GEOMETRIA I

Università degli Studi di Trento Corso di Laurea in Matematica e Fisica $A.A.\ 2012/2013$

gennaio 2013 – Fac simile di un testo d'esame

Si svolgano i seguenti esercizi. Si terrà conto non solo della correttezza dei risultati, ma anche della completezza e chiarezza delle spiegazioni.

Esercizio 1. Per ogni $k \in \mathbb{R}$, si dica se il seguente sistema lineare (S_k) nelle incognite $(x, y, z, w) \in \mathbb{R}^4$ è compatibile e, in caso affermativo, si calcolino tutte le soluzioni di (S_k) :

$$(S_k): \begin{cases} x + z + w = 3 \\ -x + ky + w = 0 \\ z + w = 2 \\ kx + y - z = 0 \\ x - y + z - w = 0 \end{cases}.$$

Esercizio 2. Siano U il sottospazio vettoriale di \mathbb{R}^3 e $F:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ l'endomorfismo di \mathbb{R}^3 definiti ponendo:

$$U := \langle u_1, u_2 \rangle \text{ con } u_1 = (1, 0, 1)^T \text{ e } u_2 = (1, 1, 1)^T,$$

e

$$F((x, y, z)^T) := (4x - 4z, x - z, 2x - 4y)^T.$$

Si risponda ai seguenti quesiti:

- (2a) Si calcoli una base di $U \cap \text{Ker}(F)$ e la dimensione di F(U).
- (2b) Equipaggiamo \mathbb{R}^3 col prodotto scalare standard. Si calcoli un vettore $u_3 \in \mathbb{R}^3$ tale che $< u_3 >= U^{\perp}$.
- (2c) Si scriva la matrice associata a F rispetto alla base $\mathcal{C} := (u_1, u_2, u_3)$ di \mathbb{R}^3 .

Esercizio 3. Si dica per quali valori del parametro $k \in \mathbb{R}$ la seguente matrice $A_k \in M_3(\mathbb{R})$ è diagonalizzabile (via similitudine):

$$A_k := \left(\begin{array}{ccc} k & 2k & 2k \\ 1 & 1-k & -k \\ -1 & -1 & 0 \end{array} \right).$$

Esercizio 4. Sia B la seguente matrice simmetrica in $M_4(\mathbb{R})$:

$$B := \left(\begin{array}{cccc} 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 1 \end{array} \right).$$

Si calcoli:

- (4a) il rango e la segnatura della forma quadratica su \mathbb{R}^4 associata a B;
- (4b) una matrice $M \in GL_4(\mathbb{R})$ tale che M^TBM è diagonale.

Esercizio 5. Sia n un intero positivo e sia $A \in M_{2n}(\mathbb{C})$ tale che $A^2 = \mathbf{0}$ e $\mathrm{rk}(A) = n$. Si dimostri che una matrice $B \in M_{2n}(\mathbb{C})$ è simile ad A se e soltanto se $B^2 = \mathbf{0}$ e $\mathrm{rk}(B) = n$.