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Simplicity in Pro-p Groups

Finite p-groups versus simple groups

A finite p-group G has normal subgroups of every possible order.
The only simple finite p-group is the cyclic group of order p.
Few connections between theory of finite p-groups and theory of
finite simple groups. Well, almost.
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Simplicity in Pro-p Groups

Simple pro-p groups?

A pro-p group is the inverse limit of finite p-groups (each finite
p-group is endowed with the discrete topology).
The finite pro-p groups are just the finite p-groups.
By a subgroup of a pro-p group we mean a closed one.
A subgroup is open if and only if has finite index (and it is closed).
Open subgroups have index a power of p.
A pro-p group has (open) normal subgroups of every possible
index pn.
An (infinite) pro-p group cannot be simple.
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Simplicity in Pro-p Groups

Just infinite pro-p groups

An infinite pro-p group G is just infinite if every non-trivial normal
subgroup N is open in G (i.e. has finite index).
Equivalently, G is just infinite if its proper quotients are finite.
A simple group can be thought as a just non-trivial group.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 4 / 18



Simplicity in Pro-p Groups

Just infinite pro-p groups

An infinite pro-p group G is just infinite if every non-trivial normal
subgroup N is open in G (i.e. has finite index).
Equivalently, G is just infinite if its proper quotients are finite.
A simple group can be thought as a just non-trivial group.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 4 / 18



Simplicity in Pro-p Groups

Just infinite pro-p groups

An infinite pro-p group G is just infinite if every non-trivial normal
subgroup N is open in G (i.e. has finite index).
Equivalently, G is just infinite if its proper quotients are finite.
A simple group can be thought as a just non-trivial group.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 4 / 18



Simplicity in Pro-p Groups

Hereditarily just infinite pro-p groups
Leedham-Green’s point of view

A simple group is a group whose only non-trivial subnormal
subgroup is the group itself.
The corresponding notion in pro-p group context is that of a
hereditarily just infinite pro-p group: namely a pro-p group whose
non-trivial subnormal subgroups have finite index.
Equivalently a pro-p group is hereditarily just infinite if its open
subgroups are just infinite (i.e. they inherit the property of being
just infinite).
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Virtual Composition Series

Composition series in pro-p groups?

The Jordan–Hölder theorem motivated the study of finite simple
groups.
Let S : 1 = G0 E G1 E · · · E Gn = G be a series of an infinite
pro-p group G.
At least one section Gi+1/Gi of S is infinite: it is therefore not
simple.
A new term can be inserted strictly between Gi and Gi+1.
Every series of an infinite pro-p group can be properly refined.
However. . .
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Virtual Composition Series

Elementary refinement of a series

Insert a new term N strictly between two terms Gi and Gi+1 of a
series S: let S′ the new series obtained.
The section Gi+1/Gi is replaced by two sections: Gi+1/N and
N/Gi .

|Gi+1 : Gi | <∞ Gi N Gi+1

Gi N Gi+1 L∞(S′) = L∞(S)

|Gi+1 : Gi | =∞ Gi N Gi+1

Gi N Gi+1 L∞(S′) = L∞(S) + 1

finite finite

infinite finite

finite infinite

infinite infinite

The length L∞(S) denotes the number of infinite sections of S.
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Virtual Composition Series

Refining just infinite sections

If Gi+1/Gi is just infinite we have only the case

Gi N Gi+1infinite finite

However N/Gi is not necessarily just infinite. In this case a further
refinement can yield a series of greater length.

Gi M N Gi+1infinite infinite finite

Maybe more steps are needed to get a series of greater length.
If Gi+1/Gi is hereditarily just infinite every iterated refinement
(between Gi+1 and Gi ) replaces an infinite section with a finite
section and an infinite one so the length is stable.
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Virtual Composition Series

Virtual composition series

If every section of a series S is either hereditarily just infinite or
finite then L∞(S′) = L∞(S) for every refinement of S.
We say that a series S with this property is a virtual composition
series (namely if L∞(S′) = L∞(S) for every refinement of S).

Questions
When does a virtual composition series exist?
Which is the relation between two virtual composition series?
Is a virtual composition series with all sections either finite or
hereditarily just infinite somehow typical?
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Virtual Composition Series

Virtual length

Schreier Refinement Theorem holds in the context of pro-p
groups: two series have isomorphic refinements (in particular they
have refinements of the same length).
If S′ is a refinement of S then L∞(S) ≤ L∞(S′).
For a given pro-p group G define its virtual length vl(G) to be the
supremum of L∞(S) taken over the series of G.
If vl(G) is infinite then G has no virtual composition series.
If vl(G) is finite then every series can be refined to a virtual
composition series: they are precisely the series of length vl(G).
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Virtual Composition Series

Properties of virtual length

vl(G) = 0 if and only if G is finite.
If G is hereditarily just infinite then vl(G) = 1.
If N is a normal subgroup of G then vl(G) = vl(G/N) + vl(N) (we
admit∞ in this sum).
If H is a subnormal subgroup then vl(H) ≤ vl(G): equality holds if
and only if H is open.
If G = N1 ⊕ N2 ⊕ · · · ⊕ Nr then
vl(G) = vl(N1) + vl(N2) + · · ·+ vl(Nr ).

Theorem
If S and S′ are virtual composition series of the same pro-p group then
their infinite sections can be put in correspondence in such a way that
corresponding sections are virtually isomorphic (i.e. they contain
isomorphic open subgroups).
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Finite Virtual Length: examples

Pro-p groups of finite rank
They have finite virtual length

A pro-p group has finite rank if there exists r such that every
subgroup can be generated by r elements.
A pro-p group of finite rank contains an open uniform subgroup.
The dimension dim G of a pro-p group G of finite rank is the
number of generators of an open uniform subgroup of G.
Dimension is additive: if N is a normal subgroup of G then
dim G = dim(G/N) + dim N.

Theorem
A pro-p group G of finite rank has finite virtual length. More precisely
vl(G) ≤ dim G and the equality holds if and only if G is soluble.
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Finite Virtual Length: examples

Pro-p groups with Constant Normal Subgroup Growth
They have finite virtual length

A pro-p group has Constant Normal Subgroup Growth if the
number of open normal subgroups of the same index is bounded.
Pro-p groups with Constant Normal Subgroup Growth have finite
virtual length (this follows from structural results).
Pro-p groups with Constant Normal Subgroup Growth include
pro-p of finite coclass: so they have finite virtual length.
Constant Normal Subgroup Group is not closed under taking
extensions, while finite virtual length is.
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Finite Virtual Length: examples

Branch groups
They have not finite virtual length

There are two inequivalent definitions of branch groups: one
involving a group action on a tree, and another purely algebraic.
In both cases, a branch group is infinite and contains, for each
natural number n, an open normal subgroup Hn which is the direct
product of kn copies of a subgroup Ln. Here kn > kn−1 for every n.
vl(G) ≥ vl(Hn) = kn vl(Ln) ≥ kn: therefore vl(G) =∞.
Wilson’s dichotomy: a just infinite pro-p group G is either a branch
group (vl(G) =∞) or contains an open subgroup which is the
direct sum of k copies of a hereditarily just infinite pro-p group
(vl(G) = k ).
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The Structure of Groups with Finite Virtual Length

Structural results

Theorem
Let G be a pro-p group with finite virtual length. Then:

G is finitely generated;
every subnormal subgroup is finitely generated;
every non-empty family of subnormal subgroups with bounded
defect admits a maximal element.

Corollary
Every non-empty family of normal subgroups of G closed under taking
products (e.g. finite normal subgroups) admits a greatest element.
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The Structure of Groups with Finite Virtual Length

Some consequences

Proposition
For a pro-p group G the following are equivalent:

1 vl(G) = 1;
2 there exists a finite normal group N such that G/N is hereditarily

just infinite;
3 there exists an open normal subgroup H such that H is

hereditarily just infinite.

Theorem
Every virtual composition series of a pro-p group with finite virtual
length can be refined to a virtual composition series whose sections
are either hereditarily just infinite or finite cyclic of order p.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 16 / 18



The Structure of Groups with Finite Virtual Length

Some consequences

Proposition
For a pro-p group G the following are equivalent:

1 vl(G) = 1;
2 there exists a finite normal group N such that G/N is hereditarily

just infinite;
3 there exists an open normal subgroup H such that H is

hereditarily just infinite.

Theorem
Every virtual composition series of a pro-p group with finite virtual
length can be refined to a virtual composition series whose sections
are either hereditarily just infinite or finite cyclic of order p.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 16 / 18



The Structure of Groups with Finite Virtual Length

Some consequences

Proposition
For a pro-p group G the following are equivalent:

1 vl(G) = 1;
2 there exists a finite normal group N such that G/N is hereditarily

just infinite;
3 there exists an open normal subgroup H such that H is

hereditarily just infinite.

Theorem
Every virtual composition series of a pro-p group with finite virtual
length can be refined to a virtual composition series whose sections
are either hereditarily just infinite or finite cyclic of order p.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 16 / 18



The Structure of Groups with Finite Virtual Length

Some consequences

Proposition
For a pro-p group G the following are equivalent:

1 vl(G) = 1;
2 there exists a finite normal group N such that G/N is hereditarily

just infinite;
3 there exists an open normal subgroup H such that H is

hereditarily just infinite.

Theorem
Every virtual composition series of a pro-p group with finite virtual
length can be refined to a virtual composition series whose sections
are either hereditarily just infinite or finite cyclic of order p.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 16 / 18



The Structure of Groups with Finite Virtual Length

Some consequences

Proposition
For a pro-p group G the following are equivalent:

1 vl(G) = 1;
2 there exists a finite normal group N such that G/N is hereditarily

just infinite;
3 there exists an open normal subgroup H such that H is

hereditarily just infinite.

Theorem
Every virtual composition series of a pro-p group with finite virtual
length can be refined to a virtual composition series whose sections
are either hereditarily just infinite or finite cyclic of order p.

Monti et al. (Univ. L’Aquila and Insubria) Pro-p Groups of Finite Virtual Length Group Theory in Trento 16 / 18



The Structure of Groups with Finite Virtual Length

A more general context

Virtual composition series and virtual length can be defined also
for profinite group.
Even more: they can defined also for profinite groups with
operators (once a suitable notion of profinite group with operators
has been introduced).
Basic results hold in this more general context.
Stronger structural results do not hold however: e.g. there exist
hereditarily just infinite profinite groups (hence with virtual length
1) which are not finitely generated (Wilson).
Structural results can be stated (and proved) for pronilpotent
groups with operators.
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The Structure of Groups with Finite Virtual Length

How to characterize pro-p groups of finite virtual
length?

Pro-p groups of finite rank can be defined as pro-p groups in
which the number of generators of subnormal subgroups has an
upper bound.
Pro-p groups of finite rank have finite virtual length.
There exist groups of finite virtual length with infinite rank (e.g. the
Nottingham group).
In pro-p groups of finite virtual length every subnormal subgroup
is finitely generated.

Question
Let G be a pro-p group whose subnormal subgroups are finitely
generated. Is the virtual length of G finite?
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