# Using Lie algebras to parametrize certain types of algebraic varieties I 

Willem de Graaf, Janka Pilnikova, Josef Schicho, Mike Harrison

Trento, 25-7-2005

## The known curve

Set

$$
C_{0}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{2}-x_{1}^{2}=0\right\}
$$

then $C_{0}$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$ by

$$
(s: t) \rightarrow\left(s^{2}: s t: t^{2}\right)
$$

Such a map is called a parametrization of $C_{0}$.

## The known curve

Set

$$
C_{0}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{2}-x_{1}^{2}=0\right\}
$$

then $C_{0}$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$ by

$$
(s: t) \rightarrow\left(s^{2}: s t: t^{2}\right) .
$$

Such a map is called a parametrization of $C_{0}$.

## An unknown curve

Now consider

$$
C=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{1}-x_{0} x_{2}-x_{2}^{2}=0\right\} .
$$

Question: is $C$ isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$ as well?
If so can we find a parametrization of $C$ ?

## An unknown curve

Now consider

$$
C=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{1}-x_{0} x_{2}-x_{2}^{2}=0\right\} .
$$

Question: is $C$ isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$ as well?
If so can we find a parametrization of $C$ ?

## An unknown curve

Now consider

$$
C=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{1}-x_{0} x_{2}-x_{2}^{2}=0\right\} .
$$

Question: is $C$ isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$ as well?
If so can we find a parametrization of $C$ ?

There are algorithms for this by Cremona and Rusin (2003) and Simon (2005). These are based on finding a rational point on C. In our approach we try to find a $3 \times 3$ matrix $M$ with the property that

$$
p \in C_{0} \text { iff } M p \in C
$$

This will then give us a parametrization of $C$ :


It can be shown that such an $M$ always exists if $C$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$
This turns out to be rather less efficient than the Cremona-Rusin and Simon algorithms. However, this approach can be generalised to other types of varieties.

There are algorithms for this by Cremona and Rusin (2003) and Simon (2005). These are based on finding a rational point on C.

In our approach we try to find a $3 \times 3$ matrix $M$ with the property that

$$
p \in C_{0} \text { iff } M p \in C
$$

This will then give us a parametrization of $C$ :

$$
\mathbb{P}^{1}(\mathbb{Q}) \longrightarrow C_{0} \xrightarrow{M} C .
$$

It can be shown that such an $M$ always exists if $C$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$.
This turns out to be rather less efficient than the Cremona-Rusin and Simon algorithms. However, this approach can be generalised to other types of varieties.

There are algorithms for this by Cremona and Rusin (2003) and Simon (2005). These are based on finding a rational point on C.

In our approach we try to find a $3 \times 3$ matrix $M$ with the property that

$$
p \in C_{0} \text { iff } M p \in C
$$

This will then give us a parametrization of $C$ :

$$
\mathbb{P}^{1}(\mathbb{Q}) \longrightarrow C_{0} \xrightarrow{M} C
$$

It can be shown that such an $M$ always exists if $C$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$.
This turns out to be rather less efficient than the Cremona-Rusin and Simon algorithms. However, this approach can be generalised to other types of varieties.

There are algorithms for this by Cremona and Rusin (2003) and Simon (2005). These are based on finding a rational point on C.

In our approach we try to find a $3 \times 3$ matrix $M$ with the property that

$$
p \in C_{0} \text { iff } M p \in C
$$

This will then give us a parametrization of $C$ :

$$
\mathbb{P}^{1}(\mathbb{Q}) \longrightarrow C_{0} \xrightarrow{M} C
$$

It can be shown that such an $M$ always exists if $C$ is isomorphic to $\mathbb{P}^{1}(\mathbb{Q})$.
This turns out to be rather less efficient than the Cremona-Rusin and Simon algorithms. However, this approach can be generalised to other types of varieties.

## $C_{0}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{2}-x_{1}^{2}=0\right\}$

Set

$$
A_{0}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

then

$$
C_{0}=\left\{p=\left(x_{0}: x_{1}: x_{2}\right) \mid p^{T} A_{0} p=0\right\} .
$$

Set

$$
G\left(C_{0}, \mathbb{Q}\right)=\left\{g \in \mathrm{GL}_{3}(\mathbb{Q}) \mid g^{T} A_{0} g=\lambda A_{0}\right\}
$$

(i.e., the group consisting of all invertible linear maps that map $C_{0}$ into itself).
Then
$G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$.

$$
C_{0}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{2}-x_{1}^{2}=0\right\}
$$

Set

$$
A_{0}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

then

$$
C_{0}=\left\{p=\left(x_{0}: x_{1}: x_{2}\right) \mid p^{T} A_{0} p=0\right\} .
$$

Set

$$
G\left(C_{0}, \mathbb{Q}\right)=\left\{g \in \mathrm{GL}_{3}(\mathbb{Q}) \mid g^{T} A_{0} g=\lambda A_{0}\right\}
$$

(i.e., the group consisting of all invertible linear maps that map $C_{0}$ into itself).
$G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$.

$$
C_{0}=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{2}-x_{1}^{2}=0\right\}
$$

Set

$$
A_{0}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

then

$$
C_{0}=\left\{p=\left(x_{0}: x_{1}: x_{2}\right) \mid p^{T} A_{0} p=0\right\} .
$$

Set

$$
G\left(C_{0}, \mathbb{Q}\right)=\left\{g \in \mathrm{GL}_{3}(\mathbb{Q}) \mid g^{T} A_{0} g=\lambda A_{0}\right\}
$$

(i.e., the group consisting of all invertible linear maps that map $C_{0}$ into itself).
Then

$$
G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle
$$

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$.
Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.

Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$.
The groun $G=G \mathrm{~L}_{2}(\mathbb{D})$ acts on $V$. Hence also on $\operatorname{Sym}^{2}(V)$ by $g \cdot v w=(g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.

So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with kernel $\pm I_{2}$.

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$. Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$. The group $G=G L_{2}(\mathbb{Q})$ acts on $V$. Hence also on $\operatorname{Sym}^{2}(V)$ by $g \cdot v w=(g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.
So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with kernel $\pm I_{2}$.

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$.
Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$. $g \cdot v w=(g \cdot v)(g \cdot w)$.
This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.

So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with kernel $\pm I_{2}$.

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$.
Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$.
$g \cdot v w=(g \cdot v)(g \cdot w)$.
This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.

So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with kernel $\pm I_{2}$.

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$.
Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$.
The group $G=\mathrm{GL}_{2}(\mathbb{Q})$ acts on $V$. Hence also on $\operatorname{Sym}^{2}(V)$ by $g \cdot v w=(g \cdot v)(g \cdot w)$.
This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$. Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$.
The group $G=\mathrm{GL}_{2}(\mathbb{Q})$ acts on $V$. Hence also on $\operatorname{Sym}^{2}(V)$ by $g \cdot v w=(g \cdot v)(g \cdot w)$.
This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.

So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with

## $G\left(C_{0}, \mathbb{Q}\right) \cong \mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle$, Why?

Let $V$ be the two-dimensional vector space over $\mathbb{Q}$ with basis $v_{0}, v_{1}$. Let $\operatorname{Sym}^{2}(V)$ be the symmetric square of $V$ with basis $v_{0}^{2}, 2 v_{0} v_{1}$, $v_{1}^{2}$.
Let $\phi: V \rightarrow \operatorname{Sym}^{2}(V)$ be defined by $\phi(v)=v^{2}$, or in coordinates, $\phi\left(s v_{0}+t v_{1}\right)=s^{2} v_{0}^{2}+s t\left(2 v_{0} v_{1}\right)+t^{2} v_{1}^{2}$.
Hence in coordinates the image of $\phi$ is $\left\{\left(s^{2}, s t, t^{2}\right)\right\}$, which is $C_{0}$.
The group $G=\mathrm{GL}_{2}(\mathbb{Q})$ acts on $V$. Hence also on $\operatorname{Sym}^{2}(V)$ by $g \cdot v w=(g \cdot v)(g \cdot w)$.
This implies that $\phi(g \cdot v)=g \cdot \phi(v)$. And hence $G$ leaves the image, $C_{0}$, invariant.
So we get a surjective group homomorphism $G \rightarrow G\left(C_{0}, \mathbb{Q}\right)$, with kernel $\pm l_{2}$.

## The Lie algebra of $G\left(C_{0}, \mathbb{Q}\right)$

Set

$$
L\left(C_{0}, \mathbb{Q}\right)=\left\{X \in \mathfrak{g l}_{3}(\mathbb{Q}) \mid X^{\top} A_{0}+A_{0} X=\lambda A_{0}\right\}
$$

Then $L\left(C_{0}, \mathbb{Q}\right) \cong \mathfrak{g l}_{2}(\mathbb{Q})$.
Why?
$G\left(C_{0}, \mathbb{Q}\right)$ is an algebraic group and
$\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right) \cong \operatorname{Lie}\left(\mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle\right)=g_{2}(\mathbb{Q})$.
And it can be shown that $\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right)=L\left(C_{0}, \mathbb{Q}\right)$.

## The Lie algebra of $G\left(C_{0}, \mathbb{Q}\right)$

Set

$$
L\left(C_{0}, \mathbb{Q}\right)=\left\{X \in \mathfrak{g l}_{3}(\mathbb{Q}) \mid X^{\top} A_{0}+A_{0} X=\lambda A_{0}\right\} .
$$

Then $L\left(C_{0}, \mathbb{Q}\right) \cong \mathfrak{g l}_{2}(\mathbb{Q})$.
Why?
$G\left(C_{0}, \mathbb{Q}\right)$ is an algebraic group and $\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right) \cong \operatorname{Lie}\left(\mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle\right)=\mathfrak{g l}_{2}(\mathbb{Q})$.
And it can be shown that $\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right)=L\left(C_{0}, \mathbb{Q}\right)$.

## The Lie algebra of $G\left(C_{0}, \mathbb{Q}\right)$

Set

$$
L\left(C_{0}, \mathbb{Q}\right)=\left\{X \in \mathfrak{g l}_{3}(\mathbb{Q}) \mid X^{T} A_{0}+A_{0} X=\lambda A_{0}\right\} .
$$

Then $L\left(C_{0}, \mathbb{Q}\right) \cong \mathfrak{g l}_{2}(\mathbb{Q})$.
Why?
$G\left(C_{0}, \mathbb{Q}\right)$ is an algebraic group and
$\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right) \cong \operatorname{Lie}\left(\mathrm{GL}_{2}(\mathbb{Q}) /\left\langle \pm I_{2}\right\rangle\right)=\mathfrak{g l}_{2}(\mathbb{Q})$.
And it can be shown that $\operatorname{Lie}\left(G\left(C_{0}, \mathbb{Q}\right)\right)=L\left(C_{0}, \mathbb{Q}\right)$.

A basis of $L\left(C_{0}, \mathbb{Q}\right)$ :

$$
\begin{gathered}
I_{3}, a_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), a_{2}=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
a_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Let $x, y, h$ be the standard basis elements of $\mathfrak{s l}_{2}(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$, given by

$$
\varphi_{0}(h)=2 a_{1}, \varphi_{0}(x)=a_{2}, \varphi_{0}(y)=a_{3} .
$$

## A basis of $L\left(C_{0}, \mathbb{Q}\right)$ :

$$
\begin{gathered}
I_{3}, a_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right), a_{2}=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \\
a_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) .
\end{gathered}
$$

Let $x, y, h$ be the standard basis elements of $\mathfrak{s l}_{2}(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$, given by

$$
\varphi_{0}(h)=2 a_{1}, \varphi_{0}(x)=a_{2}, \varphi_{0}(y)=a_{3} .
$$

$$
C=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{1}-x_{0} x_{2}-x_{2}^{2}=0\right\} .
$$

In this case with $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -2\end{array}\right)$ we have

$$
C=\left\{p=\left(x_{0}: x_{1}: x_{2}\right) \mid p^{T} A p=0\right\} .
$$

## Just as for $C_{0}$ we define

$$
L(C, \mathbb{Q})=\left\{X \in \mathfrak{g l}_{3}(\mathbb{Q}) \mid X^{\top} A+A X=\lambda A\right\} .
$$

$$
C=\left\{\left(x_{0}: x_{1}: x_{2}\right) \in \mathbb{P}^{2}(\mathbb{Q}) \mid x_{0} x_{1}-x_{0} x_{2}-x_{2}^{2}=0\right\} .
$$

In this case with $A=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -2\end{array}\right)$ we have

$$
C=\left\{p=\left(x_{0}: x_{1}: x_{2}\right) \mid p^{\top} A p=0\right\} .
$$

Just as for $C_{0}$ we define

$$
L(C, \mathbb{Q})=\left\{X \in \mathfrak{g l}_{3}(\mathbb{Q}) \mid X^{\top} A+A X=\lambda A\right\} .
$$

## Isomorphism

FACT: if $M: C_{0} \rightarrow C$ exists then $X \mapsto M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

So we check whether $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.
If not, then $C$ cannot be parametrized. We stop (maybe slightly distressed).
If yes, then we proceed.

## Isomorphism

FACT: if $M: C_{0} \rightarrow C$ exists then $X \mapsto M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

So we check whether $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.
If not, then $C$ cannot be parametrized. We stop (maybe slightly distressed).
If yes, then we proceed.

## Isomorphism

FACT: if $M: C_{0} \rightarrow C$ exists then $X \mapsto M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

So we check whether $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.
If not, then $C$ cannot be parametrized. We stop (maybe slightly distressed).
If yes, then we proceed.

## Isomorphism

FACT: if $M: C_{0} \rightarrow C$ exists then $X \mapsto M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

So we check whether $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.
If not, then $C$ cannot be parametrized. We stop (maybe slightly distressed).
If yes, then we proceed.

Basis of $L(C, \mathbb{Q})$ :

$$
\begin{gathered}
l_{3}, b_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right), b_{2}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
1 & 2 & 0 \\
1 & 0 & 0
\end{array}\right), \\
b_{3}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right) .
\end{gathered}
$$

Let $x, y, h$ be the standard basis elements of $\mathfrak{s l}_{2}(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$,
given by

$$
\varphi(h)=2 b_{1}, \varphi(x)=-b_{1}+b_{3}, \varphi(y)=2 b_{1}+b_{2} .
$$

In particular $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.

## Basis of $L(C, \mathbb{Q})$ :

$$
\begin{gathered}
I_{3}, b_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right), b_{2}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
1 & 2 & 0 \\
1 & 0 & 0
\end{array}\right) \\
b_{3}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right) .
\end{gathered}
$$

Let $x, y, h$ be the standard basis elements of $\mathfrak{s l}_{2}(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$, given by

$$
\varphi(h)=2 b_{1}, \varphi(x)=-b_{1}+b_{3}, \varphi(y)=2 b_{1}+b_{2}
$$

## Basis of $L(C, \mathbb{Q})$ :

$$
\begin{gathered}
I_{3}, b_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right), b_{2}=\left(\begin{array}{ccc}
-2 & 0 & 0 \\
1 & 2 & 0 \\
1 & 0 & 0
\end{array}\right) \\
b_{3}=\left(\begin{array}{ccc}
1 & 0 & 2 \\
1 & 0 & 0 \\
0 & 1 & -1
\end{array}\right) .
\end{gathered}
$$

Let $x, y, h$ be the standard basis elements of $\mathfrak{s l}_{2}(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$, given by

$$
\varphi(h)=2 b_{1}, \varphi(x)=-b_{1}+b_{3}, \varphi(y)=2 b_{1}+b_{2}
$$

In particular $L\left(C_{0}, \mathbb{Q}\right) \cong L(C, \mathbb{Q})$.

## The modules

Both $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$ and $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-modules.

Let $V_{0}$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $e_{1}, e_{2}, e_{3}$.
Let $V$ be the $5_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis Then there is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules, given by

$$
\begin{aligned}
& e_{1} \mapsto v_{1} \\
& e_{2} \mapsto v_{2}+v_{3} \\
& e_{3} \mapsto v_{2}
\end{aligned}
$$

## The modules

Both $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$ and $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-modules.

Let $V_{0}$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $e_{1}, e_{2}, e_{3}$.
Let $V$ be the $s_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis Then there is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules, given by

$$
\begin{aligned}
& e_{1} \mapsto v_{1} \\
& e_{2} \mapsto v_{2}+v_{3} \\
& e_{3} \mapsto v_{2} .
\end{aligned}
$$

## The modules

Both $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$ and $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-modules.

Let $V_{0}$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $e_{1}, e_{2}, e_{3}$.
Let $V$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $v_{1}, v_{2}, v_{3}$.
$e_{1} \mapsto v_{1}$
$e_{2} \mapsto v_{2}+v_{3}$
$e_{3} \mapsto V_{2}$

## The modules

Both $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$ and $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-modules.

Let $V_{0}$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $e_{1}, e_{2}, e_{3}$.
Let $V$ be the $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\varphi_{0}$, with basis $v_{1}, v_{2}, v_{3}$.
Then there is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules, given by

$$
\begin{aligned}
& e_{1} \mapsto v_{1} \\
& e_{2} \mapsto v_{2}+v_{3} \\
& e_{3} \mapsto v_{2} .
\end{aligned}
$$

## The module isomorphism

The matrix of this isomorphism is

$$
N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$



And if we define $\psi(s: t)=\left(s^{2}: s t+t^{2}: s t\right)$ then we get a parametrization of $C$ (easy to check directly).

## The module isomorphism

The matrix of this isomorphism is

$$
N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Now $N\left(\begin{array}{c}s^{2} \\ s t \\ t^{2}\end{array}\right)=\left(\begin{array}{c}s^{2} \\ s t+t^{2} \\ s t\end{array}\right)$
And if we define $\psi(s: t)=\left(s^{2}: s t+t^{2}: s t\right)$ then we get a parametrization of $C$ (easy to check directly).

## The module isomorphism

The matrix of this isomorphism is

$$
N=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Now $N\left(\begin{array}{c}s^{2} \\ s t \\ t^{2}\end{array}\right)=\left(\begin{array}{c}s^{2} \\ s t+t^{2} \\ s t\end{array}\right)$
And if we define $\psi(s: t)=\left(s^{2}: s t+t^{2}: s t\right)$ then we get a parametrization of $C$ (easy to check directly).

Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the man $v: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, Q)$ by
$\psi(u)=M \varphi_{0}(u) M^{-1}$
Let $W$ be the 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\psi$.
Then $M: V_{0} \rightarrow W$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So since isomorphisms of irreducible $\mathfrak{s l}_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$. (And the scalar doesn't matter, because we are in projective space.)

## Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the map $\psi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ by $\psi(u)=M \varphi_{0}(u) M^{-1}$

Let $\mathrm{M} /$ be the 3-dimensional $5_{2}(\mathbb{Q})$-module corresponding to Then $M: V_{0} \rightarrow W$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show)
So since isomorphisms of irreducible $\mathfrak{S L}_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$ (And the scalar doesn't matter, because we are in projective space.)

## Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the $\operatorname{map} \psi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ by $\psi(u)=M \varphi_{0}(u) M^{-1}$.

> Let $W$ be the 3-dimensional $5_{2}(\mathbb{Q})$-module corresponding to $\psi$. Then $M: V_{0} \rightarrow W$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
> So since isomorphisms of irreducible $\mathfrak{S l}_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$ (And the scalar doesn't matter, because we are in projective space.)

## Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the map $\psi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ by $\psi(u)=M \varphi_{0}(u) M^{-1}$.

Let $W$ be the 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\psi$.
show).
So since isomorphisms of irreducible $5_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$ (And the scalar doesn't matter, because we are in projective space.)

## Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the $\operatorname{map} \psi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ by $\psi(u)=M \varphi_{0}(u) M^{-1}$.

Let $W$ be the 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\psi$. Then $M: V_{0} \rightarrow W$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So since isomorphisms of irreducible $\mathfrak{s l}_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$ (And the scalar doesn't matter, because we are in projective space.)

## Why does this work?

We have $\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L\left(C_{0}, \mathbb{Q}\right)$.
Suppose that $M: C_{0} \rightarrow C$ exists. Then $X \rightarrow M X M^{-1}$ is an isomorphism $L\left(C_{0}, \mathbb{Q}\right) \rightarrow L(C, \mathbb{Q})$.

In that case we have the map $\psi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ by
$\psi(u)=M \varphi_{0}(u) M^{-1}$.
Let $W$ be the 3-dimensional $\mathfrak{s l}_{2}(\mathbb{Q})$-module corresponding to $\psi$. Then $M: V_{0} \rightarrow W$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So since isomorphisms of irreducible $\mathfrak{s l}_{2}(\mathbb{Q})$-modules are unique upto a scalar, we can recover $M$ (upto a scalar) from $V_{0}$ and $W$. (And the scalar doesn't matter, because we are in projective space.)

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.

```
What happens if }\psi\not=\varphi\mathrm{ ? Then we set }g=\mp@subsup{\varphi}{}{-1}\circ\psi\mathrm{ . Then }g\mathrm{ is an
automorphism of }\mp@subsup{\mathfrak{Sl}}{2}{}(\mathbb{Q}
FACT: then }g\mathrm{ is a product of }\operatorname{exp(adu), where }u\in{\mp@subsup{\mathfrak{Sh}}{2}{(\mathbb{Q})}\mathrm{ is such
that adu is nilpotent. (Well, over \mathbb{Q}, but that desn't matter here.)
Suppose that g = exp(adu). And set h=exp(\psi(u))
Then h:W->V is an isomorphism of }\mp@subsup{\mathfrak{sl}}{2}{}(\mathbb{Q})\mathrm{ -modules (easy to
show)
So N =hM (upto a scalar that doesn't matter).
But h\inG(C,\mathbb{Q})\mathrm{ (also easy to show) so}
```


hence $N=h M$ also woks.

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.

What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an
automorphism of $\mathfrak{S l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that adu is nilpotent. (Well, over $\mathbb{Q}$, but that desn't matter here.)

Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.
Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So $N=h M$ (upto a scalar that doesn't matter).
But $h \in G(C, \mathbb{Q})$ (also easy to show) so

hence $N=h M$ also woks.

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.
What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.

```
FACT: then }g\mathrm{ is a product of }\operatorname{exp(adu), where }u\in\mp@subsup{\mathfrak{sl}}{2}{(\mathbb{Q})}\mathrm{ is such
that ad}u\mathrm{ is nilpotent. (Well, over }\mathbb{Q},\mathrm{ but that desn't matter here.)
Suppose that g = exp(adu). And set h = exp (v,(u))
Then h:W }->V\mathrm{ is an isomorphism of }\mp@subsup{\mathfrak{sl}}{2}{(}\mathbb{Q})\mathrm{ -modules (easy to
show)
So N=hM (upto a scalar that doesn't matter)
But h\inG(C,\mathbb{Q})(also easy to show) so
```


hence $N=h M$ also woks.

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.

What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that ad $u$ is nilpotent.
Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.
Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to
show)
So $N=h M$ (upto a scalar that doesn't matter)
But $h \in G(C, \mathbb{Q})$ (also easy to show) so

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.

What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that ad $u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

> Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$. Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show)
> So $N=h M$ (upto a scalar that doesn't matter) But $h \in G(C, \mathbb{Q})$ (also easy to show) so

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.
What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that ad $u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.

hence $N=h M$ also woks.

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.
What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)
Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.
Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So $N=h M$ (upto a scalar that doesn't matter).
But $h \in G(C, \mathbb{Q})$ (also easy to show) so

hence $N=h M$ also woks.

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.
What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that ad $u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)
Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.
Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So $N=h M$ (upto a scalar that doesn't matter).

## Why does this work 2

So if the map $\varphi: \mathfrak{s l}_{2}(\mathbb{Q}) \rightarrow L(C, \mathbb{Q})$ that we chose happens to be equal to $\psi$, then we recover $M$.
What happens if $\psi \neq \varphi$ ? Then we set $g=\varphi^{-1} \circ \psi$. Then $g$ is an automorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$.
FACT: then $g$ is a product of $\exp (\operatorname{ad} u)$, where $u \in \mathfrak{s l}_{2}(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)
Suppose that $g=\exp (\operatorname{ad} u)$. And set $h=\exp (\psi(u))$.
Then $h: W \rightarrow V$ is an isomorphism of $\mathfrak{s l}_{2}(\mathbb{Q})$-modules (easy to show).
So $N=h M$ (upto a scalar that doesn't matter).
But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$
C_{0} \xrightarrow{M} C \xrightarrow{h} C
$$

hence $N=h M$ also woks.

## Generalisation to $\mathbb{P}^{2}(\mathbb{Q})$

This can be generalised to $\mathbb{P}^{2}(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^{9}(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^{2}(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{g l}_{3}(\mathbb{Q})$, and we deal with $\mathfrak{s l}_{3}(\mathbb{Q})$-modules.

Everything is analogous, except that the automorphism of $\mathfrak{s l}_{3}(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to $(0,3)$. So, since the modules are isomorphic, this cannot occur.

## Generalisation to $\mathbb{P}^{2}(\mathbb{Q})$

This can be generalised to $\mathbb{P}^{2}(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^{9}(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^{2}(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{g l}_{3}(\mathbb{Q})$, and we deal with $\mathfrak{s l}_{3}(\mathbb{Q})$-modules.

Everything is analogous, except that the automorphism of $\mathfrak{s l}_{3}(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is $(3,0)$. Inserting a diagram automorphism would change that to $(0,3)$. So, since the modules are isomorphic, this cannot occur.

## Generalisation to $\mathbb{P}^{2}(\mathbb{Q})$

This can be generalised to $\mathbb{P}^{2}(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^{9}(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^{2}(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{g l}_{3}(\mathbb{Q})$, and we deal with $\mathfrak{S l}_{3}(\mathbb{Q})$-modules.

Everything is analogous, except that the automorphism of $\mathfrak{s l}_{3}(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to $(0,3)$. So, since the modules are isomorphic, this cannot occur.

## Generalisation to $\mathbb{P}^{2}(\mathbb{Q})$

This can be generalised to $\mathbb{P}^{2}(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^{9}(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^{2}(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{g l}_{3}(\mathbb{Q})$, and we deal with $\mathfrak{S l}_{3}(\mathbb{Q})$-modules.

Everything is analogous, except that the automorphism of $\mathfrak{s l}_{3}(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is $(3,0)$. Inserting a diagram automorphism would change that to $(0,3)$. So, since the modules are isomorphic, this cannot occur.

## Generalisation to $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$.
algebras are isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q})$. And the modules have highest weights $(1,1)$ (in the case of $\mathbb{P}^{3}(\mathbb{Q})$ ) or $(2,2)$ (in the case of $\mathbb{P}^{8}(\mathbb{Q})$ ).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of $\mathbb{P}^{1}$. So also in this case the method works.

## Generalisation to $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q})$. And the modules have highest weights $(1,1)$ (in the case of $\mathbb{P}^{3}(\mathbb{Q})$ ) or $(2,2)$ (in the case of $\mathbb{P}^{8}(\mathbb{Q})$ ).

So in this case the diagram automorphism leaves the highest
weights invariant. So it can pay a role.
However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of $\mathbb{P}^{1}$. So also in this case the method works.

## Generalisation to $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q})$. And the modules have highest weights $(1,1)$ (in the case of $\mathbb{P}^{3}(\mathbb{Q})$ ) or $(2,2)$ (in the case of $\mathbb{P}^{8}(\mathbb{Q})$ ).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of $\mathbb{P}^{1}$. So also in this case the method works.

## Generalisation to $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q})$. And the modules have highest weights $(1,1)$ (in the case of $\mathbb{P}^{3}(\mathbb{Q})$ ) or $(2,2)$ (in the case of $\mathbb{P}^{8}(\mathbb{Q})$ ).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of $\mathbb{P}^{1}$.
case the method works.

## Generalisation to $\mathbb{P}^{1} \times \mathbb{P}^{1}$

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q})$. And the modules have highest weights $(1,1)$ (in the case of $\mathbb{P}^{3}(\mathbb{Q})$ ) or $(2,2)$ (in the case of $\mathbb{P}^{8}(\mathbb{Q})$ ).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of $\mathbb{P}^{1}$. So also in this case the method works.

## Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.
For $\mathfrak{s l}_{3}(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.

## Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.
For $\mathfrak{s l}_{3}(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.

## Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.
For $\mathfrak{s l}_{3}(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.

