CORSO DI LAUREA IN INGEGNERIA.

FOGLIO DI ESERCIZI 1- GEOMETRIA E ALGEBRA LINEARE 2012/13

Esercizio 1.1 (2.1). Determinare l'equazione parametrica e Cartesiana della retta del piano

- (a) Passante per i punti A(1,2) e B(-1,3).
- (b) Passante per il punto C(2,3) e parallela al vettore $\overrightarrow{OP} = (-1,2)$.
- (c) Di equazione Cartesiana y = 2x + 5. Determinare inoltre un punto appartenente a tale retta.

SOLUZIONE:

(a) Poichè $\overrightarrow{AB} = (-2, 1)$ otteniamo

$$r: \begin{cases} x = 1 - 2t \\ y = 2 + t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Per ottenere l'equazione Cartesiana basta ricavare t:

$$\begin{cases} x = 1 - 2t \\ y = 2 + t \end{cases} \Rightarrow \begin{cases} x = 1 - 2(y - 2) \\ t = y - 2 \end{cases} \Rightarrow x + 2y - 5 = 0$$

(b) Possiamo scrivere direttamente l'equazione parametrica:

$$r: \begin{cases} x = 2 - t \\ y = 3 + 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Ricaviamo ora l'equazione Cartesiana:

$$\begin{cases} t = 2 - x \\ y = 3 + 2(2 - x) \end{cases} \Rightarrow 2x + y - 7 = 0$$

(c) La cosa più semplice è porre una variabile uguale al parametro t, ottenendo

$$r: \begin{cases} x = t \\ y = 5 + 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Per determinare un punto P appartenente a r è sufficiente trovare un punto (x,y) che soddisfi l'equazione di r (parametrica o cartesiana). Assegnando per esempio il valore 0 al parametro t nell'equazione parametrica otteniamo il punto:

$$\begin{cases} x = 0 \\ y = 5 \end{cases} \Rightarrow P(0, 5).$$

Esercizio 1.2 (2.2). Determinare l'equazione parametrica e Cartesiana della retta dello spazio

- (a) Passante per i punti A(1,0,2) e B(3,-1,0).
- (b) Passante per il punto P(1,3,1) e parallela al vettore $\overrightarrow{OQ} = (2,0,0)$.
- (c) Di equazioni Cartesiane

$$\begin{cases} y = 3x + 1 \\ y - x + z = 0 \end{cases}$$

Determinare inoltre un punto appartenente a tale retta.

SOLUZIONE:

(a) Poichè $\overrightarrow{AB} = (2, -1, -2)$ otteniamo

$$r: \begin{cases} x = 1 + 2t \\ y = -t \\ z = 2 - 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Ricaviamo ora l'equazione Cartesiana:

$$\begin{cases} x = 1 + 2(-y) \\ t = -y \\ z = 2 - 2(-y) \end{cases} \Rightarrow \begin{cases} x + 2y - 1 = 0 \\ 2y - z + 2 = 0 \end{cases}$$

Notiamo che l'equazione Cartesiana di una retta nello spazio è data mediante l'intersezione di due piani.

(b) Possiamo scrivere direttamente l'equazione parametrica:

$$r: \begin{cases} x = 1 + 2t \\ y = 3 \\ z = 1 \end{cases} \quad \forall \ t \in \mathbb{R}$$

Notiamo che l'equazione si può equivalentemente scrivere

$$r: \begin{cases} x = t \\ y = 3 \\ z = 1 \end{cases} \quad \forall \ t \in \mathbb{R}$$

E' immediato ricavare l'equazione Cartesiana:

$$\begin{cases} y = 3 \\ z = 1 \end{cases}$$

(c) La cosa più semplice è porre la variabile x uguale al parametro t, ottenendo

$$\begin{cases} x = t \\ y = 1 + 3t \\ z = -(1 + 3t) + t \end{cases} \Rightarrow r : \begin{cases} x = t \\ y = 1 + 3t \\ z = -1 - 2t \end{cases} \forall t \in \mathbb{R}$$

Per determinare un punto P appartenente a r è sufficiente trovare un punto (x, y, z) che soddisfi l'equazione di r (parametrica o cartesiana). Assegnando per esempio il valore 0 al parametro t nell'equazione parametrica otteniamo il punto:

$$\begin{cases} x = 0 \\ y = 1 \\ z = -1 \end{cases} \Rightarrow P(0, 1, -1).$$

Esercizio 1.3 (2.3).

a) Determinare l'equazione parametrica e Cartesiana del piano π passante per i punti A(1,3,1), B(2,0,0) e C(0,1,1). Il punto P(0,2,0) appartiene a tale piano?

П

b) Determinare una equazione della retta passante per A ortogonale a π .

SOLUZIONE:

a) Possiamo determinare prima l'equazione parametrica. Poichè

$$\overrightarrow{AB} = (1, -3, -1)$$

$$\overrightarrow{AC} = (-1, -2, 0)$$

otteniamo

$$\pi: \begin{cases} x = 1 + t - s \\ y = 3 - 3t - 2s \end{cases} \quad \forall t, s \in \mathbb{R}$$
$$z = 1 - t$$

Per ottenere l'equazione Cartesiana da quella parametrica basta ricavare s e t e procedere per sostituzione:

$$\begin{cases} x = 1 + (1 - z) - s \\ y = 3 - 3(1 - z) - 2s \\ t = 1 - z \end{cases} \Rightarrow \begin{cases} s = -x - z + 2 \\ y = 3z - 2(-x - z + 2) \\ t = 1 - z \end{cases} \Rightarrow 2x - y + 5z - 4 = 0$$

П

In alternativa si può ricavare direttamente l'equazione cartesiana, considerando la generica equazione ax + by + cz = d e imponendo il passaggio per i tre punti $A, B \in C$ in modo da ricavare i valori di $a, b, c \in d$. Notiamo che così come l'equazione cartesiana è determinata a meno di multipli, anche i valori di $a, b, c \in d$ non saranno univocamente determinati.

$$ax + by + cz = d \Rightarrow A: \quad a + 3b + c = d$$

$$B: \quad 2a = d$$

$$C: \quad b + c = d \Rightarrow \begin{cases} \frac{d}{2} + 3b + (d - b) = d \\ a = \frac{d}{2} \\ c = d - b \end{cases} \Rightarrow \begin{cases} b = -\frac{d}{4} \\ a = \frac{d}{2} \\ c = \frac{5}{4}d \end{cases}$$

Possiamo ora scegliere un valore di d. Ponendo d=4 otteniamo

$$\begin{cases} a = 2 \\ b = -1 \\ c = 5 \\ d = 4 \end{cases} \Rightarrow 2x - y + 5z = 4$$

Infine P(0,2,0) appartiene al piano se le sue coordinate soddisfano l'equazione (Cartesiana o parametrica). Sostituendo nell'equazione Cartesiana otteniamo

$$-2 - 4 = 0$$
 no

Poichè le coordinate non soddisfano l'equazione P non appartiene al piano. Analogamente potevamo sostituire nell'equazione parametrica ottenendo:

$$\begin{cases} 0 = 1 + t - s \\ 2 = 3 - 3t - 2s \\ 0 = 1 - t \end{cases} \Rightarrow \begin{cases} 0 = 2 - s \\ 2 = 3 - 3 - 2s \\ t = 1 \end{cases} \Rightarrow \begin{cases} s = 2 \\ s = -1 \\ t = 1 \end{cases}$$

Poichè la prima e seconda equazione si contraddicono il sistema non ammette soluzione e P non appartiene al piano.

b) Sappiamo che dato un generico piano ax + by + cz = k il vettore (a, b, c) è ortogonale al piano. Quindi dall'equazione cartesiana del piano ricaviamo che la retta cercata ha direzione (2, -1, 5). Sappiamo inoltre che tale retta passa per A = (1, 3, 1), quindi

$$\begin{cases} x = 1 + 2t \\ y = 3 - t \\ z = 1 + 5t \end{cases}$$

Esercizio 1.4 (2.4). Sia r la retta di \mathbb{R}^3 passante per i punti A(1,-1,2) e B(-2,0,1), e sia s la retta contenente C(1,3,-3) e parallela al vettore $\overrightarrow{OD}(2,-2,3)$.

- a) Determinare la posizione reciproca delle due rette (cioè se sono incidenti, parallele o sghembe).
- b) Se sono incidenti determinarne il punto di intersezione.

SOLUZIONE:

La retta r passante per B e parallela al vettore $\overrightarrow{BA} = (-3, 1, -1)$ ha equazione parametrica:

$$r: \begin{cases} x = -2 - 3t \\ y = t \\ z = 1 - t \end{cases} \quad \forall t \in R$$

Analogamente

$$s: \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \end{cases} \quad \forall h \in R$$

a) Osserviamo subito che r e s non sono parallele in quanto i vettori direzione \overrightarrow{BA} e \overrightarrow{OD} non hanno le componenti proporzionali uno rispetto all'altro.

Per stabilire se sono incidenti cerchiamo l'intersezione $r \cap s$ risolvendo il sistema di 3 equazioni nelle due incognite t, h:

$$\begin{cases}
-2 - 3t = 1 + 2h \\
t = 3 - 2h \\
1 - t = -3 + 3h
\end{cases} \Rightarrow \begin{cases}
-3(3 - 2h) - 2h = 3 \\
t = 3 - 2h \\
-(3 - 2h) - 3h = -4
\end{cases} \Rightarrow \begin{cases}
-9 + 6h - 2h = 3 \\
t = 3 - 2h \\
-3 + 2h - 3h = -4
\end{cases} \Rightarrow \begin{cases}
h = 3 \\
t = 3 - 2h \\
h = 1
\end{cases}$$

Poichè la prima e terza equazione si contraddicono il sistema non ammette soluzione e le rette non sono incidenti.

Infine le rette sono sghembe.

In alternativa potevamo per esempio ricavare l'equazione cartesiana di una delle due rette

$$r: \begin{cases} x = -2 - 3t \\ y = t \\ z = 1 - t \end{cases} \Rightarrow \begin{cases} x + 3y = -2 \\ y + z = 1 \end{cases}$$

e quindi rislovere il sistema

$$\begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ x + 3y = -2 \\ y + z = 1 \end{cases} \Rightarrow \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ 1 + 2h + 9 - 6h = -2 \\ 3 - 2h - 3 + 3h = 1 \end{cases} \Rightarrow \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ -4h = -12 \\ h = 1 \end{cases}$$

Poichè le ultime due equazioni si contraddicono il sistema non ammette soluzione e le rette non sono incidenti.

Infine le rette sono sghembe.

Esercizio 1.5 (2.7).

- a) Determinare equazioni parametriche della retta r passante per i punti A = (2,3,1) e B = (0,0,1) e della retta s passante per i punti C = (0,0,0) e D = (4,6,0).
- b) Stabilire se r e s sono complanari. In caso affermativo, trovare un'equazione cartesiana del piano contenente r e s.

SOLUZIONE:

a) Il vettori direzione \overrightarrow{AB} e \overrightarrow{CD} hanno componenti:

$$\overrightarrow{AB} = (-2, -3, 0)$$
 $\overrightarrow{CD} = (4, 6, 0)$

Quindi:

$$r: \begin{cases} x = -2t \\ y = -3t \\ z = 1 \end{cases} \qquad s: \begin{cases} x = 4t \\ y = 6t \\ z = 0 \end{cases}$$

b) Poichè i due vettori direzione sono paralleli lo sono anche le due rette r e s e in particolare le rette sono complanari.

Per determinare il piano che li contiene abbiamo bisogno però di un vettore direzione differente, appartenente al piano. Possiamo per esempio determinare il vettore direzione \overrightarrow{AC} (in quanto A e C appartengono al piano cercato):

$$\overrightarrow{AC} = (2, 3, 1)$$

Infine il piano π che contiene r e s ha equazione parametrica:

$$\pi: \begin{cases} x = -2t + 2s \\ y = -3t + 3s \quad \forall s, t \in \mathbb{R} \\ z = s \end{cases}$$

Per ricavare l'equazione cartesiana basta eliminare i parametri s e t:

$$\begin{cases} x = -2t + 2z \\ y = -3t + 3z \quad \Rightarrow 3x - 2y = 0 \\ z = s \end{cases}$$

In alternativa si può ricavare direttamente l'equazione cartesiana, considerando la generica equazione ax + by + cz = d e imponendo il passaggio per tre dei quattro punti, per esempio B, C e D in modo da ricavare i valori di a, b, c e d. Notiamo che così come l'equazione cartesiana è determinata a meno di multipli, anche i valori di a, b, c e d non saranno univocamente determinati.

$$ax + by + cz = d \Rightarrow C: c = d$$

$$D: 4a + 6b = d$$

$$c = 0$$

$$d = 0$$

$$a = -\frac{3}{2}b$$

Possiamo ora scegliere un valore di b. Ponendo b=2 otteniamo

$$\begin{cases} a = -3 \\ b = 2 \\ c = d = 0 \end{cases} \Rightarrow -3x + 2y = 0$$

Esercizio 1.6 (2.9). Si considerino le rette di equazioni cartesiane

$$r: \begin{cases} x + 2y = 0 \\ y - z = 0 \end{cases} \qquad s: \begin{cases} 2x = 0 \\ x + y + z = 0 \end{cases}$$

- a) Dopo avere verificato che le due rette sono incidenti, determinare l'equazione cartesiana della retta passante per P(1,1,1) e incidente r e s.
- b) Determinare l'equazione cartesiana del piano passante per C(1,2,-3) e perpendicolare a r.
- c) Determinare equazioni cartesiane della retta passante per il punto P=(1,1,1) e perpendicolare alle due rette r e s.

SOLUZIONE:

a) Cominciamo con il determinare se le rette r e s sono incidenti risolvendo il sistema

$$\begin{cases} x + 2y = 0 \\ y - z = 0 \\ 2x = 0 \\ x + y + z = 0. \end{cases} \Rightarrow \begin{cases} y = 0 \\ z = 0 \\ x = 0 \\ 0 = 0. \end{cases}$$

Quindi le rette sono incidenti nel punto O(0,0,0). E' allora sufficiente determinare l'equazione della retta passante per P(1,1,1) e O(0,0,0). In questo modo tale retta interseca r e s. La direzione è data dal vettore $\overrightarrow{OP}(1,1,1)$, quindi la retta cercata ha equazione parametrica:

$$\begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

b) Il piano passante per C(1,2,-3) e perpendicolare a r ha equazione del tipo

$$ax + by + cz = k$$

dove a, b, c corrispondono alle componenti del vettore direzione di r (perpendicolare al piano), mentre il valore di k si determina imponendo il passaggio per C.

Determiniamo quindi l'equazione parametrica di r:

$$r: \begin{cases} x = -2t \\ y = t \\ z = t \end{cases}$$

Quindi r è parallela al vettore (-2,1,1), e il piano cercato è del tipo

$$-2x + y + z = k$$

Imponendo poi il passaggio per C(1, 2, -3) otteniamo:

$$-2 \cdot 1 + 2 + (-3) = k$$
 \Rightarrow $k = -3$

Infine il piano cercato ha equazione:

$$-2x + y + z = -3$$

c) Scriviamo l'equazione di r e s in forma parametrica:

$$r: \begin{cases} x = -2t \\ y = t \\ z = t \end{cases}$$

$$s: \begin{cases} x = 0 \\ y = -t \\ z = t \end{cases}$$

Il piano passante per P(1,1,1) e perpendicolare a r ha equazione

$$-2x + y + z = 0$$

Analogamente il piano passante per P(1,1,1) e perpendicolare a s ha equazione

$$-y + z = 0$$

La retta cercata è data dall'intersezione dei due piani appena determinati:

$$\begin{cases} -2x + y + z = 0 \\ -y + z = 0 \end{cases} \Rightarrow \begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

Notiamo che la retta coincide, casualmente, con quella determinata al punto precedente.

Un metodo alternativo consisteva nel calcolare il piano π contenente r e s. Tale piano ha direzione parallela ai due vettori direzione di r e s e contiene il punto O(0,0,0) di intersezione di r e s:

$$r: \begin{cases} x = -2t \\ y = t - s \\ z = t + s \end{cases} \Rightarrow x + y + z = 0$$

La retta cercata è quindi la retta passante per P e perpendicolare a tale piano:

$$\begin{cases} x = 1 + t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

Notiamo che si tratta, ovviamente, della stessa retta determinata con l'altro metodo, scritta in maniera differente.

Esercizio 1.7 (2.10). Sia r la retta nello spazio passante per i punti A = (0,0,1) e B = (-2,-1,0). Sia s la retta passante per i punti C = (1,1,1) e D = (-1,0,0).

- a) Mostrare che le due rette sono complanari e trovare un'equazione del piano π che le contiene.
- b) Trovare equazioni parametriche della retta per l'origine ortogonale al piano π del punto a).

SOLUZIONE:

a) Due rette sono complanari se sono parallele o incidenti.

Il vettori direzione \overrightarrow{AB} e \overrightarrow{CD} hanno componenti:

$$\overrightarrow{AB} = (-2, -1, -1) \qquad \overrightarrow{CD} = (-2, -1, -1)$$

Poichè i due vettori sono paralleli lo sono anche le due rette r e s e quindi in particolare sono complanari. Per determinare il piano che li contiene abbiamo bisogno però di un vettore direzione differente, appartenente al piano. Possiamo per esempio determinare il vettore direzione \overrightarrow{AC} (in quanto A e C appartengono al piano cercato):

$$\overrightarrow{AC} = (1, 1, 0)$$

Infine il piano π che contiene r e s ha equazione parametrica:

$$\pi: \begin{cases} x = -2t + s \\ y = -t + s \\ z = 1 - t \end{cases} \forall s, t \in \mathbb{R}$$

Per ricavare l'equazione cartesiana basta eliminare i parametri s e t:

$$\begin{cases} t = 1 - z \\ x = -2 + 2z + s \\ y = -1 + z + s \end{cases} \Rightarrow \begin{cases} t = 1 - z \\ s = x + 2 - 2z \\ y = -1 + z + x + 2 - 2z \end{cases} \Rightarrow x - y - z + 1 = 0$$

b) Un vettore perpendicolare al piano π ha componenti proporzionali ai cofficienti della x,y e z dell'equazione cartesiana di π , ovvero (1,-1,-1) (o un suo multiplo). Di conseguenza l'equazione della retta cercata è

$$\begin{cases} x = t \\ y = -t & \forall t \in \mathbb{R} \\ z = -t \end{cases}$$

Esercizio 1.8 (2.13). Si considerino i piani dello spazio

$$\pi : x - y + z = 0$$
 e $\pi' : 8x + y - z = 0$.

- a) Stabilire la posizione reciproca dei due piani.
- b) Trovare un'equazione cartesiana del piano passante per P=(1,1,1) e perpendicolare ai piani π e π' .

SOLUZIONE:

a) Due piani o sono paralleli o la loro intersezione è una retta. In questo caso il piano π è perpendicolare al vettore (1, -1, 1), mentre π' è perpendicolare al vettore (8, 1, -1), quindi i piani non sono paralleli tra loro. Determiniamo la loro intersezione mettendo a sistema le loro equazioni:

$$\begin{cases} x - y + z = 0 \\ 8x + y - z = 0 \end{cases} \Rightarrow \begin{cases} 9x = 0 \\ -y + z = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

Quindi i piani si intersecano nella retta

$$\begin{cases} x = 0 \\ y = t \\ z = t \end{cases} \quad \forall t \in \mathbb{R}$$

b) La direzione perpendicolare al piano π è data dal vettore (1, -1, 1), mentre la direzione perpendicolare a π' è (8, 1, -1). Di conseguenza il piano perpendicolare a π e π' passante per il punto P(1, 1, 1) ha equazione parametrica:

$$\begin{cases} x = 1 + t + 8s \\ y = 1 - t + s \\ z = 1 + t - s \end{cases}$$

Ricavando i parametri s e t e sostituendo si ottiene una equazione cartesiana:

$$y + z = 2$$

In alternativa si può osservare che un piano perpendicolare a π e π' è anche perpendicolare alla retta loro intersezione. Di conseguenza il piano cercato è perpendicolare al vettore (0,1,1) (direzione della retta intersezione), ovvero ha equazione del tipo y+z=k. Imponendo il passaggio per P si ottiene direttamente l'equazione cartesiana:

$$y + z = 2$$

Esercizio 1.9 (2.18). Si considerino i piani π_1, π_2, π_3 di equazioni

$$\pi_1 : z - 3 = 0$$
 $\pi_2 : x + y + 2 = 0$
 $\pi_3 : 3x + 3y - z + 9 = 0$

e la retta $r = \pi_1 \cap \pi_2$.

- a) Si stabilisca se il piano π_3 contiene r.
- b) Si trovi un'equazione cartesiana del piano π_4 passante per l'origine e contenente r.
- c) Si calcoli la proiezione ortogonale dell'origine sul piano π_1 .

SOLUZIONE:

Calcoliamo un'equazione parametrica di $r = \pi_1 \cap \pi_2$:

$$\begin{cases} z - 3 = 0 \\ x + y + 2 = 0 \end{cases} \Rightarrow r : \begin{cases} x = -t - 2 \\ y = t \\ z = 3 \end{cases}$$

a) Un modo per verificare se π_3 contiene r è di controllare se π_3 contiene due qualsiasi punti di r. Dall'equazione parametrica di r, assegnando per esempio i valori t=0 e t=1 otteniamo i punti A(-2,0,3) e B(-3,1,3) di r. Quindi π_3 contiene A e B se:

$$3 \cdot (-2) + 3 \cdot 0 - 3 + 9 = 0$$
$$3 \cdot (-3) + 3 \cdot 1 - 3 + 9 = 0$$

Siccome le due condizioni sono verificate A e B, e di conseguenza r, sono contenuti in π_3 .

b) Un piano π_4 contenente r contiene i suoi due punti A e B. Si tratta quindi di trovare l'equazione del piano per A, B e l'origine. Poiché chiede l'equazione cartesiana la cosa più semplice è probabilmente considerare la generica equazione cartesiana e imporre il passaggio pre i tre punti:

$$ax + by + cz = d \quad \Rightarrow \begin{cases} -2a + 3c = d \\ -3a + b + 3c = d \end{cases} \Rightarrow \begin{cases} a = \frac{3}{2}c \\ b = \frac{3}{2}c \\ d = 0 \end{cases}$$

Possiamo ora scegliere un valore di c. Ponendo c=2 otteniamo

$$\begin{cases} a = 3 \\ b = 3 \\ c = 2 \\ d = 0 \end{cases} \Rightarrow 3x + 3y + 2z = 0$$

In alternativa potevamo ricavare l'equazione parametrica e da questa ricavare l'equazione cartesiana. Poichè $\overrightarrow{OA} = (-2,0,3)$ e $\overrightarrow{OB} = (-3,1,3)$, otteniamo le equazioni di π_4 :

$$\pi_4: \begin{cases} x = -2t - 3s \\ y = s \\ z = 3t + 3s \end{cases} \Rightarrow 3x + 3y + 2z = 0$$

c) Determiniamo la retta s per l'origine ortogonale a π_1 , cioè di direzione (0,0,1):

$$s: \begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases}$$

La proiezione ortogonale dell'origine sul piano π_1 è quindi l'intersezione di s con π_1 :

$$\begin{cases} x = 0 \\ y = 0 \\ z = t \\ z = 3 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 3 \end{cases}$$

Infine la proiezione cercata è il punto P(0,0,3)

Esercizio 1.10 (2.20). Si considerino la retta r di equazione

$$r : \begin{cases} x = 2 + t \\ y = -3 - 2t \\ z = 1 \end{cases}$$

e la famiglia di piani π_k : 2x + ky - z = 1 dove k è un parametro reale.

Si determini per quali k il piano π_k risulta parallelo a r.

SOLUZIONE:

Un metodo consiste nel mettere a sistema retta e piano e stabilire per quali k il sistema non ammette soluzione:

$$\begin{cases} x = 2 + t \\ y = -3 - 2t \\ z = 1 \\ 2x + ky - z = 1 \end{cases} \Rightarrow \begin{cases} x = 2 + t \\ y = -3 - 2t \\ z = 1 \\ (2 - 2k)t = 3k - 2 \end{cases}$$

Il sistema è impossibile, e quindi r e π sono paralleli, se k=1.

Un altro metodo consiste nell'imporre l'ortogonalità tra il vettore direzione di r, (1, -2, 0) e il vettore normale al piano, (2, k, -1):

$$((1,-2,0),(2,k,-1)) = 2 - 2k = 0 \Leftrightarrow k = 1$$

Esercizio 1.11 (12.9). Si determini la distanza del punto P(3,1,2) dalla retta r di equazione parametrica

$$r: \begin{cases} x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases}$$

SOLUZIONE:

La retta r è parallela al vettore u = (1, 2, -3).

Sia π il piano perpendicolare a r passante per P. La prima condizione implica che π sia del tipo

$$x + 2y - 3z = k$$

Imponendo il passaggio per P otteniamo 3+2-6=k, ovvero k=-1. Infine

$$\pi: \quad x + 2y - 3z = -1$$

Determiniamo ora il punto di intersezione A di $r \operatorname{con} \pi$:

$$\begin{cases} x + 2y - 3z = -1 \\ x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases} \Rightarrow \begin{cases} 6 + t + 4 + 4t + 3 + 9t = -1 \\ x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases} \Rightarrow \begin{cases} t = -1 \\ x = 5 \\ y = 0 \\ z = 2 \end{cases}$$

Quindi A = (5, 0, 2).

Possiamo ora calcolare la distanza cercata:

$$d(r,P) = d(A,P) = \parallel AP \parallel = \parallel (2,-1,0) \parallel = \sqrt{5}$$

Esercizio 1.12 (12.10). Si determini la distanza del punto P(-1,0,2) dal piano π di equazione π : x-2y+3z=-9.

SOLUZIONE:

Si può applicare la formula:
$$d(\pi, P) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} = \sqrt{14}$$
.
L'esercizio può essere svolto, in caso di oblio della formula, come è illustrato di seguito. Il piano π è

L'esercizio può essere svolto, in caso di oblio della formula, come è illustrato di seguito. Il piano π è perpendicolare al vettore u = (1, -2, 3).

Sia r la retta perpendicolare a π passante per P:

$$r: \begin{cases} x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases}$$

Determiniamo ora il punto di intersezione A di r con π :

$$\begin{cases} x - 2y + 3z = -9 \\ x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases} \Rightarrow \begin{cases} -1 + t + 4t + 6 + 9t = -9 \\ x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases} \Rightarrow \begin{cases} t = -1 \\ x = -2 \\ y = 2 \\ z = -1 \end{cases}$$

Quindi A = (-2, 2, -1).

Possiamo ora calcolare la distanza cercata:

$$d(\pi, P) = d(A, P) = ||AP|| = ||(1, -2, 3)|| = \sqrt{14}$$