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Covion (Leedham-Green & Newman, 1980)

Coclass theory
e Coclass of a finite p-group G with |G| = p" and
cd(G)=c:
cc(G) :=n—c.

e Lower central series

G =7(G) = 72(6) 2 13(6) = ...

e Coclass of an infinite pro-p-group G:

cc(G) := lim cc(G/7i(G)).

1—00



Character COClaSS Graph g(P, r)

degrees by
coclass e vertices: isomorphism types of finite p-groups of coclass r

Martin
Couson

Coclass theory



Character
degrees by
coclass

Martin
Couson

Coclass theory

Coclass Graph G(p, r)
e vertices: isomorphism types of finite p-groups of coclass r

e there is an edge from G to H if there is N < H with
IN| =pand H/N = G.
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Couson e there is an edge from G to H if there is N < H with

IN| =pand H/N = G.
Example G(2,1) (2-groups of maximal class):

Coclass theory

Vs o (4
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Infinite paths correspond 1-1 to pro-p-groups of coclass r.

Theorem 1 (Coclass Theorems C & D)

For fixed p and r there are only finitely many isomorphism
classes of pro-p-groups of coclass r. These pro-p-groups are
soluble.
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Infinite paths in G(p, r)

Infinite paths correspond 1-1 to pro-p-groups of coclass r.

Theorem 1 (Coclass Theorems C & D)

For fixed p and r there are only finitely many isomorphism
classes of pro-p-groups of coclass r. These pro-p-groups are
soluble.

Corollary 2
There are only finitely many infinite paths in G(p, r).
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e Coclass tree is ultimately periodic for
p = 2 (du Sautoy, 2001 and Eick &
Leedham-Green, 2008).
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e Coclass tree is ultimately periodic for
p = 2 (du Sautoy, 2001 and Eick &
Leedham-Green, 2008).

e p odd: in general the result holds only
for shaved coclass trees.
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Coclass Family

Parametrized Presentations
(Eick & Leedham-Green, 2008)

Gk = <g17"'7g57 ty, b2 ’
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g = ggs g = 1,

142k 2
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Schur Multiplier

Let 7 = (Gk | k € Np) be a coclass family.
Let M(G) denote the Schur multiplier of a group G.
Theorem 3 (Eick & Feichtenschlager, 2010)

There are m € Ny, and for 1 < i < m integers rj € Ng and
s; € Z such that for every large enough k € Ny it follows that
di(k) = p"i**s € N and

M(Gk) = Cd1(k) X ... X Cdm(k)-
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Schur Multiplier

Let 7 = (Gk | k € Np) be a coclass family.
Let M(G) denote the Schur multiplier of a group G.

Theorem 3 (Eick & Feichtenschlager, 2010)

There are m € Ny, and for 1 < i < m integers rj € Ng and
s; € Z such that for every large enough k € Ny it follows that
di(k) = p"i**s € N and

M(Gk) = Cd1(k) X ... X Cdm(k)-
Corollary 4
There is f(X) = fr € Q[X] such that
IM(Gi)| = £(p¥)

for large k.
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Theorem 5 (Eick, 2006)
There is e € N such that for large k

|Aut(Gr+1)| = |Aut(Gk)| - p©.
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Theorem 5 (Eick, 2006)
There is e € N such that for large k

AUt(Gys)| = [Aut(Gy) - p°.
Corollary 6
There is g(X) = gr(X) € Q[X] such that

|Aut(Gy)| = g(p")

for large k.
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For a finite p-group G and ¢ € Ny,
denote

Ne(G) :=[{x € Inr(G) | x(1) = p'} |-

No(Go) =8
N1(Gp) = 2

() =7 No(Gk) =8

Ny (Gk) =2

No(Gy) = —1 + 2243
No(G1) =8

N1(Gy) =2
No(Gy) = 31

No(G2) =8
Ni(G) =2
No(Gy) = 127
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For a finite p-group G and ¢ € Ny,
denote

Ne(G) :=[{x € Inr(G) | x(1) = p'} |-

No(Go) =8
Ni(Go) = 2
mc) -7 No(Gk) =8
Ni(Gk) =2
No(Gy) = —1 + 22k+3
no(e) =8 Np(Gg) =10 for £ >3
N1(Gy) =2
Ny (Gy) = 31
No(G2) =8
Ni(Gp) =2

Na(Gp) = 127
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No(Go) =8
N1(Gp) = 2
No(Go) =7

No(G1) =8
N1(Gy) =2
N>(G) =31

No(G2) =8
Ni(G) =2
No(Gy) = 127

Character Degrees

For a finite p-group G and ¢ € Ny,
denote

Ne(G) :=[{x € Inr(G) | x(1) = p'} |-

No(Gx) =8

Ny (Gk) =2

No(Gi) = —1+22KF3 = f(2K)
Ny(Gx) =0 for £ >3
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Let F = (G | k € Ny) be a coclass family and d denote the
dimension of the associated pro-p-group.
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Cocsstheey Theorem 7 (C. 2011)
Let F = (G | k € Ny) be a coclass family and d denote the
dimension of the associated pro-p-group.

e There exists a bound b so that every irreducible character
for every Gy has degree at most p®. That is, Ny(Gy) = 0 if
{>b.
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Cocsstheey Theorem 7 (C. 2011)
Let F = (G | k € Ny) be a coclass family and d denote the
dimension of the associated pro-p-group.
e There exists a bound b so that every irreducible character
for every Gy has degree at most p®. That is, Ny(Gy) = 0 if
{>b.
o Let £ €{0,...,b}. Then there exists a polynomial
fy(X) € Q[X] with deg(f;) < d and a natural number w
such that Ny(Gy) = f,(p*) for every k > w.
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Definition 8
Let x € Irr(G) and U < G. We say, that x is linearly induced
from U, if there is a linear character y of U such that x = p1€.
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Character
theory of finite

p-groups Let G be a finite p-group.
Definition 8

Let x € Irr(G) and U < G. We say, that x is linearly induced
from U, if there is a linear character y of U such that x = p1€.

Theorem 9
G is monomial, that is, each irreducible character of G is
linearly induced from some subgroup.
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Character Let U < G and let i be a linear character of U. Denote
theory of finite L G
p-groups X = ,LLTU

@ Is y irreducible?
If x is irreducible:
® How many linear characters of U induce to x?

® Given V < G,V # U, how many linear characters of V
induce to x?
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1, if [g,U]NU C ker(u),

¢, :U\G/U — {0,1}, UgU _
0, otherwise.
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Character
theory of finite

P-groups Let 1 be a linear character of U. Define

1, if [g,U]NU C ker(u),

¢, :U\G/U — {0,1}, UgU _
0, otherwise.

Theorem 10 (Shoda)
ut§ is irreducible if and only if ¢, = 1.
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theory of e For W € {U, V'} define the maps a, w : W\G/U — Ny and
e ay : U\G/U — Ny by setting for g € G:

1, if (W&)YNnU Cker(p),

0, otherwise,

aMW(WgU) = {

ay(UgV) = [U# : (U N UE)(UE).
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Martin .
Eoneon induced characters

Character

theory of e For W € {U, V'} define the maps a, w : W\G/U — Ny and
e ay : U\G/U — Ny by setting for g € G:

1, if (W&)YNnU Cker(p),
0, otherwise,

aMW(WgU) = {

ay(UgV) = [U# : (U N UE)(UE).

Theorem 11
Assume x = pt§e Iir(G).
(i) x is linearly induced from V' if and only if a, v # 0.
(i)) {\ € Lin(U) | \16= x}| = ZdeU\G/U ap,u(d) - ay(d).
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Applying results to coclass families

Let G be a finite p-group, acting on a Z,-module N of finite
rank (Z, = p-adic numbers). Denote Ng := N and
N,'+1 = [G, N,'] for i > 0.

Definition 12
G acts uniserially on N, if [N; : Nj;1] = p for every i with
N; # 1.
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Applying results to coclass families

Let G be a finite p-group, acting on a Z,-module N of finite
rank (Z, = p-adic numbers). Denote Ng := N and
/V,'+1 = [G, N,'] for i > 0.

Definition 12
G acts uniserially on N, if [N; : Nj;1] = p for every i with
N; # 1.

Let d = rank N and assume that G acts uniserially on N. Then
Nitg = p- N; for all /.
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Coclass Family

Let 7 = (Gk | k € Np) be a coclass family.
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Coclass Family

Let 7 = (Gk | k € Np) be a coclass family. Then there are
n € Np, d € N and a finite p-group P, acting uniserially on an
abelian group T such that

o T = Zg (where Z,, denotes the p-adic numbers),

e Gy is a group extension of T /T, xq by P.

(Eick & Leedham-Green, 2008)
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Let
Tk - H2(P7 T) - HZ(P7 T/Tn—i-kd)

be induced by the natural homomorphism T — T /T k4,

pk: HA (P, T/Ta) = H*(P, T/ Toika)
be induced by T/Tp — T/Tnikd, t+ Tn pX-t+ Thikd
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Let
Tk - H2(P7 T) - H2(P7 T/Tn+kd)

be induced by the natural homomorphism T — T /T k4,

pk: HA (P, T/Ta) = H*(P, T/ Toika)
be induced by T/Tp — T/Tnikd, t+ Tn pX-t+ Thikd

Theorem 13 (Eick & Leedham-Green, 2008)

If n is sufficiently large, then there is K < H?(P, T/T,) such
that for k € Ny

@ 7« is a monomorphism,
® K= H3 (P, T),
©® H*(P, T/ Thikd) = Im(7x) @ pi(K).
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Coclass Family

F = (Gk | k € Np) .. .coclass family.
Gk is a group extension of T/ T,k by P.
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Coclass Family

F = (Gk | k € Np) .. .coclass family.
Gk is a group extension of T/ T,k by P.

There are v € Z2(P, T) and § € Z?(P, T/ T,) such that for all
k € Ny the group extension defined by the cocycle

Y+ pk§ P x P = T/Third,
(g.h) = (g, h) + p*6(g, h) + Toikd

is isomorphic to Gy.

(Eick & Leedham-Green, 2008)
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Applying results to coclass families

Denote Ay := T/Tn+kd-

Using a Lemma due to Seitz, it follows that the irreducible
characters of Gy are linearly induced from overgroups of A, for
all k € Np.
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Applying results to coclass families

Denote Ay := T/Tn+kd-

Using a Lemma due to Seitz, it follows that the irreducible
characters of Gy are linearly induced from overgroups of A, for
all k € Np.

Since Gi/Ax = P for all k, this means that the character
degrees of the irreducible characters of G, are bounded globally.
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Applying results to coclass families

o Let £ € Ng and let Uy = {U10,...,Uso} be a transversal
of the conjugacy classes of subgroups U in Gg with
Ao < U and [Gp : U] = p’.
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Applying results to coclass families

o Let £ € Ng and let Uy = {U10,...,Uso} be a transversal
of the conjugacy classes of subgroups U in Gg with
Ao < U and [Gp : U] = p’.

e Denote 7y : Go/Ao — Gk/Ak, gAo — gAk.

e For1 <i<slet Uy < G such that Ay < U« and

mk(Uio/Ao) = Ui k/Ak

and denote Uy = (U k, - -, Us k).
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How to determine Ny(Gy)

o We can determine Ny(Gx) = |{x € Irr(Gk) | x(1) = p‘}]|
similiar to [{p € Lin(U1x) | p1€€ Irr(Gk)}|.
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How to determine Ny(Gy)

o We can determine Ny(Gx) = |{x € Irr(Gk) | x(1) = p‘}]|
similiar to [{p € Lin(U1x) | p1€€ Irr(Gk)}|.

e Denote Uy := Uk and recall that for 1 € Lin(Uy)
Cu :Uk\Gk/Uk — {0, 1},
1, if [g, U] N Uk C ker(p),

0, otherwise,

ngUk — {

and

{1 € Lin(Uk) | p1¢€ Irr(Gy)} = {p € Lin(Uk) | ¢, = Liug )
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How to determine Ny(Gy)

We can determine Ny(Gy) = |[{x € Irr(Gy) | x(1) = p'}|
similiar to [{p € Lin(U1x) | p1€€ Irr(Gk)}|.

Denote Uy := U  and recall that for p € Lin(Uy)
Cu :Uk\Gk/Uk — {0, 1},
1, if [g, U] N Uk C ker(p),

UkgU —
K85k {0, otherwise,

and

{p € Lin(Ux) | p1Ce Ir(Gi)} = {p € Lin(Uk) | cu = 1y, }-

Lin(Uyk) is a group with respect to pointwise multiplication.
But {u € Lin(Uk) | ¢, = 1{y,1} is not a subgroup.
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How to determine Ny(Gy)

While {p € Lin(Uy) | ¢ = 1,3} ist not a group, we can
“approximate” it by groups as follows, in order to determine its

size.
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How to determine Ny(Gy)

While {p € Lin(Uy) | ¢ = 1,3} ist not a group, we can
“approximate” it by groups as follows, in order to determine its
size.

Denote

DCM*(/() = {C : Uk\Gk/Uk — {0,1} ’ C(Uk) = 1}.
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How to determine Ny(Gy)

While {p € Lin(Uy) | ¢ = 1,3} ist not a group, we can
“approximate” it by groups as follows, in order to determine its
size.

Denote

DCM*(/() = {C : Uk\Gk/Uk — {0,1} ’ C(Uk) = 1}.
Let c € DCM*(k). Then

e {peLin(Uk) | c, = c}isa group,
e |[{p € Lin(Ux) | cu = c}| can be determined
simultaneously for all k.
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How to determine Ny(Gy)

While {p € Lin(Uy) | ¢ = 1,3} ist not a group, we can
“approximate” it by groups as follows, in order to determine its
size.

Denote

DCM*(/() = {C : Uk\Gk/Uk — {O, 1} ’ C(Uk) = 1}.
Let ¢ € DCM*(k). Then

e {peLin(Uk) | c, = c}isa group,
e |[{p € Lin(Ux) | cu = c}| can be determined
simultaneously for all k.
Thus

{n € Lin(Ui) | eu = iy} '
= {neLin(Ue) [ e = L P \Uezay,,, v € Lin(Ui) [ ¢ = c}

can be determined simultaneously for all k.



Character
degrees by
coclass

Martin
Couson

Coclass
families and
character
degrees

This enables us to prove Theorem 7:

Theorem 14 (C. 2011)
Let F = (Gk | k € Ng) be a coclass family and d denote the
dimension of the associated pro-p-group.
e There exists a bound b so that every irreducible character
for every Gy has degree at most p®. That is, Ny(Gy) = 0 if
¢ > b.
o Let ¢ €{0,...,b}. Then there exists a polynomial
fy(X) € Q[X] with deg(f;) < d and a natural number w
such that Ny(Gy) = f;(p*) for every k > w.
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F = (Gk | k € Np).. .coclass family with associated
pro-p-group S.
Gk is a group extension of Ay = T /Tpkd by P.

Coclass
families and
automorphism
groups
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Martin
Couson
F = (Gk | k € Np) .. .coclass family with associated
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Automorphism groups Aut(Gy)

F = (Gk | k € Np) .. .coclass family with associated
pro-p-group S.
Gk is a group extension of Ay = T /Tpkd by P.

Suppose n=n"-d with n’ € N, in particular T, g = p" kT,

Theorem 15 (C. 2012)

There are subgroups B <A < Aut(S), a finite abelian group M
and e, v € Ny such for all large k

v

o Aut(Gy) is a group extension of M by A/BP*™",
o B2 (1+ p*"Endp(T)) x ZY(P,p" T),

(Here we use the notation B™ := (b™ | b€ B) for me N)
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Couson Theorem 15; Aut(Gy) = group presentation of M by A/Bpk_

v

v A —v
H2(A/BP", M)——~H2(A/BP*" M)
Kk
H2(A/Bpk—‘/7 Bpk—v/Bpk)

Coclass

Buea. Let py € H2(A/BP, BP"/BP") such that the group
extension defined by pj is isomorphic to A/Bpk.
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Martin B <A < Aut(S); M finite abelian group; v € Ny as in
Couson Theorem 15; Aut(Gy) = group presentation of M by A/Bpk_

v

v A —v
H2(A/BP", M)——~H2(A/BP*" M)
Kk
H2(A/Bpk—‘/7 Bpk—v/Bpk)

Coclass
bl o Let px € H2(A/BP*Y BP"" /BP") such that the group
e extension defined by py is isomorphic to A/BP".
Theorem 16 (C. 2012)
There is T € H?>(A/BP", M) such that for every sufficiently
large k the group extension defined by ki(pk) + Ak(T) is
isomorphic to Aut(Gy).

k—v
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H2(A/BP", M)

Ak is induced by A/BP*

Ak

H

v

2(A/BP

Kk

k—v

— A/BP"

H2(A/BP*™" M)

.B7 /B
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v A —v
H2(A/BP", M)——~H2(A/BP*" M)
Kk
H2(A/Bpk7v’ Bpkfv/Bpk)

e Ay isinduced by A/BP" — A/BP"
e ky induced by group monomorphism gy : BPk*V/BPk - M
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e Ay isinduced by A/BP" — A/BP"
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e The following diagram commutes:

Bpk—v/Bpk 1223 M
"
Bpk+1—v/Bpk+l Hk+1 M

where 7y is the group isomorphism sending bBP" to
bPBP
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F = (G | k > 0)... coclass family. There is a parametrised
presentation describing the groups Gg. For sufficiently large k,
the following holds:

e Schur multipliers M(Gg) can be described by a

Coclass

families and parametrised presentation
automorphism i A |
groups o Nj(Gg), the number of irreducible characters of degree p',

can be described by a rational polynomial

e Aut(Gg) can be described by a sequence of cocycles
induced by one cocycle and an infinite group
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