CORSI DI LAUREA IN MATEMATICA E FISICA

FOGLIO DI ESERCIZI # 3– GEOMETRIA 1

Esercizio 3.1. Per quale $t \in \mathbb{R}$, la matrice

$$A = \begin{pmatrix} 0 & 3t - 2 & -1 \\ t^2 & 3 & t^2 + 4 \\ -1 & 4t & 1 \end{pmatrix}$$

è simmetrica?

Esercizio 3.2. Date le matrici

$$A = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{2}{3} & \frac{1}{3\sqrt{2}} \\ 0 & -\frac{1}{3} & \frac{4}{3\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{2}{3} & \frac{1}{3\sqrt{2}} \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

- a) stabilire se A è ortogonale e determinare A^{-1} ;
- b) si determini $X \in M_3(\mathbb{R})$ tale che AX + 3B = 0, dove 0 denota la matrice nulla 3×3 .

Esercizio 3.3. Siano $A, B \in M_n(\mathbb{K})$ simmetriche.

- a) AB è simmetrica?
- b) A + B è simmetrica?
- c) A B è simmetrica?

Esercizio 3.4. Provare che

- a) $\forall A \in M_n(\mathbb{K})$ la matrice $A + A^T$ è simmetrica; b) $\forall A \in M_n(\mathbb{K})$ la matrice $A A^T$ è antisimmetrica.

Esercizio 3.5. Si dimostri che, per ogni matrice $M \in M_n(\mathbb{K})$, esistono, e sono uniche, una matrice simmetrica $S \in M_n(\mathbb{K})$ e una matrice antisimmetrica $A \in M_n(\mathbb{K})$ tali che M = S + A.

Sia \mathbb{K} un campo (per esempio \mathbb{Q} , \mathbb{R} o \mathbb{C}). Per ogni intero positivo n, denotiamo con $M_n(\mathbb{K})$ l'insieme delle matrici quadrate di ordine n a coefficienti in \mathbb{K} .

Esercizio 3.6 (Esercizio 7.18 di Ab-deF¹). Si determinino tutte le matrici $A \in M_n(\mathbb{K})$ che commutano con ogni altra matrice di $M_n(\mathbb{K})$, cioè tali che AB = BA per ogni $B \in M_n(\mathbb{K})$.

Esercizio 3.7 (Prima parte dell'Esercizio 14 di BFL²). Sia $A \in M_n(\mathbb{K})$ una matrice strettamente triangolare superiore, cioè tale che $a_{ij} = 0$ per ogni $i \ge j$ se $A = (a_{ij})_{i,j}$. Si provi che $A^n = 0$.

Esercizio 3.8. Sia $A \in M_n(\mathbb{K})$. Una matrice $B \in M_n(\mathbb{K})$ si dice inversa sinistra di A (risp. inversa destra di A) se $BA = I_n$ (risp. $AB = I_n$). Si dimostrino le seguenti affermazioni:

- (a) Se B è una inversa sinistra di A e C è una inversa destra di A, allora A è invertibile e vale $A^{-1} = B = C.$
- (b) A è invertibile se e soltanto se A ammette sia un'inversa sinistra che un'inversa destra.

Prima di proseguire con gli esercizi, ricordiamo la nozione di gruppo e definiamo quella di sottogruppo.

Definizione. Un gruppo è una coppia (G,*), dove G è un insieme non-vuoto e* è una operazione binaria su G, cioè una applicazione $*: G \times G \longrightarrow G$, tale che:

(1) * è associativa, cioè a*(b*c)=(a*b)*c per ogni $a,b,c\in G$.

 $^{^1\}mathrm{Ab\text{-}deF}$ sta ad indicare l'esercizi
ario "Esercizi di geometria" di Abate e de Fabritiis.

²BFL sta ad indicare l'eserciziario "Problemi risolti di algebra lineare" di Broglia, Fortuna e Luminati.

- (2) Esiste un elemento e di G, detto elemento neutro (rispetto a *), tale che a * e = e * a = a per ogni $a \in G$. Si può dimostrare che tale elemento è unico.
- (3) Per ogni $a \in G$, esiste un elemento b di G, detto inverso di a (rispetto a * b), tale che a * b = b * a = e. Tale elemento b è unico e si indica col simbolo a^{-1} .

Per semplicità si dice spesso che G è un gruppo, sottointendendo che l'operazione * è stata fissata.

Il gruppo (G, *) (o semplicemente G) si dice gruppo abeliano se, in aggiunta alle precedenti tre proprietà, vale anche la seguente:

(4) l'operazione * è commutativa, cioè a * b = b * a per ogni $a, b \in G$. \Diamond

Osservazione. Quando si parla di gruppi abeliani, usualmente si utilizza la notazione additiva, cioè "*" si indica con "+", "e" con "0" e " a^{-1} " con "-a".

Definizione. Sia (G,*) un gruppo con elemento neutro e. Un sottoinsieme G' di G si dice sottogruppo di G se l'operazione * induce una struttura di gruppo su G', cioè se valgono le seguenti proprietà:

- (1') $e \in G'$;
- (2') $ab^{-1} \in G'$ per ogni $a, b \in G'$.

Osservazione. Nella definizione precedente la condizione (2') può sostituita con la seguente: (2") $ab \in G'$ e $a^{-1} \in G'$ per ogni $a, b \in G'$.

Esercizio 3.9. Siano n un intero positivo e sia $GL_n(\mathbb{K}) := \{A \in M_n(\mathbb{K}) \mid A \text{ è invertibile}\}$. Si dimostri che $GL_n(\mathbb{K})$, dotato del prodotto matriciale, è un gruppo (non abeliano se $n \geq 2$). Tale gruppo viene detto gruppo lineare generale di ordine n (su \mathbb{K}).

Esercizio 3.10. Sia n un intero positivo. Definiamo:

- (a) $O(n) := \{ A \in GL_n(\mathbb{R}) \, | \, A^T A = I_n \};$
- (a') $O(p,q) := \{A \in GL_n(\mathbb{R}) \mid A^T I_{p,q} A = I_{p,q} \}$, ove $p,q \in \{0,1,\ldots,n\}$ con p+q=n e $I_{p,q}$ è la matrice diagonale avente i primi p elementi diagonali uguali a 1 e i restanti q uguali a-1;
- (b) $U(n) := \{A \in GL_n(\mathbb{C}) \mid A^H A = I_n\}$, ove A^H è la matrice trasposta coniugata di A (anche detta aggiunta hermitiana di A) definita ponendo $A^H := (\overline{a_{ji}})_{i,j}$ se $A = (a_{ij})_{i,j}$;

Dimostrare che:

- (α) O(n) è un sottogruppo di $GL_n(\mathbb{R})$. Tale sottogruppo si chiama gruppo ortogonale di ordine n e le matrici in esso contenute si dicono matrici ortogonali di ordine n.³
- (α') O(p,q) è un sottogruppo di $GL_n(\mathbb{R})$.
- (β) U(n) è un sottogruppo di $GL_n(\mathbb{C})$. Tale sottogruppo si chiama gruppo unitario di ordine n e le matrici in esso contenute si dicono matrici unitarie di ordine n.⁵

Esercizio 3.11. Con le notazioni dell'esercizio precedente, provare che O(n) e O(p,q) sono stabili per trasposizione, e U(n) è stabile per passaggio a trasposta coniugata, cioè

- (a) $A \in O(n) \iff A^T \in O(n)$;
- (a') $A \in \mathcal{O}(p,q) \iff A^T \in \mathcal{O}(p,q)$;
- (b) $A \in \mathrm{U}(n) \iff A^H \in \mathrm{U}(n)$.

Esercizio 3.12 (Esercizio 7.30 di Ab-deF). Dimostrare che, date comunque due matrici $A, B \in M_n(\mathbb{K})$, vale: $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Dedurne che $\operatorname{tr}(M^{-1}AM) = \operatorname{tr}(A)$ per ogni $A \in M_n(\mathbb{K})$ e per ogni $M \in \operatorname{GL}_n(\mathbb{K})$.

Esercizio 3.13 (Esercizio 7.31 di Ab-deF). Si dimostri che non esistono matrici $A, B \in M_n(\mathbb{K})$ tali che $AB - BA = I_n$.

 $^{^3}$ Il gruppo $\mathrm{O}(n)$ viene utilizzato in Meccanica classica.

 $^{^4}$ Il gruppo ${\rm O}(3,1)$ si chiama gruppo di Lorentz. Tale gruppo è di grande importanza in Relatività.

 $^{^{5}}$ Il gruppo U(n) viene utilizzato in Meccanica quantistica.