> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Character degrees of finite *p*-groups by coclass

Martin Couson

TU Braunschweig

7. June 2012

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

Overview

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Character degrees by coclass

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

1 Coclass theory

2 Character theory of finite *p*-groups

3 Coclass families and character degrees

4 Coclass families and automorphism groups

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass theory

2 Character theory of finite p-groups

3 Coclass families and character degrees

4 Coclass families and automorphism groups

Overview

イロト 不得 トイヨト イヨト

Э

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass theory (Leedham-Green & Newman, 1980)

• Coclass of a finite *p*-group *G* with $|G| = p^n$ and cl(G) = c:

$$cc(G) := n - c.$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass theory (Leedham-Green & Newman, 1980)

Coclass of a finite *p*-group *G* with |*G*| = *pⁿ* and cl(*G*) = *c*:

$$\operatorname{cc}(G) := n - c$$

Lower central series

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \gamma_3(G) \ge \dots$$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass theory (Leedham-Green & Newman, 1980)

• Coclass of a finite *p*-group *G* with $|G| = p^n$ and cl(G) = c:

$$\operatorname{cc}(G) := n - c.$$

Lower central series

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \gamma_3(G) \ge \dots$$

• Coclass of an infinite pro-*p*-group *G*:

$$\operatorname{cc}(G) := \lim_{i \to \infty} \operatorname{cc}(G/\gamma_i(G)).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Coclass Graph $\mathcal{G}(p, r)$

• vertices: isomorphism types of finite *p*-groups of coclass *r*

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Coclass Graph $\mathcal{G}(p, r)$

• vertices: isomorphism types of finite *p*-groups of coclass *r*

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

• there is an edge from G to H if there is $N \triangleleft H$ with |N| = p and $H/N \cong G$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Coclass Graph $\mathcal{G}(p, r)$

- vertices: isomorphism types of finite *p*-groups of coclass *r*
- there is an edge from G to H if there is $N \triangleleft H$ with |N| = p and $H/N \cong G$.

Example $\mathcal{G}(2,1)$ (2-groups of maximal class):

-

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Infinite paths in $\mathcal{G}(p, r)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Infinite paths correspond 1-1 to pro-p-groups of coclass r.

Theorem 1 (Coclass Theorems C & D)

For fixed p and r there are only finitely many isomorphism classes of pro-p-groups of coclass r. These pro-p-groups are soluble.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Infinite paths in $\mathcal{G}(p, r)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Infinite paths correspond 1-1 to pro-p-groups of coclass r.

Theorem 1 (Coclass Theorems C & D)

For fixed p and r there are only finitely many isomorphism classes of pro-p-groups of coclass r. These pro-p-groups are soluble.

Corollary 2

There are only finitely many infinite paths in $\mathcal{G}(p, r)$.

Martin Couson

Character

coclass

Coclass theory

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

coclass Martin

Character

Couson

Coclass theory

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

Character degrees by coclass Martin

Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass Tree

 Coclass tree is ultimately periodic for *p* = 2 (du Sautoy, 2001 and Eick & Leedham-Green, 2008).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

 Coclass tree is ultimately periodic for *p* = 2 (du Sautoy, 2001 and Eick & Leedham-Green, 2008).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

 Coclass tree is ultimately periodic for *p* = 2 (du Sautoy, 2001 and Eick & Leedham-Green, 2008).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

- Coclass tree is ultimately periodic for *p* = 2 (du Sautoy, 2001 and Eick & Leedham-Green, 2008).
- *p* odd: in general the result holds only for shaved coclass trees.

イロト 不得 トイヨト イヨト

ъ

Coclass families and automorphism groups

Character degrees by

coclass

Martin Couson Coclass theory

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass Family

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

E

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups G_0

Gı

G2

Coclass Family Parametrized Presentations (Eick & Leedham-Green, 2008)

$$G_{\mathbf{k}} = \langle g_{1}, \dots, g_{5}, t_{1}, t_{2} |$$

$$g_{1}^{2} = g_{4},$$

$$g_{2}^{g_{1}} = g_{2}g_{3}, g_{2}^{2} = 1,$$

$$g_{3}^{g_{1}} = g_{3}g_{5}, g_{3}^{g_{2}} = g_{3}t_{1}^{1+2^{\mathbf{k}}}t_{2}, g_{3}^{2} = t_{1}^{-1+2^{\mathbf{k}}}t_{2}^{-1},$$

$$g_{4}^{g_{1}} = g_{4}, g_{4}^{g_{2}} = g_{4}g_{5}t_{1}^{2^{\mathbf{k}}}t_{2}, \dots, g_{4}^{2} = 1,$$

$$g_{5}^{g_{1}} = g_{5}t_{2}, g_{5}^{g_{2}} = g_{5}t_{1}^{-1}, \dots, g_{5}^{2} = t_{1},$$

$$t_{1}^{g_{1}} = t_{1}t_{2}^{2}, t_{1}^{g_{2}} = t_{1}^{-1}, \dots, t_{1}^{2^{\mathbf{k}+1}} = 1,$$

$$t_{2}^{g_{1}} = t_{1}^{-1}t_{2}^{-1}, t_{2}^{g_{2}} = t_{2}^{-1}, \dots, t_{2}^{\mathbf{t}} = \mathbf{t}_{2}, t_{2}^{2^{\mathbf{k}+1}} = 1 \rangle$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Э

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Schur Multiplier

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family. Let M(G) denote the Schur multiplier of a group G.

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Schur Multiplier

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family. Let M(G) denote the Schur multiplier of a group G.

Theorem 3 (Eick & Feichtenschlager, 2010)

There are $m \in \mathbb{N}_0$, and for $1 \le i \le m$ integers $r_i \in \mathbb{N}_0$ and $s_i \in \mathbb{Z}$ such that for every large enough $k \in \mathbb{N}_0$ it follows that $d_i(k) = p^{r_i k + s_i} \in \mathbb{N}$ and

$$M(G_k) \cong C_{d_1(k)} \times \ldots \times C_{d_m(k)}.$$

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Schur Multiplier

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family. Let M(G) denote the Schur multiplier of a group G.

Theorem 3 (Eick & Feichtenschlager, 2010)

There are $m \in \mathbb{N}_0$, and for $1 \le i \le m$ integers $r_i \in \mathbb{N}_0$ and $s_i \in \mathbb{Z}$ such that for every large enough $k \in \mathbb{N}_0$ it follows that $d_i(k) = p^{r_i k + s_i} \in \mathbb{N}$ and

$$M(G_k) \cong C_{d_1(k)} \times \ldots \times C_{d_m(k)}$$

Corollary 4 There is $f(X) = f_{\mathcal{F}} \in \mathbb{Q}[X]$ such that $|M(G_k)| = f(p^k)$

for large k.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Automorphism Group

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Theorem 5 (Eick, 2006)

There is $e \in \mathbb{N}$ such that for large k

 $|Aut(G_{k+1})| = |Aut(G_k)| \cdot p^e.$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Automorphism Group

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Theorem 5 (Eick, 2006) There is $e \in \mathbb{N}$ such that for large k

$$|Aut(G_{k+1})| = |Aut(G_k)| \cdot p^e.$$

Corollary 6 There is $g(X) = g_{\mathcal{F}}(X) \in \mathbb{Q}[X]$ such that $|Aut(G_k)| = g(p^k)$

for large k.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass Family Character Degrees

For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$N_\ell(G) := |\{\chi \in \mathsf{Irr}(G) \mid \chi(1) = p^\ell\}|.$$

- 日本 - 1 日本 - 日本 - 日本 - 日本

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass Family Character Degrees

For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$N_\ell(G) := |\{\chi \in \mathsf{Irr}(G) \mid \chi(1) = p^\ell\}|.$$

(日) (四) (王) (日) (日) (日)

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups G_0

 G_1

G2

For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$\mathsf{N}_\ell(\mathsf{G}) := |\{\chi \in \mathsf{Irr}(\mathsf{G}) \mid \chi(1) = \mathsf{p}^\ell\}|.$$

$$N_0(G_k) = 8$$
$$N_1(G_k) = 2$$

 $N_0(G_0) = 8$ $N_1(G_0) = 2$

 $N_0(G_1) = 8$ $N_1(G_1) = 2$

 $N_0(G_2) = 8$ $N_1(G_2) = 2$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups G₀

 G_1

G2

Coclass Family Character Degrees

 $N_0(G_0) = 8$ $N_1(G_0) = 2$ $N_2(G_0) = 7$

 $N_0(G_1) = 8$ $N_1(G_1) = 2$ $N_2(G_1) = 31$

 $N_0(G_2) = 8$ $N_1(G_2) = 2$ $N_2(G_2) = 127$ For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$\mathsf{N}_\ell(\mathsf{G}) := |\{\chi \in \mathsf{Irr}(\mathsf{G}) \mid \chi(1) = \mathsf{p}^\ell\}|.$$

イロト 不得 トイヨト イヨト

Э

$$N_0(G_k) = 8$$

 $N_1(G_k) = 2$
 $N_2(G_k) = -1 + 2^{2k+3}$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass Family Character Degrees

For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$N_\ell(G) := |\{\chi \in \operatorname{Irr}(G) \mid \chi(1) = p^\ell\}|.$$

э

$$N_{1}(G_{0}) = 2 \\ N_{2}(G_{0}) = 7 \\ N_{2}(G_{0}) = 7 \\ N_{2}(G_{k}) = 8 \\ N_{1}(G_{k}) = 2 \\ N_{2}(G_{k}) = -1 + 2^{2k+3} \\ N_{2}(G_{k}) = 0 \text{ for } \ell \ge 3 \\ N_{1}(G_{1}) = 2 \\ N_{2}(G_{1}) = 31 \\ N_{2}(G_{1}) = 31 \\ N_{2}(G_{2}) = 127 \\ \vdots \qquad N_{2}(G_{2}) = 127 \\ \vdots \qquad (\Box + (\Box + C)) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ N_{2}(G_{2}) = 127 \\ (\Box + C) = 0 \\ (\Box +$$

 $N_0(G_0) = 8$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Gn

Gı

Go

Coclass Family Character Degrees

For a finite *p*-group *G* and $\ell \in \mathbb{N}_0$, denote

$$\mathsf{N}_\ell(\mathsf{G}) := |\{\chi \in \mathsf{Irr}(\mathsf{G}) \mid \chi(1) = p^\ell\}|.$$

イロト 不得 トイヨト イヨト

Э

$$N_{1}(G_{0}) = 2 \\ N_{2}(G_{0}) = 7 \\ N_{1}(G_{k}) = 2 \\ N_{2}(G_{k}) = -1 + 2^{2k+3} = f_{2}(2^{k}) \\ N_{1}(G_{1}) = 2 \\ N_{2}(G_{1}) = 3 \\ N_{\ell}(G_{k}) = 0 \text{ for } \ell \ge 3 \\ R_{2}(G_{1}) = 3 \\ f_{2}(X) := -1 + 8X^{2} \\ N_{0}(G_{2}) = 8 \\ N_{1}(G_{2}) = 2 \\ N_{2}(G_{2}) = 127 \\ R_{2}(G_{2}) = 127 \\ R$$

 $N_0(G_0) = 8$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Theorem 7 (C. 2011)

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family and d denote the dimension of the associated pro-p-group.

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Theorem 7 (C. 2011)

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family and d denote the dimension of the associated pro-p-group.

 There exists a bound b so that every irreducible character for every G_k has degree at most p^b. That is, N_ℓ(G_k) = 0 if ℓ > b.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Theorem 7 (C. 2011)

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family and d denote the dimension of the associated pro-p-group.

- There exists a bound b so that every irreducible character for every G_k has degree at most p^b. That is, N_ℓ(G_k) = 0 if ℓ > b.
- Let l ∈ {0,..., b}. Then there exists a polynomial f_l(X) ∈ Q[X] with deg(f_l) ≤ d and a natural number w such that N_l(G_k) = f_l(p^k) for every k ≥ w.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Coclass theory

2 Character theory of finite *p*-groups

3 Coclass families and character degrees

4 Coclass families and automorphism groups

Overview

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Character theory of finite *p*-groups

Let G be a finite p-group.

Definition 8

Let $\chi \in Irr(G)$ and $U \leq G$. We say, that χ is linearly induced from U, if there is a linear character μ of U such that $\chi = \mu \uparrow^G$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Character theory of finite *p*-groups

Let G be a finite p-group.

Definition 8

Let $\chi \in Irr(G)$ and $U \leq G$. We say, that χ is linearly induced from U, if there is a linear character μ of U such that $\chi = \mu \uparrow^G$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem 9

G is monomial, that is, each irreducible character of G is linearly induced from some subgroup.

Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Let $U \leq G$ and let μ be a linear character of U. Denote $\chi := \mu \uparrow_U^G$.

- **1** Is χ irreducible?
- If χ is irreducible:
 - **2** How many linear characters of U induce to χ ?
 - Given V ≤ G, V ≠ U, how many linear characters of V induce to χ?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Deciding irreducibility

▲日▼▲□▼▲田▼▲田▼ ヨークタネ

Let μ be a linear character of U. Define

 $c_{\mu}: U \setminus G/U o \{0,1\}, UgU \mapsto egin{cases} 1, & ext{if } [g,U] \cap U \subseteq \ker(\mu), \ 0, & ext{otherwise}. \end{cases}$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Deciding irreducibility

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Let μ be a linear character of U. Define

$$c_{\mu}: U \setminus G/U o \{0,1\}, UgU \mapsto egin{cases} 1, & ext{if } [g,U] \cap U \subseteq \ker(\mu), \ 0, & ext{otherwise}. \end{cases}$$

Theorem 10 (Shoda) $\mu \uparrow_U^G$ is irreducible if and only if $c_\mu = \mathbf{1}_{\{U\}}$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Deciding equality of linearly induced characters

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

For $W \in \{U, V\}$ define the maps $a_{\mu,W} : W \setminus G/U \to \mathbb{N}_0$ and $a_U : U \setminus G/U \to \mathbb{N}_0$ by setting for $g \in G$:

$$a_{\mu,W}(WgU) = egin{cases} 1, & ext{if } (W^g)' \cap U \subseteq ext{ker}(\mu), \ 0, & ext{otherwise}, \ a_U(UgU) = [U^g : (U \cap U^g)(U^g)']. \end{cases}$$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Deciding equality of linearly induced characters

For $W \in \{U, V\}$ define the maps $a_{\mu,W} : W \setminus G/U \to \mathbb{N}_0$ and $a_U : U \setminus G/U \to \mathbb{N}_0$ by setting for $g \in G$:

$$a_{\mu,W}(WgU) = egin{cases} 1, & ext{if } (W^g)' \cap U \subseteq ext{ker}(\mu), \ 0, & ext{otherwise}, \ a_U(UgU) = [U^g : (U \cap U^g)(U^g)']. \end{cases}$$

Theorem 11 Assume $\chi = \mu \uparrow_U^G \in \operatorname{Irr}(G)$. (i) χ is linearly induced from V if and only if $a_{\mu,V} \neq 0$. (ii) $|\{\lambda \in \operatorname{Lin}(U) \mid \lambda \uparrow^G = \chi\}| = \sum_{d \in U \setminus G/U} a_{\mu,U}(d) \cdot a_U(d)$.

Overview

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Character degrees by coclass

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Coclass theory

Character theory of finite *p*-groups

3 Coclass families and character degrees

4 Coclass families and automorphism groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

Let G be a finite p-group, acting on a \mathbb{Z}_p -module N of finite rank ($\mathbb{Z}_p = p$ -adic numbers). Denote $N_0 := N$ and $N_{i+1} := [G, N_i]$ for $i \ge 0$.

Definition 12

G acts uniserially on N, if $[N_i : N_{i+1}] = p$ for every *i* with $N_i \neq 1$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

Let G be a finite p-group, acting on a \mathbb{Z}_p -module N of finite rank ($\mathbb{Z}_p = p$ -adic numbers). Denote $N_0 := N$ and $N_{i+1} := [G, N_i]$ for $i \ge 0$.

Definition 12

G acts uniserially on *N*, if $[N_i : N_{i+1}] = p$ for every *i* with $N_i \neq 1$.

Let $d = \operatorname{rank} N$ and assume that G acts uniserially on N. Then $N_{i+d} = p \cdot N_i$ for all i.

Martin Couson

Coclass Family

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Coclass theory

Character theory of finite *p*-groups

Let
$$\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$$
 be a coclass family.

Coclass families and character degrees

Coclass families and automorphisn groups

Coclass Family

▲日▼▲□▼▲田▼▲田▼ ヨークタネ

Couson Coclass theory

Character degrees by

coclass Martin

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family. Then there are $n \in \mathbb{N}_0$, $d \in \mathbb{N}$ and a finite *p*-group *P*, acting uniserially on an abelian group *T* such that

- $T \cong \mathbb{Z}_p^d$ (where \mathbb{Z}_p denotes the *p*-adic numbers),
- G_k is a group extension of T/T_{n+kd} by P.

(Eick & Leedham-Green, 2008)

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups Let

$$\tau_k: H^2(P,T) \to H^2(P,T/T_{n+kd})$$

be induced by the natural homomorphism $T \twoheadrightarrow T/T_{n+kd}$,

$$\rho_k: H^2(P, T/T_n) \to H^2(P, T/T_{n+kd})$$

be induced by $T/T_n \to T/T_{n+kd}, t + T_n \mapsto p^k \cdot t + T_{n+kd}$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups Let

$\tau_k: H^2(P,T) \to H^2(P,T/T_{n+kd})$

be induced by the natural homomorphism $T \twoheadrightarrow T/T_{n+kd}$,

$$\rho_k: H^2(P, T/T_n) \to H^2(P, T/T_{n+kd})$$

be induced by $T/T_n \to T/T_{n+kd}$, $t + T_n \mapsto p^k \cdot t + T_{n+kd}$

Theorem 13 (Eick & Leedham-Green, 2008)

If n is sufficiently large, then there is $K \leq H^2(P,T/T_n)$ such that for $k \in \mathbb{N}_0$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1 τ_k is a monomorphism,

$$K \cong H^3(P,T),$$

Martin Couson

Coclass Family

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0) \dots \text{coclass family.}$ $G_k \text{ is a group extension of } T/T_{n+kd} \text{ by } P.$

Coclass Family

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

degrees by coclass Martin Couson

Character

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0) \dots \text{ coclass family.}$ $G_k \text{ is a group extension of } T/T_{n+kd} \text{ by } P.$

There are $\gamma \in Z^2(P, T)$ and $\delta \in Z^2(P, T/T_n)$ such that for all $k \in \mathbb{N}_0$ the group extension defined by the cocycle

$$\gamma + p^k \delta : P \times P \to T/T_{n+kd},$$

 $(g,h) \mapsto \gamma(g,h) + p^k \delta(g,h) + T_{n+kd},$

is isomorphic to G_k .

(Eick & Leedham-Green, 2008)

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

Denote $A_k := T/T_{n+kd}$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

Denote $A_k := T/T_{n+kd}$.

Using a Lemma due to Seitz, it follows that the irreducible characters of G_k are linearly induced from overgroups of A_k , for all $k \in \mathbb{N}_0$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

Denote $A_k := T/T_{n+kd}$.

Using a Lemma due to Seitz, it follows that the irreducible characters of G_k are linearly induced from overgroups of A_k , for all $k \in \mathbb{N}_0$.

Since $G_k/A_k = P$ for all k, this means that the character degrees of the irreducible characters of G_k are bounded globally.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

Applying results to coclass families

• Let $\ell \in \mathbb{N}_0$ and let $\mathcal{U}_0 = \{U_{1,0}, \dots, U_{s,0}\}$ be a transversal of the conjugacy classes of subgroups U in G_0 with $A_0 \leq U$ and $[G_0 : U] = p^{\ell}$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Applying results to coclass families

- Let $\ell \in \mathbb{N}_0$ and let $\mathcal{U}_0 = \{U_{1,0}, \dots, U_{s,0}\}$ be a transversal of the conjugacy classes of subgroups U in G_0 with $A_0 \leq U$ and $[G_0 : U] = p^{\ell}$.
- Denote $\pi_k: G_0/A_0 \rightarrow G_k/A_k$, $gA_0 \mapsto gA_k$.
- For $1 \leq i \leq s$ let $U_{i,k} \leq G_k$ such that $A_k \leq U_{i,k}$ and

$$\pi_k(U_{i,0}/A_0) = U_{i,k}/A_k$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

and denote $U_k = (U_{1,k}, \ldots, U_{s,k}).$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

How to determine $N_{\ell}(G_k)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• We can determine $N_{\ell}(G_k) = |\{\chi \in Irr(G_k) \mid \chi(1) = p^{\ell}\}|$ similiar to $|\{\mu \in Lin(U_{1,k}) \mid \mu \uparrow^G \in Irr(G_k)\}|$.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

• We can determine $N_{\ell}(G_k) = |\{\chi \in \operatorname{Irr}(G_k) \mid \chi(1) = p^{\ell}\}|$ similiar to $|\{\mu \in \operatorname{Lin}(U_{1,k}) \mid \mu \uparrow^G \in \operatorname{Irr}(G_k)\}|.$

How to determine $N_{\ell}(G_k)$

• Denote $U_k := U_{1,k}$ and recall that for $\mu \in \operatorname{Lin}(U_k)$

$$egin{aligned} & c_\mu: & U_kackslash G_k/U_k o \{0,1\}, \ & U_kgU_k \mapsto egin{cases} 1, & ext{if } [g,U_k] \cap U_k \subseteq ext{ker}(\mu), \ & 0, & ext{otherwise}, \end{aligned}$$

and

$$\{\mu \in \operatorname{Lin}(U_k) \mid \mu \uparrow^{\mathsf{G}} \in \operatorname{Irr}(G_k)\} = \{\mu \in \operatorname{Lin}(U_k) \mid c_{\mu} = \mathbf{1}_{\{U_k\}}\}.$$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

• We can determine $N_{\ell}(G_k) = |\{\chi \in \operatorname{Irr}(G_k) \mid \chi(1) = p^{\ell}\}|$ similiar to $|\{\mu \in \operatorname{Lin}(U_{1,k}) \mid \mu \uparrow^G \in \operatorname{Irr}(G_k)\}|.$

How to determine $N_{\ell}(G_k)$

• Denote $U_k := U_{1,k}$ and recall that for $\mu \in \operatorname{Lin}(U_k)$

$$egin{aligned} & \mathcal{C}_{\mu}:& \mathcal{U}_kackslash \mathcal{G}_k/\mathcal{U}_k o \{0,1\}, \ & \mathcal{U}_kg\mathcal{U}_k\mapsto egin{cases} 1, & ext{if } [g,\mathcal{U}_k]\cap\mathcal{U}_k\subseteq ext{ker}(\mu), \ & 0, & ext{otherwise}, \end{aligned}$$

and

$$\{\mu \in \operatorname{Lin}(U_k) \mid \mu \uparrow^{\mathsf{G}} \in \operatorname{Irr}(G_k)\} = \{\mu \in \operatorname{Lin}(U_k) \mid c_{\mu} = \mathbf{1}_{\{U_k\}}\}.$$

 Lin(U_k) is a group with respect to pointwise multiplication. But {μ ∈ Lin(U_k) | c_μ = 1_{U_k}} is not a subgroup.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

How to determine $N_{\ell}(G_k)$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

While $\{\mu \in \text{Lin}(U_k) \mid c_\mu = \mathbf{1}_{\{U_k\}}\}$ ist not a group, we can "approximate" it by groups as follows, in order to determine its size.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphisn groups

How to determine $N_{\ell}(G_k)$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

While $\{\mu \in \text{Lin}(U_k) \mid c_\mu = \mathbf{1}_{\{U_k\}}\}$ ist not a group, we can "approximate" it by groups as follows, in order to determine its size. Denote

$$\operatorname{DCM}^*(k) := \{ c : U_k \setminus G_k / U_k \rightarrow \{0,1\} \mid c(U_k) = 1 \}.$$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

How to determine $N_{\ell}(G_k)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

While $\{\mu \in \text{Lin}(U_k) \mid c_\mu = \mathbf{1}_{\{U_k\}}\}$ ist not a group, we can "approximate" it by groups as follows, in order to determine its size. Denote

$$\operatorname{DCM}^*(k) := \{ c : U_k \setminus G_k / U_k \rightarrow \{0,1\} \mid c(U_k) = 1 \}.$$

Let $c \in DCM^*(k)$. Then

- $\{\mu \in \operatorname{Lin}(U_k) \mid c_\mu \preceq c\}$ is a group,
- |{µ ∈ Lin(U_k) | c_µ ≤ c}| can be determined simultaneously for all k.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

How to determine $N_\ell(G_k)$

While $\{\mu \in \text{Lin}(U_k) \mid c_\mu = \mathbf{1}_{\{U_k\}}\}$ ist not a group, we can "approximate" it by groups as follows, in order to determine its size. Denote

$$\operatorname{DCM}^*(k) := \{ c : U_k \setminus G_k / U_k \rightarrow \{0,1\} \mid c(U_k) = 1 \}.$$

Let $c \in \mathrm{DCM}^*(k)$. Then

- $\{\mu \in \operatorname{Lin}(U_k) \mid c_\mu \preceq c\}$ is a group,
- |{µ ∈ Lin(U_k) | c_µ ≤ c}| can be determined simultaneously for all k.

Thus

$$\{ \mu \in \operatorname{Lin}(U_k) \mid c_{\mu} = \mathbf{1}_{\{U_k\}} \} \\ = \{ \mu \in \operatorname{Lin}(U_k) \mid c_{\mu} \preceq \mathbf{1}_{\{U_k\}} \} \setminus \bigcup_{c \prec \mathbf{1}_{\{U_k\}}} \{ \mu \in \operatorname{Lin}(U_k) \mid c_{\mu} \preceq c \}$$

can be determined simultaneously for all k.
> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups This enables us to prove Theorem 7:

Theorem 14 (C. 2011)

Let $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0)$ be a coclass family and d denote the dimension of the associated pro-p-group.

- There exists a bound b so that every irreducible character for every G_k has degree at most p^b. That is, N_ℓ(G_k) = 0 if ℓ > b.
- Let l∈ {0,..., b}. Then there exists a polynomial f_l(X) ∈ Q[X] with deg(f_l) ≤ d and a natural number w such that N_l(G_k) = f_l(p^k) for every k ≥ w.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Overview

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Character degrees by coclass

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

1 Coclass theory

2 Character theory of finite p-groups

3 Coclass families and character degrees

4 Coclass families and automorphism groups

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Automorphism groups $Aut(G_k)$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0) \dots$ coclass family with associated pro-*p*-group *S*.

 G_k is a group extension of $A_k = T/T_{n+kd}$ by P.

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Automorphism groups $Aut(G_k)$

 $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0) \dots \text{ coclass family with associated}$ pro-*p*-group *S*.

 G_k is a group extension of $A_k = T/T_{n+kd}$ by P.

Suppose $n = n' \cdot d$ with $n' \in \mathbb{N}$, in particular $T_{n+kd} = p^{n'+k}T$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

Automorphism groups $Aut(G_k)$

 $\mathcal{F} = (G_k \mid k \in \mathbb{N}_0) \dots \text{coclass family with associated}$ pro-*p*-group *S*. $G_k \text{ is a group extension of } A_k = T/T_{n+kd} \text{ by } P.$

Suppose $n = n' \cdot d$ with $n' \in \mathbb{N}$, in particular $T_{n+kd} = p^{n'+k}T$. Theorem 15 (C. 2012)

There are subgroups $B \trianglelefteq A \le Aut(S)$, a finite abelian group M and $e, v \in \mathbb{N}_0$ such for all large k

- $\operatorname{Aut}(G_k)$ is a group extension of M by $A/B^{p^{k-v}}$,
- $B \cong (1 + p^{e+n'} \operatorname{End}_P(T)) \ltimes Z^1(P, p^{n'}T),$

(Here we use the notation $B^m:=\langle b^m\mid b\in B
angle$ for $m\in\mathbb{N}$)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

$B \trianglelefteq A \le \operatorname{Aut}(S)$; M finite abelian group; $v \in \mathbb{N}_0$ as in Theorem 15; $\operatorname{Aut}(G_k) \cong$ group presentation of M by $A/B^{p^{k-v}}$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $B \trianglelefteq A \le \operatorname{Aut}(S)$; M finite abelian group; $v \in \mathbb{N}_0$ as in Theorem 15; $\operatorname{Aut}(G_k) \cong$ group presentation of M by $A/B^{p^{k-v}}$

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}} H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $B \trianglelefteq A \le \operatorname{Aut}(S)$; *M* finite abelian group; $v \in \mathbb{N}_0$ as in Theorem 15; $\operatorname{Aut}(G_k) \cong$ group presentation of *M* by $A/B^{p^{k-v}}$

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}}$$

$$H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト 一 ヨ … の Q ()

Let $\rho_k \in H^2(A/B^{p^{k-\nu}}, B^{p^{k-\nu}}/B^{p^k})$ such that the group extension defined by ρ_k is isomorphic to A/B^{p^k} .

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $B \trianglelefteq A \le \operatorname{Aut}(S)$; *M* finite abelian group; $v \in \mathbb{N}_0$ as in Theorem 15; $\operatorname{Aut}(G_k) \cong$ group presentation of *M* by $A/B^{p^{k-v}}$

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}}$$

$$H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

Let $\rho_k \in H^2(A/B^{p^{k-\nu}}, B^{p^{k-\nu}}/B^{p^k})$ such that the group extension defined by ρ_k is isomorphic to A/B^{p^k} .

Theorem 16 (C. 2012)

There is $\tau \in H^2(A/B^{p^v}, M)$ such that for every sufficiently large k the group extension defined by $\kappa_k(\rho_k) + \lambda_k(\tau)$ is isomorphic to $\operatorname{Aut}(G_k)$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}} H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

$$\lambda_k$$
 is induced by $A/B^{p^{k-\nu}} \twoheadrightarrow A/B^{p^{\nu}}$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}} \downarrow^{\kappa_{k}}$$

$$H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

•
$$\lambda_k$$
 is induced by $A/B^{p^{k-\nu}} \twoheadrightarrow A/B^{p^{\nu}}$

• κ_k induced by group monomorphism $\mu_k: B^{p^{k-v}}/B^{p^k} \to M$

> Martin Couson

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

$$H^{2}(A/B^{p^{v}}, M) \xrightarrow{\lambda_{k}} H^{2}(A/B^{p^{k-v}}, M)$$

$$\downarrow^{\kappa_{k}} H^{2}(A/B^{p^{k-v}}, B^{p^{k-v}}/B^{p^{k}})$$

•
$$\lambda_k$$
 is induced by $A/B^{p^{k-\nu}} \twoheadrightarrow A/B^{p^{\nu}}$

- κ_k induced by group monomorphism $\mu_k : B^{p^{k-\nu}}/B^{p^k} \to M$
- The following diagram commutes:

where η_k is the group isomorphism sending bB^{p^k} to $b^p B^{p^{k+1}}$.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Couson Coclass theory

Character degrees by

coclass Martin

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups

$\mathcal{F} = (G_k \mid k \ge 0) \dots$ coclass family. There is a parametrised presentation describing the groups G_k . For sufficiently large k, the following holds:

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Martin Couson

Character degrees by

coclass

Character theory of finite

Coclass families and character degrees

Coclass families and automorphism groups $\mathcal{F} = (G_k \mid k \ge 0) \dots$ coclass family. There is a parametrised presentation describing the groups G_k . For sufficiently large k, the following holds:

• Schur multipliers $M(G_k)$ can be described by a parametrised presentation

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Martin Couson

Character degrees by

coclass

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $\mathcal{F} = (G_k \mid k \ge 0) \dots$ coclass family. There is a parametrised presentation describing the groups G_k . For sufficiently large k, the following holds:

- Schur multipliers $M(G_k)$ can be described by a parametrised presentation
- N_l(G_k), the number of irreducible characters of degree p^l, can be described by a rational polynomial

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Martin Couson

Character degrees by

coclass

Coclass theory

Character theory of finite *p*-groups

Coclass families and character degrees

Coclass families and automorphism groups $\mathcal{F} = (G_k \mid k \ge 0) \dots$ coclass family. There is a parametrised presentation describing the groups G_k . For sufficiently large k, the following holds:

- Schur multipliers $M(G_k)$ can be described by a parametrised presentation
- N_l(G_k), the number of irreducible characters of degree p^l, can be described by a rational polynomial
- Aut(*G_k*) can be described by a sequence of cocycles induced by one cocycle and an infinite group