n \geq 2$, with meet-irreducible point stabilizer.

Suppose that P contains a normal abelian subgroup M such that G / M is elementary abelian of order p^{2}. Then

$$
\mu\left(P / P^{\prime}\right) \leq p^{n} .
$$

It is well known that the base subgroup B of the wreath product

$$
W=C_{p^{m}} \supsetneq\left(C_{p} \times C_{p}\right)
$$

has a ring structure isomorphic to the group ring $A=\mathbb{Z}_{p^{m}}\left[C_{p} \times C_{p}\right]$ and the isomorphism sends subgroups of B that are normal in W to ideals of A.

The group ring $\mathbb{Z}_{p^{m}}\left[C_{p} \times C_{p}\right]$

Theorem (Okon, Rush, Vicknair, 2000)
Every ideal of the group ring $\mathbb{Z}_{p^{m}}\left[C_{p} \times C_{p}\right]$ can be generated by at most:

1. $p+2$ elements, if $m>2$;
2. $p+1$ elements, if $m=2$;
3. p elements, if $m=1$.

Corollary

Every proper section of B which is central in W has rank at most

1. $p+2$, if $m>2$;
2. $p+1$, if $m=2$;
3. p, if $m=1$.

In particular, every proper section of the base subgroup of \mathbb{Z}_{p} $2\left(C_{p} \times C_{p}\right)$ which is central in whole group, is elementary abelian of order at most p^{p}.

Lemma (F. 2012)

Let $W=C_{p^{m}} \\left(C_{p} \times C_{p}\right), m \geq 2$, and let B be its base subgroup. Then

1. B / W^{\prime} is cyclic of order p^{m};
2. $\gamma_{i}(W) / \gamma_{i+1}(W)$ is elementary abelian of rank at most $p+2$ (respectively $p+1$ when $m=2$), for every $i \geq 2$;
3. every section of B which is central in W has order at most $p^{m p+1}$;
4. every section of W^{\prime} which is central in W has order at most $p^{m(p-1)+1}$.

Questions

1. Find best possible bound for the size and (possibly) the exponent of sections of B which are central in W.
2. Find best possible bound for the size and (possibly) the exponent of sections of W^{\prime} which are central in W.
