CORSI DI LAUREA IN MATEMATICA E FISICA

FOGLIO DI ESERCIZI # 6– GEOMETRIA 1

Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore $w \in \mathbb{R}^3$ linearmente dipendente dal vettore $v \equiv (-1, 9, 0)$.

Esercizio 6.2 (Esercizio 5.2). Stabilire se i vettori $v_1 \equiv (1, 5, 7)$ e $v_2 \equiv (1, 3, 4)$ di \mathbb{R}^3 sono linearmente dipendenti.

Esercizio 6.3 (Esercizio 5.3). Scrivere un vettore $w \in \mathbb{R}^4$ linearmente dipendente dal vettore $v \equiv (1, 3, -4, 2)$.

Esercizio 6.4. Dati i vettori $(1,1),(1,3),(2,-1) \in \mathbb{R}^2$, stabilire se sono linearmente dipendenti e se è possibile scrivere il secondo vettore come combinazione lineare degli altri due.

Esercizio 6.5. Verificare che le matrici quadrate di ordine 3 triangolari superiori sono sottospazio vettoriale di $M_3(\mathbb{R})$ di dimensione 6.

Esercizio 6.6. Calcolare una base \mathcal{B} del sottospazio (di \mathbb{R}^3) $U = \{(x, y, z) \in \mathbb{R}^3 | x + y - z = 0\}$, verificare che $u = (1, 1, 2) \in U$ e determinare le le componenti di u rispetto a \mathcal{B} .

Esercizio 6.7.

a) Determinare per quali valori del parametro reale k i seguenti vettori di \mathbb{R}^5 sono linearmente dipendenti:

$$v_1 = (0, 1, -1, 0, 1),$$
 $v_2 = (1, 0, 1, 0, k),$ $v_3 = (-1, 2, -3, 0, 0).$

b) Per i valori di k determinati in a), esprimere uno o più vettori come combinazione lineare dei rimanenti.

Esercizio 6.8. Dati i vettori di \mathbb{R}^3 :

$$v_1 \equiv (1,1,2), \ v_2 \equiv (2,4,6), \ v_3 \equiv (-1,2,5), \ v_4 \equiv (1,1,10)$$

determinare se v_4 è combinazione lineare di v_1 , v_2 e v_3 (determinare cioè se v_4 appartiene allo spazio vettoriale generato da v_1 , v_2 e v_3). In caso positivo esprimere tale combinazione lineare (nella forma più generale possibile).

Esercizio 6.9. Dati i vettori di \mathbb{R}^3 :

$$v_1 \equiv (1,1,1), \ v_2 \equiv (-3,-2,-2), \ v_3 \equiv (2,2,k+4), \ v_4 \equiv (1,3,4)$$

determinare per quali valori del parametro reale k, v_4 è combinazione lineare di v_1 , v_2 e v_3 (determinare cioè se v_4 appartiene allo spazio vettoriale generato da v_1 , v_2 e v_3). In caso positivo esprimere tale combinazione lineare (nella forma più generale possibile).

Esercizio 6.10. Ripetere l'esercizio precedente con i vettori

$$v_1 \equiv (1,3,1), \ v_2 \equiv (2,k,-1), \ v_3 \equiv (-1,k-1,0), \ v_4 \equiv (1,15,7)$$

Esercizio 6.11. Dati i vettori di \mathbb{R}^3 :

$$v_1 \equiv (1, 2, 1), \ v_2 \equiv (k - 2, k - 4, -k - 2), \ v_3 \equiv (5, 9, 3)$$

determinare, se possibile, i valori del parametro k per cui il vettore v_3 è combinazione lineare di v_1 , e v_2 . In caso positivo esprimere tale combinazione lineare (nella forma più generale possibile).

Esercizio 6.12. Si considerino le matrici

$$A = \begin{pmatrix} 0 & 0 \\ k & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & k \\ -2 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} k & 1 \\ -1 & 1 \end{pmatrix}$$

Si dica per quali valori del parametro reale k le matrici A, B, C sono linearmente indipendenti nello spazio $M_2(\mathbb{R})$.

Esercizio 6.13. Si considerino le matrici

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & k+1 \\ 4 & k-3 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ 2k-2 & 2k-1 \end{pmatrix}$$

- a) Si stabilisca per quale valore di $k \in \mathbb{R}$ le matrici A, B e C sono linearmente dipendenti.
- b) Per il valore trovato in a) esprimere B come combinazione lineare di A e C.

Esercizio 6.14. Siano dati i polinomi

$$p_1(x) = 1 + x,$$
 $p_2(x) = 1 + 2x + x^2,$ $p_3(x) = x - x^2.$

Esprimere, se è possibile, $f(x) = x^2 - x + 2$ come combinazione lineare di $p_1(x)$, $p_2(x)$, $p_3(x)$.

Esercizio 6.15. Dimostrare che lo spazio vettoriale $M_n(\mathbb{R})$ si decompone come somma diretta del sottospazio delle matrici simmetriche e del sottospazio delle matrici antisimmetriche. Calcolare la dimensione dei due sottospazi.

Esercizio 6.16. Calcolare la somma dei seguenti due sottospazi di \mathbb{R}^3 :

$$V = \langle (1, 1, k) \rangle$$
 $U = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0 \}$

al variare di $k \in \mathbb{R}$. Per quali valori di k, U + V è somma diretta?

Esercizio 6.17. Date le matrici

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & -1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

mostrare che A è invertibile e determinare la matrice $X \in M_3(\mathbb{R})$ tale che AX + B = O

Esercizio 6.18. Data la matrice

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

verificare che $A^2 - A - 2I_3 = O$. Dedurre che A è invertibile e calcolare la sua inversa.

Esercizio 6.19. Determinare, al variare del parametro reale $k \in \mathbb{R}$ il rango della matrice

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k^2 & 1 \\ 1 & 1 & 1 & k^3 \end{pmatrix}$$

Discutere e risolvere in \mathbb{R} il sistema $A\mathbf{x} = \mathbf{b}$, dove $\mathbf{x} = (x_1, x_2, x_3, x_4)^T$ e $\mathbf{b} = (1, \mu, \mu^2, \mu^3)$ dove $k, \mu \in \mathbb{R}$.

Esercizio 6.20. Determinare il rango delle seguenti matrici al variare del parametro $t \in \mathbb{R}$.

$$A_1 = \begin{pmatrix} 1 & -4 & 2 \\ 0 & t+1 & -1 \\ 0 & 0 & t-3 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & -4 & 2 \\ 0 & t+1 & -1 \\ 0 & 0 & t-3 \\ 0 & 0 & t \end{pmatrix} \qquad A_3 = \begin{pmatrix} 1 & 0 & 3 & t \\ 2 & 1 & 2 & t+1 \\ t & 0 & t & 0 \end{pmatrix}$$