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The known curve

Set
C0 = {(x0 : x1 : x2) ∈ P2(Q) | x0x2 − x2

1 = 0}

then C0 is isomorphic to P1(Q) by

(s : t) → (s2 : st : t2).

Such a map is called a parametrization of C0.
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Now consider
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2 = 0}.

Question: is C isomorphic to P1(Q) as well?
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If so can we find a parametrization of C?



There are algorithms for this by Cremona and Rusin (2003) and
Simon (2005). These are based on finding a rational point on C .

In our approach we try to find a 3× 3 matrix M with the property
that

p ∈ C0 iff Mp ∈ C .

This will then give us a parametrization of C :

P1(Q) −→ C0
M−→ C .

It can be shown that such an M always exists if C is isomorphic to
P1(Q).
This turns out to be rather less efficient than the Cremona-Rusin
and Simon algorithms. However, this approach can be generalised
to other types of varieties.
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C0 = {(x0 : x1 : x2) ∈ P2(Q) | x0x2 − x2
1 = 0}

Set

A0 =

0 0 1
0 2 0
1 0 0

 ,

then
C0 = {p = (x0 : x1 : x2) | pTA0p = 0}.

Set
G (C0,Q) = {g ∈ GL3(Q) | gTA0g = λA0}

(i.e., the group consisting of all invertible linear maps that map C0

into itself).
Then

G (C0,Q) ∼= GL2(Q)/〈±I2〉.
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G (C0, Q) ∼= GL2(Q)/〈±I2〉, Why?

Let V be the two-dimensional vector space over Q with basis v0, v1.

Let Sym2(V ) be the symmetric square of V with basis v2
0 , 2v0v1,

v2
1 .

Let φ : V → Sym2(V ) be defined by φ(v) = v2, or in coordinates,
φ(sv0 + tv1) = s2v2

0 + st(2v0v1) + t2v2
1 .

Hence in coordinates the image of φ is {(s2, st, t2)}, which is C0.

The group G = GL2(Q) acts on V . Hence also on Sym2(V ) by
g · vw = (g · v)(g · w).

This implies that φ(g · v) = g · φ(v). And hence G leaves the
image, C0, invariant.

So we get a surjective group homomorphism G → G (C0,Q), with
kernel ±I2.
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The Lie algebra of G (C0, Q)

Set
L(C0,Q) = {X ∈ gl3(Q) | XTA0 + A0X = λA0}.

Then L(C0,Q) ∼= gl2(Q).

Why?
G (C0,Q) is an algebraic group and
Lie(G (C0,Q)) ∼= Lie(GL2(Q)/〈±I2〉) = gl2(Q).

And it can be shown that Lie(G (C0,Q)) = L(C0,Q).
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C = {(x0 : x1 : x2) ∈ P2(Q) | x0x1 − x0x2 − x2
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L(C ,Q) = {X ∈ gl3(Q) | XTA + AX = λA}.
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Isomorphism

FACT: if M : C0 → C exists then X 7→ MXM−1 is an isomorphism
L(C0,Q) → L(C ,Q).

So we check whether L(C0,Q) ∼= L(C ,Q).
If not, then C cannot be parametrized. We stop (maybe slightly
distressed).
If yes, then we proceed.
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The modules

Both ϕ0 : sl2(Q) → L(C0,Q) and ϕ : sl2(Q) → L(C ,Q) yield
3-dimensional sl2(Q)-modules.

Let V0 be the sl2(Q)-module corresponding to ϕ0, with basis
e1, e2, e3.
Let V be the sl2(Q)-module corresponding to ϕ0, with basis
v1, v2, v3.
Then there is an isomorphism of sl2(Q)-modules, given by

e1 7→ v1

e2 7→ v2 + v3

e3 7→ v2.
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The module isomorphism

The matrix of this isomorphism is

N =
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0 1 1
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 .

Now N

s2

st
t2

 =

 s2

st + t2

st


And if we define ψ(s : t) = (s2 : st + t2 : st) then we get a
parametrization of C (easy to check directly).
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Why does this work?

We have ϕ0 : sl2(Q) → L(C0,Q).

Suppose that M : C0 → C exists. Then X → MXM−1 is an
isomorphism L(C0,Q) → L(C ,Q).

In that case we have the map ψ : sl2(Q) → L(C ,Q) by
ψ(u) = Mϕ0(u)M−1.

Let W be the 3-dimensional sl2(Q)-module corresponding to ψ.
Then M : V0 → W is an isomorphism of sl2(Q)-modules (easy to
show).
So since isomorphisms of irreducible sl2(Q)-modules are unique
upto a scalar, we can recover M (upto a scalar) from V0 and W .
(And the scalar doesn’t matter, because we are in projective
space.)
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Why does this work 2

So if the map ϕ : sl2(Q) → L(C ,Q) that we chose happens to be
equal to ψ, then we recover M.

What happens if ψ 6= ϕ? Then we set g = ϕ−1 ◦ ψ. Then g is an
automorphism of sl2(Q).
FACT: then g is a product of exp(adu), where u ∈ sl2(Q) is such
that adu is nilpotent. (Well, over Q, but that desn’t matter here.)

Suppose that g = exp(adu). And set h = exp(ψ(u)).
Then h : W → V is an isomorphism of sl2(Q)-modules (easy to
show).
So N = hM (upto a scalar that doesn’t matter).
But h ∈ G (C ,Q) (also easy to show) so
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Generalisation to P2(Q)

This can be generalised to P2(Q). There we work with varieties in
P9(Q), and we ask whether they are isomorphic to P2(Q).

There we get a Lie algebra isomorphic to gl3(Q), and we deal with
sl3(Q)-modules.

Everything is analogous, except that the automorphism of sl3(Q)
could be a “diagram automorphism”. For such an automorphism
we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3, 0). Inserting a
diagram automorphism would change that to (0, 3). So, since the
modules are isomorphic, this cannot occur.
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Generalisation to P1 × P1

Same story again. Here we work inside P3(Q) or P8(Q). The Lie
algebras are isomorphic to sl2(Q)⊕ sl2(Q). And the modules have
highest weights (1, 1) (in the case of P3(Q)) or (2, 2) (in the case
of P8(Q)).

So in this case the diagram automorphism leaves the highest
weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an
element of the group of automorphisms of the variety: namely to
the automorphism that flips the two copies of P1. So also in this
case the method works.
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Problem

One step in the algorith consists of finding isomorphisms between
semisimple Lie algebras.

This is a very hard problem.

For sl3(Q) we reduce it to a norm equation. This can be solved,
but in practical examples it turns out to be hard.
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