CORSO DI LAUREA IN INGEGNERIA.

FOGLIO DI ESERCIZI 9- GEOMETRIA E ALGEBRA LINEARE 2010/11

Esercizio 9.1 (v.8.37). Sia T la funzione lineare da \mathbb{R}^3 a \mathbb{R}^3 definita da

$$T(x, y, z) = (3x - 2y, x + y + z, 2x - 3y - z)$$

- a) Determinare basi dell'immagine Im(T) e del nucleo N(T).
- b) Si scriva la matrice associata a T rispetto alla base $\mathcal{B} = \{(2,1,0), (1,1,0), (0,1,1)\}.$

SOLUZIONE:

a) Riduciamo a gradini la matrice A associata a T rispetto alla base canonica:

$$A = \begin{bmatrix} 3 & -2 & 0 \\ 1 & 1 & 1 \\ 2 & -3 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 3II - I \\ III - 2II \end{bmatrix} \begin{bmatrix} 3 & -2 & 0 \\ 0 & 5 & 3 \\ 0 & -5 & -3 \end{bmatrix} \Rightarrow \begin{bmatrix} 3 & -2 & 0 \\ 0 & 5 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

Quindi

$$\mathcal{B}(Im(T)) = \{T(e_1), T(e_2)\} = \{(3,1,2), (-2,1,-3)\}\$$

Il nucleo di T è formato dalle soluzioni del sistema omogeneo associato a A:

$$\begin{bmatrix} 3 & -2 & 0 & | & 0 \\ 0 & 5 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{cases} x = \frac{2}{3}t \\ y = t \\ z = -\frac{5}{3}t \end{cases} \quad \forall t \in \mathbf{R}$$

Quindi

$$\mathcal{B}(N(T)) = \left\{ \left(\frac{2}{3}, 1, -\frac{5}{3}\right) \right\}$$

b) Chiamiamo v_1 , v_2 e v_3 i tre vettori di \mathcal{B} . Dalla definizione di T otteniamo:

$$T(v_1) = T(2, 1, 0) = (4, 3, 1),$$

 $T(v_2) = T(1, 1, 0) = (1, 2, -1),$
 $T(v_3) = T(0, 1, 1) = (-2, 2, -4),$

Si tratta ora di esprimere tali immagini come combinazioni lineari degli elementi di \mathcal{B} , cioè di risolvere l'equazione $xv_1 + yv_2 + zv_3 = T(v_i)$ per i = 1, 2, 3. Per risolvere i tre sistemi contemporaneamente riduciamo a gradini la matrice formata dai tre vettori v_i affiancata dalla matrice formata dai tre vettori $T(v_i)$

$$\begin{bmatrix} 2 & 1 & 0 & | & 4 & 1 & -2 \\ 1 & 1 & 1 & | & 3 & 2 & 2 \\ 0 & 0 & 1 & | & 1 & -1 & -4 \end{bmatrix} \Rightarrow 2II - I \begin{bmatrix} 2 & 1 & 0 & | & 4 & 1 & -2 \\ 0 & 1 & 2 & | & 2 & 3 & 6 \\ 0 & 0 & 1 & | & 1 & -1 & -4 \end{bmatrix}$$

Consideriamo ora il sistema associato alle prime 4 colonne:

$$\begin{cases} 2x + y = 4 \\ y + 2z = 2 \\ z = 1 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = 0 \\ z = 1 \end{cases}$$
$$T(v_1) = (4, 3, 1) = 2v_1 + 0v_2 + 1v_3 = (2, 0, 1)_{\mathcal{B}}$$

Consideriamo il sistema associato alle prime 3 colonne e alla quinta:

$$\begin{cases} 2x + y = 1 \\ y + 2z = 3 \\ z = -1 \end{cases} \Rightarrow \begin{cases} x = -2 \\ y = 5 \\ z = -1 \end{cases}$$
$$T(v_2) = (1, 2, -1) = -2v_1 + 5v_2 - 1v_3 = (-2, 5, -1)_{\mathcal{B}}$$

Consideriamo il sistema associato alle prime 3 colonne e alla sesta:

$$\begin{cases} 2x + y = -2 \\ y + 2z = 6 \\ z = -4 \end{cases} \Rightarrow \begin{cases} x = -8 \\ y = 14 \\ z = -4 \end{cases}$$
$$T(v_3) = (-2, 2, -4) = -8v_1 + 14v_2 - 4v_3 = (-8, 14, -4)_{\mathcal{B}}$$

Infine la matrice B associata a T rispetto alla base \mathcal{B} è

$$B = \begin{bmatrix} 2 & -2 & -8 \\ 0 & 5 & 14 \\ 1 & -1 & -4 \end{bmatrix}$$

Un metodo alternativo consisteva nell'utilizzare la matrice P di cambiamento di base:

$$P = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow P^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow B = P^{-1}AP$$

Esercizio 9.2 (8.40). Sia $T: \mathbf{R}^2 \to \mathbf{R}^3$ l'applicazione definita da T(x,y) = (2x, x-y, 2y), e siano $\mathcal{B} = \{(1,0), (1,1)\}$ e $\mathcal{B}' = \{(1,1,0), (0,1,1), (0,0,2)\}$ due basi di \mathbf{R}^2 e \mathbf{R}^3 rispettivamente. Determinare la matrice $A = M_{\mathcal{B}'}^{\mathcal{B}'}(T)$ associata a T rispetto alle basi \mathcal{B} e \mathcal{B}' .

SOLUZIONE:

La matrice A cercata ha per colonne le immagini attraverso T degli elementi di \mathcal{B} , espressi rispetto a \mathcal{B}' . Cominciamo a calcolare la immagini:

$$T(1,0) = (2,1,0), T(1,1) = (2,0,2)$$

I vettori cosí ottenuti sono però espressi rispetto alla base canonica. Indichiamo con

$$u_1' = (1, 1, 0), \ u_2' = (0, 1, 1), \ u_3' = (0, 0, 2)$$

gli elementi della base \mathcal{B}' . Esprimere (2,1,0) e (2,0,2) rispetto a \mathcal{B}' equivale a risolvere le due equazioni vettoriali: $xu'_1 + yu'_2 + zu'_3 = (2,1,0)$ e $xu'_1 + yu'_2 + zu'_3 = (2,0,2)$. Consideriamo quindi la matrice associata a tali sistemi, riducendola con le due colonne dei termini noti contemporaneamente:

$$\begin{bmatrix} 1 & 0 & 0 & | & 2 & 2 \\ 1 & 1 & 0 & | & 1 & 0 \\ 0 & 1 & 2 & | & 0 & 2 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 1 & 0 & 0 & | & 2 & 2 \\ 0 & 1 & 0 & | & -1 & -2 \\ 0 & 1 & 2 & | & 0 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & | & 2 & 2 \\ 0 & 1 & 0 & | & -1 & -2 \\ 0 & 0 & 2 & | & 1 & 4 \end{bmatrix}$$

Per risolvere l'equazione $xu'_1 + yu'_2 + zu'_3 = (2,1,0)$ consideriamo la prima colonna dei termini noti:

$$\begin{cases} x = 2 \\ y = -1 \\ 2z = 1 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = -1 \\ z = \frac{1}{2} \end{cases}$$
$$T(1,0) = (2,1,0) = 2u'_1 - u'_2 + \frac{1}{2}u'_3 = \left(2, -1, \frac{1}{2}\right)_{\mathcal{B}}$$

Analogamente per risolvere l'equazione $xu'_1 + yu'_2 + zu'_3 = (2, 0, 2)$ consideriamo la seconda colonna dei termini noti:

$$\begin{cases} x = 2 \\ y = -2 \\ 2z = 4 \end{cases} \Rightarrow \begin{cases} x = 2 \\ y = -2 \\ z = 2 \end{cases} \Rightarrow$$

$$T(1,1) = (2,0,2) = 2u'_1 - 2u'_2 + 2u'_3 = (2,-2,2)_{E/2}$$

Infine

$$A = \begin{bmatrix} 2 & 2 \\ -1 & -2 \\ \frac{1}{2} & 2 \end{bmatrix}$$

Esercizio 9.3 (8.44). Sia $S: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare associata a:

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

rispetto alla base $\{(1,1,1), (0,2,2), (0,0,3)\}\ di \mathbf{R}^3$.

- a) Si scriva la matrice associata a S rispetto alle basi canoniche.
- b) Determinare basi dell'immagine Im(S) e del nucleo N(S).

SOLUZIONE:

a) Dalla matrice si ricava

$$S(1,1,1) = (0,0,1)_{\mathcal{B}}$$

 $S(0,2,2) = (0,0,2)_{\mathcal{B}}$
 $S(0,0,3) = (0,1,3)_{\mathcal{B}}$

quindi per la linearità di S:

$$S(0,0,1) = \frac{1}{3}(0,1,3)_{\mathcal{B}} = \left(0, \frac{1}{3}, 1\right)_{\mathcal{B}}$$

$$S(0,1,0) = \frac{1}{2}(0,0,2)_{\mathcal{B}} - \left(0, \frac{1}{3}, 1\right)_{\mathcal{B}} = \left(0, -\frac{1}{3}, 0\right)_{\mathcal{B}}$$

$$S(1,0,0) = (0,0,1)_{\mathcal{B}} - \frac{1}{2}(0,0,2)_{\mathcal{B}} = (0,0,0)_{\mathcal{B}}$$

Infine

$$S(e_1) = (0,0,0)$$

$$S(e_2) = -\frac{1}{3}(0,2,2) = \left(0, -\frac{2}{3}, -\frac{2}{3}\right)$$

$$S(e_3) = \frac{1}{3}(0,2,2) + 1(0,0,3) = \left(0, \frac{2}{3}, \frac{11}{3}\right)$$

dove tutti i vettori sono finalmente espressi rispetto alla base canonica, e la matrice associata a S rispetto alla base canonica è:

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & -\frac{2}{3} & \frac{2}{3} \\ 0 & -\frac{2}{3} & \frac{11}{3} \end{bmatrix}$$

c) Riduciamo A a gradini:

quindi

$$\mathcal{B}(Im(S)) = \{ (0, -2, -2), (0, 2, 11) \}$$

Per ricavare il nucleo di S risolviamo il sistema omogeneo associato a A

$$\begin{cases} -y + z = 0 \\ 9z = 0 \end{cases} \Rightarrow \begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases} \forall t \in \mathbf{R}$$

Quindi

$$\mathcal{B}(N(S)) = \{ (1,0,0) \}$$

Esercizio 9.4 (8.18). Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$T(x, y, z) = (2x, y, 0)$$

(1) Dato il vettore w = (2, -1, 1), calcolare T(w).

- (2) Determinare la matrice A associata a T rispetto alla base canonica.
- (3) Calcolare T(w) utilizzando la matrice A.
- (4) Determinare la dimensione e una base degli spazi vettoriali Im(T) e N(T).
- (5) Verificare che l'insieme $\mathcal{B} = \{v_1, v_2, v_3\}$ con $v_1 = (1, 0, 1), v_2 = (0, 1, -1), v_3 = (1, 1, -1)$ è una base di \mathbf{R}^3 .
- (6) Determinare la matrice B associata a T rispetto alla base \mathcal{B} dello spazio di partenza e alla base canonica \mathcal{C} dello spazio di arrivo.
- (7) Determinare le componenti del vettore w = (2, -1, 1) rispetto alla base \mathcal{B} .
- (8) Calcolare T(w) utilizzando la matrice B.

SOLUZIONE:

(1) Per calcolare T(w) basta applicare la definizione:

$$T(2,-1,1) = (2 \cdot 2, -1, 0) = (4,-1,0)$$

(2) Per calcolare A dobbiamo calcolare l'immagine dei vettori della base canonica:

$$T(e_1) = T(1,0,0) = (2,0,0)$$

 $T(e_2) = T(0,1,0) = (0,1,0)$
 $T(e_3) = T(0,0,1) = (0,0,0)$

La matrice A ha come colonne $T(e_1)$, $T(e_2)$, $T(e_3)$:

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(3) Utilizzando la matrice A si ottiene

$$T(w) = A \cdot w = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$

Notiamo che abbiamo ottenuto lo stesso risultato del punto (1).

(4) L'immagine di T è generata dai vettori colonna di A:

$$Im(T) = \langle T(e_1), T(e_2), T(e_3) \rangle = \langle (2,0,0), (0,1,0) \rangle$$

Dalla matrice A, già ridotta a gradini, notiamo che solamente $T(e_1)$ e $T(e_2)$ sono linearmente indipendenti, di conseguenza l'immagine è uno spazio vettoriale generato da due vettori:

$$\dim (\operatorname{Im}(T)) = 2$$

$$\mathcal{B}(\operatorname{Im}(T)) = \{(2,0,0), (0,1,0)\}$$

Il nucleo di T è formato da quei vettori dello spazio di partenza ${\bf R}^3$ la cui immagine attraverso T è il vettore nullo:

$$N(T) = \{(x, y, z) \in \mathbf{R}^3 \mid T(v) = (0, 0, 0)\}$$

Il N(T) è quindi formato dalle soluzioni del sistema omogeneo associato a A:

$$\begin{cases} 2x = 0 \\ y = 0 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases} \forall t \in \mathbf{R}$$

Di conseguenza

$$\begin{split} \mathbf{N}(T) &= \{ (0,0,1) \cdot t \mid t \in \mathbf{R} \} = \langle \ (0,0,1) \ \rangle \\ \dim \left(\mathbf{N}(T) \right) &= 1 \\ \mathcal{B} \left(\mathbf{N}(T) \right) &= \{ (0,0,1) \} \end{split}$$

(5) Per verificare che l'insieme $\mathcal{B} = \{v_1, v_2, v_3\}$ con $v_1 = (1, 0, 1), v_2 = (0, 1, -1), v_3 = (1, 1, -1)$ è una base di \mathbf{R}^3 calcoliamo il rango della matrice che ha per colonne i tre vettori:

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & -1 & -2 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

La matrice ha 3 pivot, quindi ha rango 3, e l'insieme $\mathcal{B} = \{v_1, v_2, v_3\}$ è una base di \mathbb{R}^3 .

(6) Per determinare la matrice B associata a T rispetto alla base \mathcal{B} dello spazio di partenza e rispetto alla base \mathcal{C} dello spazio di arrivo, come al punto (2), calcoliamo l'immagine di v_1 , v_2 e v_3 attraverso T:

$$T(v_1) = T(1,0,1) = (2,0,0)$$

 $T(v_2) = T(0,1,-1) = (0,1,0)$
 $T(v_3) = T(1,1,-1) = (2,1,0)$

Notiamo che tali immagini (appartenenti allo spazio di arrivo) sono espresse come richiesto rispetto alla base canonica. La matrice B ha quindi come colonne $T(v_1)$, $T(v_2)$, $T(v_3)$:

$$B = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

(7) Per determinare le componenti (x, y, z) di w rispetto alla base \mathcal{B} dobbiamo esprimere w come combinazione lineare degli elementi di \mathcal{B} . Dobbiamo quindi risolvere l'eaquazione

$$xv_1 + yv_2 + zv_3 = w$$

Consideriamo la matrice associata:

$$\begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & -1 \\ 1 & -1 & -1 & | & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & -1 \\ 0 & -1 & -2 & | & -1 \end{bmatrix} \Rightarrow III - I \begin{bmatrix} 1 & 0 & 1 & | & 2 \\ 0 & 1 & 1 & | & -1 \\ 0 & -1 & | & -2 \end{bmatrix} \Rightarrow \begin{cases} x = 0 \\ y = -2 & \Rightarrow w = 0v_1 - 3v_2 + 2v_3 \\ z = 2 \end{cases}$$

e w ha componenti $(0, -3, 2)_{\mathcal{B}}$ rispetto alla base $\mathcal{B} = \{v_1, v_2, v_3\}$.

Come metodo alternativo possiamo calcolare la matrice $P = M_{\mathcal{B}}^{\mathcal{C}}$ di transizione da \mathcal{B} a \mathcal{C} , ovvero la matrice che ha per colonne i vettori di \mathcal{B} espressi rispetto a \mathcal{C} :

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

Per esprimere w rispetto a \mathcal{B} dobbiamo prima calcolare $P^{-1} = M_{\mathcal{C}}^{\mathcal{B}}$, la matrice di transizione da \mathcal{C} a \mathcal{B} :

$$P^{-1} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix}$$

Di conseguenza

$$w_{\mathcal{B}} = P^{-1} \cdot w^{T} = \begin{bmatrix} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ 2 \end{bmatrix}$$

e w ha componenti $(0, -3, 2)\mathcal{B}$ rispetto alla base $\mathcal{B} = \{v_1, v_2, v_3\}$:

$$w = 0v_1 - 3v_2 + 2v_3$$

(8) Avendo espresso w in termini della base $\mathcal{B} = \{v_1, v_2, v_3\}$ possiamo ora calcolare T(w) utilizzando la matrice B:

$$T(w) = B \cdot w = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 0 \end{bmatrix}$$

Notiamo che abbiamo ottenuto lo stesso risultato del punto (1) e del punto (3).

Esercizio 9.5 (8.36). Sia $S: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare

$$S(x_1, x_2, x_3, x_4) = (3x_1 - 2x_3 + x_4, 4x_1 - 2x_2 + 2x_3 + 3x_4, x_1 + 2x_3 + 2x_4).$$

a) Si trovi una base del nucleo di S e una base dell'immagine di S.

b) Sia \mathcal{E} la base canonica di \mathbf{R}^4 e sia \mathcal{B} la base di \mathbf{R}^3 costituita dai vettori

$$v_1 = (1, 0, 1), \ v_2 = (1, 0, 0), \ v_3 = (1, 1, 1)$$

Si determini la matrice $M_{\mathcal{E}}^{\mathcal{B}}(S)$ associata a S.

SOLUZIONE:

Determiniamo la matrice A associata a S calcolando l'immagine degli elementi della base canonica:

$$S(e_1) = (3, 4, 1)$$

$$S(e_2) = (0, -2, 0)$$

$$S(e_3) = (-2, 2, 2)$$

$$S(e_4) = (1, 3, 2)$$

$$\Rightarrow A = \begin{bmatrix} 3 & 0 & -2 & 1 \\ 4 & -2 & 2 & 3 \\ 1 & 0 & 2 & 2 \end{bmatrix}$$

a) Riduciamo a gradini la matrice A:

Una base dell'Immagine di S è data da

$$\mathcal{B}(Im(S)) = \{S(e_1), S(e_2), S(e_3)\}\$$

Per trovare una base del nucleo risolviamo il sistema omogeneo:

$$\begin{cases} x + 2z + 2w = 0 \\ -2y - 6z - 5w = 0 \\ -8z - 5w = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{6}{5}t \\ y = t \\ z = t \\ w = -\frac{8}{5}t \end{cases} \Rightarrow \mathcal{B}(N(S)) = \{(6, 5, 5, -8)\}$$

b) Si tratta di esprimere $S(e_1)$, $S(e_2)$, $S(e_3)$, $S(e_4)$ rispetto alla base \mathcal{B} . Scriviamo quindi la matrice associata ai 4 sistemi $xv_1 + yv_2 + zv_3 = S(e_i)$, considerando contemporaneamente i quattro vettori:

$$\begin{bmatrix} 1 & 1 & 1 & | & 3 & 0 & -2 & 1 \\ 0 & 0 & 1 & | & 4 & -2 & 2 & 3 \\ 1 & 0 & 1 & | & 1 & 0 & 2 & 2 \end{bmatrix} \Rightarrow III - I \begin{bmatrix} 1 & 1 & 1 & | & 3 & 0 & -2 & 1 \\ 0 & -1 & 0 & | & -2 & 0 & 4 & 1 \\ 0 & 0 & 1 & | & 4 & -2 & 2 & 3 \end{bmatrix}$$

Risolviamo ora i quattro sistemi

$$\begin{cases} x+y+z=3\\ -y=-2\\ z=4 \end{cases} \Rightarrow \begin{cases} x=-3\\ y=2\\ z=4 \end{cases} \Rightarrow S(e_1) = (-3,2,4)_{\mathcal{B}}$$

$$\begin{cases} x+y+z=0\\ -y=0\\ z=-2 \end{cases} \Rightarrow \begin{cases} x=2\\ y=0\\ z=-2 \end{cases} \Rightarrow S(e_2) = (2,0,-2)_{\mathcal{B}}$$

$$\begin{cases} x+y+z=-2\\ -y=4\\ z=2 \end{cases} \Rightarrow \begin{cases} x=0\\ y=-4\\ z=2 \end{cases} \Rightarrow S(e_3) = (0,-4,2)_{\mathcal{B}}$$

$$\begin{cases} x+y+z=1\\ z=3 \end{cases} \Rightarrow \begin{cases} x=-1\\ y=-1\\ z=3 \end{cases} \Rightarrow S(e_4) = (-1,-1,3)_{\mathcal{B}}$$

Infine

$$M_{\mathcal{E}}^{\mathcal{B}}(S) = \begin{bmatrix} -3 & 2 & 9 & -1\\ 2 & 0 & -4 & -1\\ 4 & -2 & 2 & 3 \end{bmatrix}$$

Esercizio 9.6 (8.35). Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la funzione lineare definita da

$$T(x, y, z) = (x + y, 2x - y - z, 2y + z)$$

e sia $\mathcal{B} = \{(1, 2, -4), (0, 1, 1), (1, 0, -7)\}$ una base di \mathbb{R}^3 .

- a) Stabilire se T è iniettiva e/o suriettiva.
- b) Si determini la matrice $M^{\mathcal{E}}_{\mathcal{B}}(T)$ associata a T rispetto alla base \mathcal{B} e alla base canonica \mathcal{E} .
- c) Si determini la matrice $M_{\mathcal{E}}^{\mathcal{B}}(T)$ associata a T rispetto alla base \mathcal{B} e alla base canonica \mathcal{E} .
- d) Si determini la matrice $M_{\mathcal{B}}(T)$ associata a T rispetto alla base \mathcal{B} .

SOLUZIONE:

a) Dobbiamo in sostanza calcolare il rango di $M_{\mathcal{E}}(T) = M(T)$:

$$\begin{split} M(T) &= \begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & -1 \\ 0 & 2 & 1 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & 1 & 0 \\ 0 & -3 & -1 \\ 0 & 2 & 1 \end{bmatrix} \Rightarrow \begin{cases} 1 & 1 & 0 \\ 0 & -3 & -1 \\ 0 & 0 & 1 \end{bmatrix} \\ & \dim(Im(T)) = \operatorname{rg}(M(T)) = 3 \ \Rightarrow \ T \ \text{è suriettiva} \\ & \dim(N(T)) = 3 - \operatorname{rg}(M(T)) = 0 \ \Rightarrow \ T \ \text{è iniettiva} \end{split}$$

b) Si tratta di calcolare le immagini dei vettori della base \mathcal{B} , e scrivere la matrice che ha questi come colonne. Ciò equivale a moltiplicare la matrice M(T) con la matrice

$$P = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -4 & 1 & -7 \end{bmatrix} \Rightarrow M(T)P = \begin{bmatrix} 3 & 1 & 1 \\ 4 & -2 & 9 \\ 0 & 3 & -7 \end{bmatrix}$$

Infatti T(1,2,-4) = (3,4,0), T(0,1,1) = (1,-2,3), T(1,0,-7) = (1,9,-7), come si può determinare usando la definizione data di T.

c) I vettori $T(e_1) = (1, 2, 0), T(e_2) = (1, -1, 2), T(e_3) = (0, -1, 1),$ vanno espressi nella base \mathcal{B} . Le coordinate dei vettori così ottenuti saranno le colonne di $M_{\mathcal{E}}^{\mathcal{B}}(T)$. Equivalentemente si ha che

$$M_{\mathcal{E}}^{\mathcal{B}}(T) = P^{-1}M(T) = \begin{bmatrix} 7 & -1 & 1 \\ -14 & 3 & -2 \\ -6 & 1 & -1 \end{bmatrix} M(T) = \begin{bmatrix} 5 & 10 & 2 \\ -8 & -21 & -5 \\ -4 & -9 & -2 \end{bmatrix}$$

d) Siano $v_1 = (1, 2, -4)$, $v_2 = (0, 1, 1)$ e $v_3 = (1, 0, -7)$. Dati i punti precedenti per ottenere la matrice richiesta basta fare $P^{-1}M(T)P$ per ottenere la matrice richiesta.

Se non fossero state richieste le matrici precedenti, il metodo più semplice consiste nel calcolare le tre immagini dei vettori della nuova base e poi trovare le coordinate di questi tre vettori rispetto alla base $\mathcal{B} = \{v_1, v_2, v_3\}$.

$$T(v_1) = (3, 4, 0), \quad T(v_2) = (1, -2, 3), \quad T(v_3) = (1, 9, -7)$$

Si tratta ora di esprimere tali immagini come combinazioni lineari degli elementi di \mathcal{B} , cioè di risolvere l'equazione $xv_1 + yv_2 + zv_3 = T(v_i)$ per i = 1, 2, 3. Per risolvere i tre sistemi contemporaneamente riduciamo a gradini la matrice formata dai tre vettori v_i affiancata dalla matrice formata dai tre vettori $T(v_i)$

$$\begin{bmatrix} 1 & 0 & 1 & | & 3 & 1 & 1 \\ 2 & 1 & 0 & | & 4 & -2 & 9 \\ -4 & 1 & -7 & | & 0 & 3 & -7 \end{bmatrix} \Rightarrow II - 2I \begin{bmatrix} 1 & 0 & 1 & | & 3 & 1 & 1 \\ 0 & 1 & -2 & | & -2 & -4 & 7 \\ 0 & 1 & -3 & | & 12 & 7 & -3 \end{bmatrix}$$
$$\Rightarrow III - II \begin{bmatrix} 1 & 0 & 1 & | & 3 & 1 & 1 \\ 0 & 1 & -2 & | & -2 & -4 & 7 \\ 0 & 0 & -1 & | & 14 & 11 & -10 \end{bmatrix}$$

Risolviamo ora i tre sistemi

$$T(v_1): \begin{cases} x+z=3\\ y-2z=-2\\ -z=14 \end{cases} \Rightarrow \begin{cases} x=17\\ y=-30\\ z=14 \end{cases} \Rightarrow T(v_1) = (-17, -30, 14)_{\mathcal{B}}$$

$$T(v_2): \begin{cases} x+z=1\\ y-2z=-4\\ -z=11 \end{cases} \Rightarrow \begin{cases} x=12\\ y=-26\\ z=-11 \end{cases} \Rightarrow T(v_2) = (12, -26, -11)_{\mathcal{B}}$$

$$T(v_3): \begin{cases} x+z=1\\ y-2z=7\\ -z=-11 \end{cases} \Rightarrow \begin{cases} x=-9\\ y=27\\ z=10 \end{cases} \Rightarrow T(v_3) = (-9, 27, 10)_{\mathcal{B}}$$

Infine la matrice B associata a T rispetto alla base \mathcal{B} è

$$M_{\mathcal{B}}(T) = \begin{bmatrix} 17 & 12 & -9 \\ -30 & -26 & 27 \\ -14 & -11 & 10 \end{bmatrix}$$

Esercizio 9.7 (9.1). Verificare che v = (1,0,0,1) è autovettore dell'applicazione lineare T così definita

$$T(x_1, x_2, x_3, x_4) = (2x_1 - 2x_3, -x_1 + 2x_2 + x_3 + x_4, x_3, x_1 - 2x_3 + x_4)$$

Determinare inoltre il relativo autovalore.

SOLUZIONE:

Calcoliamo T(v):

$$T(1,0,0,1) = (2, -1+1, 0, 1+1) = (2, 0, 0, 2) = 2 \cdot v$$

Quindi v è autovettore associato all'autovalore 2.

Esercizio 9.8 (9.6). Date le matrici

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} \qquad \qquad B = \begin{bmatrix} -1 & 2 \\ -3 & 1 \end{bmatrix} \qquad \qquad C = \begin{bmatrix} -3 & 4 \\ 1 & 0 \end{bmatrix}$$

- a) Si determini il polinomio caratteristico di ciascuna matrice.
- b) Si determinino gli autovalori, e i relativi autospazi, di ciascuna matrice.
- c) Si stabilisca se le matrici sono diagonalizzabili.

SOLUZIONE:

Consideriamo la matrice A.

a) Calcoliamo il polinomio caratterristico di A:

$$p_A(\lambda) = \det (A - \lambda I) = \det \begin{pmatrix} \begin{bmatrix} -1 - \lambda & 1 \\ 0 & -1 - \lambda \end{bmatrix} \end{pmatrix}$$
$$= (-1 - \lambda)(-1 - \lambda) = (-1 - \lambda)^2$$

b) Gli autovalori di A sono dati dagli zeri del suo polinomio caratteristico, quindi A ha un solo autovalore (doppio):

$$\lambda = -1$$

Inoltre il relativo autospazio è la soluzione del sistema omogeneo associato alla matrice $A - \lambda I$, con $\lambda = -1$:

$$\begin{bmatrix} 0 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{cases} y = 0 \\ 0 = 0 \end{cases} \Rightarrow (x, y) = (t, 0) \quad \forall \ t \in \mathbf{R}$$

Quindi

$$E(-1) = \langle (1,0) \rangle$$

c) La matrice A non è diagonalizzabile in quanto è una matrice 2×2 con un solo autovalore linearmente indipendente.

Consideriamo la matrice B.

a) Calcoliamo il polinomio caratteristico di B:

$$p_B(\lambda) = \det(B - \lambda I) = \det\left(\begin{bmatrix} -1 - \lambda & 2\\ -3 & 1 - \lambda \end{bmatrix}\right)$$
$$= (-1 - \lambda)(1 - \lambda) + 6 = \lambda^2 + 5$$

- b) Poichè il polinomio caratteristico di B non ha zeri reali B non ha autovalori.
- c) La matrice B non è diagonalizzabile in quanto è una matrice 2×2 priva di autovalori. Si noti che invece in \mathbf{C} la matrice ha due autovalori distinti: $\lambda = \sqrt{5}i$ e $\lambda = -\sqrt{5}i$ ed è quindi diagonalizzabile. Una base di autovettori è data da: $\{(1 + \sqrt{5}i, 3), (1 \sqrt{5}i, 3)\}$

Consideriamo la matrice C.

a) Calcoliamo il polinomio caratteristico di C:

$$p_C(\lambda) = \det(C - \lambda I) = \det\left(\begin{bmatrix} -3 - \lambda & 4\\ 1 & -\lambda \end{bmatrix}\right)$$
$$= (-3 - \lambda)(-\lambda) - 4 = \lambda^2 + 3\lambda - 4$$

b) Gli autovalori di C sono dati dagli zeri del suo polinomio caratteristico:

$$\lambda^2 + 3\lambda - 4 = 0 \rightarrow \lambda_1 = -4, \ \lambda_2 = 1$$

Quindi C ha due autovalori:

$$\lambda_1 = -4, \quad \lambda_2 = 1$$

Consideriamo prima $\lambda_1 = -4$. Il relativo autospazio è la soluzione del sistema omogeneo associato alla matrice $C - \lambda I$, con $\lambda = -4$:

$$\begin{bmatrix} 1 & 4 & | & 0 \\ 1 & 4 & | & 0 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} 1 & 4 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} x + 4y = 0 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} x = -4t \\ y = t \end{cases} \Rightarrow (x, y) = (-4t, t) \quad \forall \ t \in \mathbf{R}$$

Quindi

$$E(-4) = \langle (-4,1) \rangle$$

Consideriamo ora $\lambda_2 = 1$. Il relativo autospazio è la soluzione del sistema omogeneo associato alla matrice $C - \lambda I$, con $\lambda = 1$:

$$\begin{bmatrix} -4 & 4 & | & 0 \\ 1 & -1 & | & 0 \end{bmatrix} \Rightarrow \begin{matrix} II \\ 4II + I \\ 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x - y = 0 \\ 0 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x = t \\ y = t \end{bmatrix} \Rightarrow (x, y) = (t, t) \quad \forall \ t \in \mathbf{R}$$

Quindi

$$E(1) = \langle (1,1) \rangle$$

c) La matrice C è diagonalizzabile in quanto è una matrice 2×2 con due autovalori distinti (di molteplicità algebrica 1), quindi C ha due autovettori linearmente indipendenti.

Esercizio 9.9 (9.7). Date le matrici

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{bmatrix} \qquad B = \begin{bmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & -2 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{bmatrix}$$

- a) Si determini il polinomio caratteristico di ciascuna matrice.
- b) Si determinino gli autovalori, e i relativi autospazi, di ciascuna matrice.
- c) Si stabilisca se le matrici sono diagonalizzabili.

SOLUZIONE:

Consideriamo la matrice A.

a) Calcoliamo il polinomio caratteristico di A:

$$p_A(\lambda) = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & -1 \\ 0 & 2 & 4 - \lambda \end{bmatrix}$$
$$= (2 - \lambda)[(1 - \lambda)(4 - \lambda) + 2] = (2 - \lambda)(\lambda^2 - 5\lambda + 6)$$

b) Gli autovalori di A sono gli zeri del suo polinomio caratteristico:

$$(2-\lambda)(\lambda^2-5\lambda+6)=0 \Rightarrow (2-\lambda)=0$$
 oppure $(\lambda^2-5\lambda+6)=0$
 $\Rightarrow \lambda_1=2, \ \lambda_2=2, \ \lambda_3=3$

Di conseguenza gli autovalori di A sono

$$\lambda_1 = 2$$
 doppio $\lambda_2 = 3$

Consideriamo prima l'autovalore $\lambda=2$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $A-\lambda I$, con $\lambda=2$:

$$\begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & -1 & -1 & | & 0 \\ 0 & 2 & 2 & | & 0 \end{bmatrix} \Rightarrow III + 2II \begin{bmatrix} 0 & 1 & 0 & | & 0 \\ 0 & -1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow$$

$$\begin{cases} y = 0 \\ -y - z = 0 \\ 0 = 0 \end{cases} \Rightarrow \begin{cases} x = t \\ y = 0 \\ z = 0 \end{cases} \Rightarrow (x, y, z) = (t, 0, 0) \quad \forall t \in \mathbf{R}$$

Quindi

$$E(2) = \langle (1,0,0) \rangle$$

Consideriamo ora l'autovalore $\lambda=3$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $A-\lambda I$, con $\lambda=3$:

$$\begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 2 & 1 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 0 & -2 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -x + y = 0 \\ -2y - z = 0 \\ 0 = 0 \end{bmatrix} \Rightarrow \begin{cases} x = t \\ y = t \\ z = -2t \end{cases} \Rightarrow (x, y, z) = (t, t, -2t) \quad \forall t \in \mathbf{R}$$

Quindi

$$E(3) = \langle (1, 1, -2) \rangle$$

c) La matrice A non è diagonalizzabile in quanto l'autovalore $\lambda=2$ ha molteplicità algebrica due (è zero doppio del polinomio caratteristico), ma ha molteplicità geometrica uno (il relativo autospazio E(2) ha dimensione uno). Di conseguenza esistono solamente due autovettori linearmente indipendenti e non esiste una base di \mathbf{R}^3 formata da autovettori di A.

Consideriamo ora la matrice B.

a) Calcoliamo il polinomio caratteristico di B:

$$p_B(\lambda) = \det(B - \lambda I) = \det\begin{bmatrix} -3 - \lambda & 1 & -1 \\ -7 & 5 - \lambda & -1 \\ -6 & 6 & -2 - \lambda \end{bmatrix}$$

$$= (-3 - \lambda)[(5 - \lambda)(-2 - \lambda) + 6] - 1[-7(-\lambda - 2) - 6] - [-42 + 6(5 - \lambda)]$$

$$= (-3 - \lambda)(\lambda^2 - 3\lambda - 4) - 7\lambda - 8 + 12 + 6\lambda$$

$$= (-3 - \lambda)(\lambda - 4)(\lambda + 1) - \lambda + 4 = (\lambda - 4)[(-3 - \lambda)(\lambda + 1) - 1]$$

$$= (\lambda - 4)[-\lambda^2 - 4\lambda - 4]$$

b) Gli autovalori di B sono gli zeri del suo polinomio caratteristico:

$$(\lambda - 4)(-\lambda^2 - 4\lambda - 4) = 0$$

$$\Rightarrow (\lambda - 4) = 0 \text{ oppure } (-\lambda^2 - 4\lambda - 4) = 0$$

$$\Rightarrow \lambda_1 = 4, \ \lambda_2 = -2, \ \lambda_3 = -2$$

Di conseguenza gli autovalori di ${\cal B}$ sono

$$\lambda_1 = 4$$
 $\lambda_2 = -2$ doppio

Consideriamo prima l'autovalore $\lambda = 4$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $B - \lambda I$, con $\lambda = 4$:

$$\begin{bmatrix} -7 & 1 & -1 & | & 0 \\ -7 & 1 & -1 & | & 0 \\ -6 & 6 & -6 & | & 0 \end{bmatrix} \Rightarrow II - I \begin{bmatrix} -7 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ -1 & 1 & -1 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -7 & 1 & -1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ -1 & 1 & -1 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -7x + y - z = 0 \\ 0 = 0 \\ 6x = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x = 0 \\ y = t \\ z = t \end{bmatrix}$$

$$\Rightarrow (x, y, z) = (0, t, t) \quad \forall t \in \mathbf{R}$$

Quindi

$$E(4) = \langle (0, 1, 1) \rangle$$

Consideriamo ora l'autovalore $\lambda = -2$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $B - \lambda I$, con $\lambda = -2$:

$$\begin{bmatrix} -1 & 1 & -1 & | & 0 \\ -7 & 7 & -1 & | & 0 \\ -6 & 6 & 0 & | & 0 \end{bmatrix} \Rightarrow II - 7I \begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 0 & 0 & 6 & | & 0 \\ 0 & 0 & 6 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -1 & 1 & 0 & | & 0 \\ 0 & 0 & 6 & | & 0 \\ 0 & 0 & 6 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -x + y = 0 \\ z = 0 \\ 0 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x = t \\ y = t \\ z = 0 \end{bmatrix}$$

$$\Rightarrow (x, y, z) = (t, t, 0) \quad \forall t \in \mathbf{R}$$

Quindi

$$E(-2) = \langle (1, 1, 0) \rangle$$

c) La matrice B non è diagonalizzabile in quanto l'autovalore $\lambda = -2$ ha molteplicità algebrica due (è zero doppio del polinomio caratteristico), ma ha molteplicità geometrica uno (il relativo autospazio E(-2) ha dimensione uno). Infatti abbiamo determinato due soli autovettori linearmente indipendenti.

Consideriamo ora la matrice C.

a) Calcoliamo il polinomio caratteristico di C:

$$p_C(\lambda) = \det(C - \lambda I) = \det\begin{bmatrix} 1 - \lambda & -3 & 3\\ 3 & -5 - \lambda & 3\\ 6 & -6 & 4 - \lambda \end{bmatrix}$$

$$= (1 - \lambda)[(-5 - \lambda)(4 - \lambda) + 18] + 3[3(4 - \lambda) - 18] + 3[-18 - 6(-5 - \lambda)]$$

$$= (1 - \lambda)(\lambda^2 + \lambda - 2) - 18 - 9\lambda + 36 + 18\lambda$$

$$= (1 - \lambda)(\lambda - 1)(\lambda + 2) + 9\lambda + 18 = (\lambda + 2)[(1 - \lambda)(\lambda - 1) + 9]$$

$$= (\lambda + 2)[-\lambda^2 + 2\lambda + 8]$$

b) Gli autovalori di C sono gli zeri del suo polinomio caratteristico:

$$(\lambda + 2)(-\lambda^2 + 2\lambda + 8) = 0$$

$$\Rightarrow (\lambda + 2) = 0 \text{ oppure } (-\lambda^2 + 2\lambda + 8) = 0$$

$$\Rightarrow \lambda_1 = -2, \ \lambda_2 = -2, \ \lambda_3 = 4$$

Di conseguenza gli autovalori di C sono

$$\lambda_1 = -2$$
 doppio $\lambda_2 = 4$

Consideriamo prima l'autovalore $\lambda = -2$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $C - \lambda I$, con $\lambda = -2$:

$$\begin{bmatrix} 3 & -3 & 3 & | & 0 \\ 3 & -3 & 3 & | & 0 \\ 6 & -6 & 6 & | & 0 \end{bmatrix} \Rightarrow \begin{matrix} 1/3I \\ III - I \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x - y + z = 0 \\ 0 = 0 \\ 0 = 0 \end{bmatrix} \Rightarrow \begin{bmatrix} x = t - s \\ y = t \\ z = s \\ \Rightarrow (x, y, z) = (t - s, t, s) = (t, t, 0) + (-s, 0, s) \quad \forall s, t \in \mathbf{R} \end{cases}$$

Quindi

$$E(-2) = \langle (1,1,0), (-1,0,1) \rangle$$

A questo punto possiamo già affermare che C è diagonalizzabile in quanto $\lambda=4$ ha molteplicità algebrica 1 e $\lambda=-2$ ha molteplicità algebrica 2.

Consideriamo ora l'autovalore $\lambda=4$. Il relativo autospazio è dato dalle soluzioni del sistema omogeneo associato alla matrice $C-\lambda I$, con $\lambda=4$:

$$\begin{bmatrix} -3 & -3 & 3 & | & 0 \\ 3 & -9 & 3 & | & 0 \\ 6 & -6 & 0 & | & 0 \end{bmatrix} \Rightarrow \begin{matrix} 1/3I \\ III + I \\ 0 & -12 & 6 & | & 0 \\ 0 & 0 & 6 & | & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -x - y + z = 0 \\ -2y + z = 0 \\ 0 = 0 \end{bmatrix} \Rightarrow \begin{cases} x = t \\ y = t \\ z = 2t \end{cases}$$
$$\Rightarrow (x, y, z) = (t, t, 2t) \quad \forall t \in \mathbf{R}$$

Quindi

$$E(4) = \langle (1, 1, 2) \rangle$$

c) La matrice C è diagonalizzabile in quanto l'autovalore $\lambda=4$ ha molteplicità algebrica e geometrica uno, e l'autovalore $\lambda=-2$ ha molteplicità algebrica due (è zero doppio del polinomio caratteristico) e ha molteplicità geometrica due (il relativo autospazio E(-2) ha dimensione due).