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Coclass theory
(Leedham-Green & Newman, 1980)

• Coclass of a finite p-group G with |G | = pn and
cl(G ) = c :

cc(G ) := n − c .

• Lower central series

G = γ1(G ) ≥ γ2(G ) ≥ γ3(G ) ≥ . . .

• Coclass of an infinite pro-p-group G :

cc(G ) := lim
i→∞

cc(G/γi (G )).
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Coclass Graph G(p, r)

• vertices: isomorphism types of finite p-groups of coclass r

• there is an edge from G to H if there is N / H with
|N| = p and H/N ∼= G .

Example G(2, 1) (2-groups of maximal class):

V4 C4

D8 Q8

D16 Q16 SD16

D32 Q32 SD32
...

...
...
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Infinite paths in G(p, r)

Infinite paths correspond 1-1 to pro-p-groups of coclass r .

Theorem 1 (Coclass Theorems C & D)

For fixed p and r there are only finitely many isomorphism
classes of pro-p-groups of coclass r . These pro-p-groups are
soluble.

Corollary 2

There are only finitely many infinite paths in G(p, r).
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• Coclass tree is ultimately periodic for
p = 2 (du Sautoy, 2001 and Eick &
Leedham-Green, 2008).

• p odd: in general the result holds only
for shaved coclass trees.
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Coclass Family

Parametrized Presentations
(Eick & Leedham-Green, 2008)
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...

a

Gk = 〈g1, . . . , g5, t1, t2 |
g 2

1 = g4,

gg1
2 = g2g3, g

2
2 = 1,

gg1
3 = g3g5, g

g2
3 = g3t1+2k

1 t2, g
2
3 = t−1+2k

1 t−1
2 ,

gg1
4 = g4, g

g2
4 = g4g5t2k

1 t2, . . . , g
2
4 = 1,

gg1
5 = g5t2, g

g2
5 = g5t−1

1 , . . . , g 2
5 = t1,

tg1
1 = t1t2

2 , t
g2
1 = t−1

1 , . . . , t2k+1

1 = 1,

tg1
2 = t−1

1 t−1
2 , tg2

2 = t−1
2 , . . . , tt12 = t2, t

2k+1

2 = 1〉
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Schur Multiplier

Let F = (Gk | k ∈ N0) be a coclass family.
Let M(G ) denote the Schur multiplier of a group G .

Theorem 3 (Eick & Feichtenschlager, 2010)

There are m ∈ N0, and for 1 ≤ i ≤ m integers ri ∈ N0 and
si ∈ Z such that for every large enough k ∈ N0 it follows that
di (k) = prik+si ∈ N and

M(Gk) ∼= Cd1(k) × . . .× Cdm(k).

Corollary 4

There is f (X ) = fF ∈ Q[X ] such that

|M(Gk)| = f (pk)

for large k.
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Automorphism Group

Theorem 5 (Eick, 2006)

There is e ∈ N such that for large k

|Aut(Gk+1)| = |Aut(Gk)| · pe .

Corollary 6

There is g(X ) = gF (X ) ∈ Q[X ] such that

|Aut(Gk)| = g(pk)

for large k.
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Coclass Family
Character Degrees

N0(G0) = 8

N0(G1) = 8

N0(G2) = 8

N1(G0) = 2

N1(G1) = 2

N1(G2) = 2

N2(G0) = 7

N2(G1) = 31

N2(G2) = 127

23

24

25

26

27

28

29

210

211

G0

G1

G2

...

For a finite p-group G and ` ∈ N0,
denote

N`(G ) := |{χ ∈ Irr(G ) | χ(1) = p`}|.

N0(Gk) = 8
N1(Gk) = 2
N2(Gk) = −1 + 22k+3

N`(Gk) = 0 for ` ≥ 3

f2(X ) := −1 + 8X 2
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Theorem 7 (C. 2011)

Let F = (Gk | k ∈ N0) be a coclass family and d denote the
dimension of the associated pro-p-group.

• There exists a bound b so that every irreducible character
for every Gk has degree at most pb. That is, N`(Gk) = 0 if
` > b.

• Let ` ∈ {0, . . . , b}. Then there exists a polynomial
f`(X ) ∈ Q[X ] with deg(f`) ≤ d and a natural number w
such that N`(Gk) = f`(pk) for every k ≥ w.
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Character theory of finite p-groups

Let G be a finite p-group.

Definition 8
Let χ ∈ Irr(G ) and U ≤ G . We say, that χ is linearly induced
from U, if there is a linear character µ of U such that χ = µ↑G .

Theorem 9
G is monomial, that is, each irreducible character of G is
linearly induced from some subgroup.
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Let U ≤ G and let µ be a linear character of U. Denote
χ := µ↑GU .

1 Is χ irreducible?

If χ is irreducible:

2 How many linear characters of U induce to χ?

3 Given V ≤ G ,V 6= U, how many linear characters of V
induce to χ?
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Deciding irreducibility

Let µ be a linear character of U. Define

cµ :U\G/U → {0, 1},UgU 7→

{
1, if [g ,U] ∩ U ⊆ ker(µ),

0, otherwise.

Theorem 10 (Shoda)

µ↑GU is irreducible if and only if cµ = 1{U}.
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Deciding equality of linearly
induced characters

For W ∈ {U,V } define the maps aµ,W : W \G/U → N0 and
aU : U\G/U → N0 by setting for g ∈ G :

aµ,W (WgU) =

{
1, if (W g )′ ∩ U ⊆ ker(µ),

0, otherwise,

aU(UgU) = [Ug : (U ∩ Ug )(Ug )′].

Theorem 11
Assume χ = µ↑GU∈ Irr(G ).

(i) χ is linearly induced from V if and only if aµ,V 6= 0.
(ii) |{λ ∈ Lin(U) | λ↑G= χ}| =

∑
d∈U\G/U aµ,U(d) · aU(d).
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Applying results to coclass families

Let G be a finite p-group, acting on a Zp-module N of finite
rank (Zp = p-adic numbers). Denote N0 := N and
Ni+1 := [G ,Ni ] for i ≥ 0.

Definition 12
G acts uniserially on N, if [Ni : Ni+1] = p for every i with
Ni 6= 1.

Let d = rank N and assume that G acts uniserially on N. Then
Ni+d = p · Ni for all i .
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Coclass Family

Let F = (Gk | k ∈ N0) be a coclass family.

Then there are
n ∈ N0, d ∈ N and a finite p-group P, acting uniserially on an
abelian group T such that

• T ∼= Zd
p (where Zp denotes the p-adic numbers),

• Gk is a group extension of T/Tn+kd by P.

(Eick & Leedham-Green, 2008)
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Let
τk : H2(P,T )→ H2(P,T/Tn+kd)

be induced by the natural homomorphism T � T/Tn+kd ,

ρk : H2(P,T/Tn)→ H2(P,T/Tn+kd)

be induced by T/Tn → T/Tn+kd , t + Tn 7→ pk · t + Tn+kd

Theorem 13 (Eick & Leedham-Green, 2008)

If n is sufficiently large, then there is K ≤ H2(P,T/Tn) such
that for k ∈ N0

1 τk is a monomorphism,

2 K ∼= H3(P,T ),

3 H2(P,T/Tn+kd) = Im(τk)⊕ ρk(K ).
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Coclass Family

F = (Gk | k ∈ N0) . . .coclass family.
Gk is a group extension of T/Tn+kd by P.

There are γ ∈ Z 2(P,T ) and δ ∈ Z 2(P,T/Tn) such that for all
k ∈ N0 the group extension defined by the cocycle

γ + pkδ : P × P → T/Tn+kd ,

(g , h) 7→ γ(g , h) + pkδ(g , h) + Tn+kd

is isomorphic to Gk .

(Eick & Leedham-Green, 2008)
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Applying results to coclass families

Denote Ak := T/Tn+kd .

Using a Lemma due to Seitz, it follows that the irreducible
characters of Gk are linearly induced from overgroups of Ak , for
all k ∈ N0.

Since Gk/Ak = P for all k, this means that the character
degrees of the irreducible characters of Gk are bounded globally.
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Applying results to coclass families

• Let ` ∈ N0 and let U0 = {U1,0, . . . ,Us,0} be a transversal
of the conjugacy classes of subgroups U in G0 with
A0 ≤ U and [G0 : U] = p`.

• Denote πk : G0/A0 → Gk/Ak , gA0 7→ gAk .

• For 1 ≤ i ≤ s let Ui ,k ≤ Gk such that Ak ≤ Ui ,k and

πk(Ui ,0/A0) = Ui ,k/Ak

and denote Uk = (U1,k , . . . ,Us,k).
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• Let ` ∈ N0 and let U0 = {U1,0, . . . ,Us,0} be a transversal
of the conjugacy classes of subgroups U in G0 with
A0 ≤ U and [G0 : U] = p`.
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How to determine N`(Gk)

• We can determine N`(Gk) = |{χ ∈ Irr(Gk) | χ(1) = p`}|
similiar to |{µ ∈ Lin(U1,k) | µ↑G∈ Irr(Gk)}|.

• Denote Uk := U1,k and recall that for µ ∈ Lin(Uk)

cµ :Uk\Gk/Uk → {0, 1},

UkgUk 7→

{
1, if [g ,Uk ] ∩ Uk ⊆ ker(µ),

0, otherwise,

and

{µ ∈ Lin(Uk) | µ↑G∈ Irr(Gk)} = {µ ∈ Lin(Uk) | cµ = 1{Uk}}.

• Lin(Uk) is a group with respect to pointwise multiplication.
But {µ ∈ Lin(Uk) | cµ = 1{Uk}} is not a subgroup.
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How to determine N`(Gk)
While {µ ∈ Lin(Uk) | cµ = 1{Uk}} ist not a group, we can
“approximate” it by groups as follows, in order to determine its
size.

Denote

DCM∗(k) := {c : Uk\Gk/Uk → {0, 1} | c(Uk) = 1}.

Let c ∈ DCM∗(k). Then

• {µ ∈ Lin(Uk) | cµ � c} is a group,

• |{µ ∈ Lin(Uk) | cµ � c}| can be determined
simultaneously for all k .

Thus

{µ ∈ Lin(Uk) | cµ = 1{Uk}}
= {µ ∈ Lin(Uk) | cµ � 1{Uk}} \

⋃
c≺1{Uk}

{µ ∈ Lin(Uk) | cµ � c}

can be determined simultaneously for all k .
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This enables us to prove Theorem 7:

Theorem 14 (C. 2011)

Let F = (Gk | k ∈ N0) be a coclass family and d denote the
dimension of the associated pro-p-group.

• There exists a bound b so that every irreducible character
for every Gk has degree at most pb. That is, N`(Gk) = 0 if
` > b.

• Let ` ∈ {0, . . . , b}. Then there exists a polynomial
f`(X ) ∈ Q[X ] with deg(f`) ≤ d and a natural number w
such that N`(Gk) = f`(pk) for every k ≥ w.
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Automorphism groups Aut(Gk)

F = (Gk | k ∈ N0) . . .coclass family with associated
pro-p-group S .
Gk is a group extension of Ak = T/Tn+kd by P.

Suppose n = n′ · d with n′ ∈ N, in particular Tn+kd = pn′+kT .

Theorem 15 (C. 2012)

There are subgroups B EA ≤ Aut(S), a finite abelian group M
and e, v ∈ N0 such for all large k

• Aut(Gk) is a group extension of M by A/Bpk−v
,

• B ∼= (1 + pe+n′EndP(T )) n Z 1(P, pn′T ),

(Here we use the notation Bm := 〈bm | b ∈ B〉 for m ∈ N )
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B E A ≤ Aut(S); M finite abelian group; v ∈ N0 as in

Theorem 15; Aut(Gk) ∼= group presentation of M by A/Bpk−v

H2(A/Bpv ,M)
λk //H2(A/Bpk−v

,M)

H2(A/Bpk−v
,Bpk−v

/Bpk )

κk

OO

Let ρk ∈ H2(A/Bpk−v
,Bpk−v

/Bpk ) such that the group

extension defined by ρk is isomorphic to A/Bpk .

Theorem 16 (C. 2012)

There is τ ∈ H2(A/Bpv ,M) such that for every sufficiently
large k the group extension defined by κk(ρk) + λk(τ) is
isomorphic to Aut(Gk).
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Theorem 15; Aut(Gk) ∼= group presentation of M by A/Bpk−v

H2(A/Bpv ,M)
λk //H2(A/Bpk−v

,M)

H2(A/Bpk−v
,Bpk−v

/Bpk )

κk

OO

Let ρk ∈ H2(A/Bpk−v
,Bpk−v

/Bpk ) such that the group

extension defined by ρk is isomorphic to A/Bpk .

Theorem 16 (C. 2012)

There is τ ∈ H2(A/Bpv ,M) such that for every sufficiently
large k the group extension defined by κk(ρk) + λk(τ) is
isomorphic to Aut(Gk).
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H2(A/Bpv ,M)
λk //H2(A/Bpk−v

,M)

H2(A/Bpk−v
,Bpk−v

/Bpk )

κk

OO

• λk is induced by A/Bpk−v
� A/Bpv

• κk induced by group monomorphism µk : Bpk−v
/Bpk → M

• The following diagram commutes:

Bpk−v
/Bpk

µk //

ηk
��

M

Bpk+1−v
/Bpk+1 µk+1 //M

where ηk is the group isomorphism sending bBpk to
bpBpk+1

.
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Summing up

F = (Gk | k ≥ 0) . . . coclass family. There is a parametrised
presentation describing the groups Gk . For sufficiently large k ,
the following holds:

• Schur multipliers M(Gk) can be described by a
parametrised presentation

• Nl(Gk), the number of irreducible characters of degree pl ,
can be described by a rational polynomial

• Aut(Gk) can be described by a sequence of cocycles
induced by one cocycle and an infinite group
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