Using Lie algebras to parametrize certain types of algebraic varieties I

Willem de Graaf, Janka Pilnikova, Josef Schicho, Mike Harrison

Trento, 25-7-2005

The known curve

Set

$C_0 = \{ (x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0 x_2 - x_1^2 = 0 \}$

then C_0 is isomorphic to $\mathbb{P}^1(\mathbb{Q})$ by

$$(s:t) \rightarrow (s^2:st:t^2).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Such a map is called a *parametrization* of C_0 .

The known curve

Set

$$C_0=\{(x_0:x_1:x_2)\in \mathbb{P}^2(\mathbb{Q})\mid x_0x_2-x_1^2=0\}$$
 then C_0 is isomorphic to $\mathbb{P}^1(\mathbb{Q})$ by

$$(s:t) \rightarrow (s^2:st:t^2).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Such a map is called a *parametrization* of C_0 .

Now consider

$$C = \{(x_0: x_1: x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0x_1 - x_0x_2 - x_2^2 = 0\}.$$

Question: is C isomorphic to $\mathbb{P}^1(\mathbb{Q})$ as well?

If so can we find a parametrization of C?

Now consider

$$C = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0x_1 - x_0x_2 - x_2^2 = 0\}.$$

Question: is C isomorphic to $\mathbb{P}^1(\mathbb{Q})$ as well?

If so can we find a parametrization of C?

Now consider

$$C = \{ (x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0 x_1 - x_0 x_2 - x_2^2 = 0 \}.$$

Question: is C isomorphic to $\mathbb{P}^1(\mathbb{Q})$ as well?

If so can we find a parametrization of C?

In our approach we try to find a 3×3 matrix M with the property that

 $p \in C_0$ iff $Mp \in C$.

This will then give us a parametrization of C:

$$\mathbb{P}^1(\mathbb{Q}) \longrightarrow C_0 \stackrel{M}{\longrightarrow} C.$$

It can be shown that such an M always exists if C is isomorphic to $\mathbb{P}^1(\mathbb{Q})$.

In our approach we try to find a 3×3 matrix M with the property that

 $p \in C_0$ iff $Mp \in C$.

This will then give us a parametrization of C:

$$\mathbb{P}^1(\mathbb{Q}) \longrightarrow C_0 \stackrel{M}{\longrightarrow} C.$$

It can be shown that such an M always exists if C is isomorphic to $\mathbb{P}^1(\mathbb{Q})$.

In our approach we try to find a 3×3 matrix M with the property that

 $p \in C_0$ iff $Mp \in C$.

This will then give us a parametrization of C:

$$\mathbb{P}^1(\mathbb{Q}) \longrightarrow C_0 \stackrel{M}{\longrightarrow} C.$$

It can be shown that such an M always exists if C is isomorphic to $\mathbb{P}^1(\mathbb{Q})$.

In our approach we try to find a 3×3 matrix M with the property that

$$p \in C_0$$
 iff $Mp \in C$.

This will then give us a parametrization of C:

$$\mathbb{P}^1(\mathbb{Q}) \longrightarrow C_0 \stackrel{M}{\longrightarrow} C.$$

It can be shown that such an M always exists if C is isomorphic to $\mathbb{P}^1(\mathbb{Q})$.

 $C_0 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0 x_2 - x_1^2 = 0\}$

Set

$$A_0 = egin{pmatrix} 0 & 0 & 1 \ 0 & 2 & 0 \ 1 & 0 & 0 \end{pmatrix},$$

then

$$C_0 = \{ p = (x_0 : x_1 : x_2) \mid p^T A_0 p = 0 \}.$$

Set

$$G(C_0, \mathbb{Q}) = \{g \in \mathrm{GL}_3(\mathbb{Q}) \mid g^T A_0 g = \lambda A_0\}$$

(i.e., the group consisting of all invertible linear maps that map C_0 into itself).

Then

$$G(C_0, \mathbb{Q}) \cong \mathrm{GL}_2(\mathbb{Q})/\langle \pm l_2 \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $C_0 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0 x_2 - x_1^2 = 0\}$

Set

$$A_0 = egin{pmatrix} 0 & 0 & 1 \ 0 & 2 & 0 \ 1 & 0 & 0 \end{pmatrix},$$

then

$$C_0 = \{ p = (x_0 : x_1 : x_2) \mid p^T A_0 p = 0 \}.$$

Set

$$G(C_0, \mathbb{Q}) = \{g \in \operatorname{GL}_3(\mathbb{Q}) \mid g^T A_0 g = \lambda A_0\}$$

(i.e., the group consisting of all invertible linear maps that map C_0 into itself).

Then

$$G(C_0,\mathbb{Q})\cong \mathrm{GL}_2(\mathbb{Q})/\langle \pm l_2\rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $C_0 = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0 x_2 - x_1^2 = 0\}$

Set

$$A_0 = egin{pmatrix} 0 & 0 & 1 \ 0 & 2 & 0 \ 1 & 0 & 0 \end{pmatrix},$$

then

$$C_0 = \{ p = (x_0 : x_1 : x_2) \mid p^T A_0 p = 0 \}.$$

Set

$$G(C_0, \mathbb{Q}) = \{g \in \operatorname{GL}_3(\mathbb{Q}) \mid g^T A_0 g = \lambda A_0\}$$

(i.e., the group consisting of all invertible linear maps that map C_0 into itself).

Then

$$G(\mathcal{C}_0,\mathbb{Q})\cong \mathrm{GL}_2(\mathbb{Q})/\langle \pm I_2\rangle.$$

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 .

Let $\operatorname{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = \operatorname{GL}_2(\mathbb{Q})$ acts on V. Hence also on $\operatorname{Sym}^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm I_2$.

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = \operatorname{GL}_2(\mathbb{Q})$ acts on V. Hence also on $\operatorname{Sym}^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm I_2$.

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = \operatorname{GL}_2(\mathbb{Q})$ acts on V. Hence also on $\operatorname{Sym}^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm I_2$.

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = \operatorname{GL}_2(\mathbb{Q})$ acts on V. Hence also on $\operatorname{Sym}^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm I_2$.

(日) (同) (三) (三) (三) (○) (○)

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = GL_2(\mathbb{Q})$ acts on V. Hence also on $Sym^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm I_2$.

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = GL_2(\mathbb{Q})$ acts on V. Hence also on $Sym^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G o G(C_0, \mathbb{Q})$, with kernel $\pm l_2$.

Let V be the two-dimensional vector space over \mathbb{Q} with basis v_0, v_1 . Let $\text{Sym}^2(V)$ be the symmetric square of V with basis v_0^2 , $2v_0v_1$, v_1^2 .

Let $\phi: V \to Sym^2(V)$ be defined by $\phi(v) = v^2$, or in coordinates, $\phi(sv_0 + tv_1) = s^2v_0^2 + st(2v_0v_1) + t^2v_1^2$.

Hence in coordinates the image of ϕ is $\{(s^2, st, t^2)\}$, which is C_0 .

The group $G = GL_2(\mathbb{Q})$ acts on V. Hence also on $Sym^2(V)$ by $g \cdot vw = (g \cdot v)(g \cdot w)$.

This implies that $\phi(g \cdot v) = g \cdot \phi(v)$. And hence G leaves the image, C_0 , invariant.

So we get a surjective group homomorphism $G \to G(C_0, \mathbb{Q})$, with kernel $\pm l_2$.

The Lie algebra of $G(C_0, \mathbb{Q})$

Set

$L(C_0, \mathbb{Q}) = \{ X \in \mathfrak{gl}_3(\mathbb{Q}) \mid X^T A_0 + A_0 X = \lambda A_0 \}.$ Then $L(C_0, \mathbb{Q}) \cong \mathfrak{gl}_2(\mathbb{Q}).$

Why? $G(C_0, \mathbb{Q})$ is an algebraic group and $\operatorname{Lie}(G(C_0, \mathbb{Q})) \cong \operatorname{Lie}(\operatorname{GL}_2(\mathbb{Q})/\langle \pm l_2 \rangle) = \mathfrak{gl}_2(\mathbb{Q}).$

And it can be shown that $\operatorname{Lie}(G(C_0, \mathbb{Q})) = L(C_0, \mathbb{Q}).$

The Lie algebra of $G(C_0, \mathbb{Q})$

Set

$$L(C_0, \mathbb{Q}) = \{ X \in \mathfrak{gl}_3(\mathbb{Q}) \mid X^T A_0 + A_0 X = \lambda A_0 \}.$$

Then $L(C_0, \mathbb{Q}) \cong \mathfrak{gl}_2(\mathbb{Q}).$

Why? $G(C_0, \mathbb{Q})$ is an algebraic group and $\operatorname{Lie}(G(C_0, \mathbb{Q})) \cong \operatorname{Lie}(\operatorname{GL}_2(\mathbb{Q})/\langle \pm I_2 \rangle) = \mathfrak{gl}_2(\mathbb{Q}).$

And it can be shown that $\operatorname{Lie}(G(C_0,\mathbb{Q}))=L(C_0,\mathbb{Q}).$

The Lie algebra of $G(C_0, \mathbb{Q})$

Set

$$L(C_0, \mathbb{Q}) = \{ X \in \mathfrak{gl}_3(\mathbb{Q}) \mid X^T A_0 + A_0 X = \lambda A_0 \}.$$

Then $L(C_0, \mathbb{Q}) \cong \mathfrak{gl}_2(\mathbb{Q}).$

Why? $G(C_0, \mathbb{Q})$ is an algebraic group and $\operatorname{Lie}(G(C_0, \mathbb{Q})) \cong \operatorname{Lie}(\operatorname{GL}_2(\mathbb{Q})/\langle \pm I_2 \rangle) = \mathfrak{gl}_2(\mathbb{Q}).$

And it can be shown that $\operatorname{Lie}(G(C_0, \mathbb{Q})) = L(C_0, \mathbb{Q}).$

A basis of $L(C_0, \mathbb{Q})$:

$$I_{3}, a_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, a_{2} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
$$a_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}.$$

Let x, y, h be the standard basis elements of $\mathfrak{sl}_2(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$, given by

$$\varphi_0(h) = 2a_1, \ \varphi_0(x) = a_2, \ \varphi_0(y) = a_3.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A basis of $L(C_0, \mathbb{Q})$:

$$I_{3}, a_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, a_{2} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix},$$
$$a_{3} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}.$$

Let x, y, h be the standard basis elements of $\mathfrak{sl}_2(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$, given by

$$\varphi_0(h) = 2a_1, \ \varphi_0(x) = a_2, \ \varphi_0(y) = a_3.$$

$$C = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0x_1 - x_0x_2 - x_2^2 = 0\}.$$

In this case with
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$
 we have

$$C = \{p = (x_0 : x_1 : x_2) \mid p' A p = 0\}.$$

Just as for C_0 we define

 $L(C,\mathbb{Q}) = \{X \in \mathfrak{gl}_3(\mathbb{Q}) \mid X^T A + A X = \lambda A\}.$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

$$\mathcal{C} = \{(x_0 : x_1 : x_2) \in \mathbb{P}^2(\mathbb{Q}) \mid x_0x_1 - x_0x_2 - x_2^2 = 0\}.$$

In this case with
$$A = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & -2 \end{pmatrix}$$
 we have

$$C = \{ p = (x_0 : x_1 : x_2) \mid p' A p = 0 \}.$$

Just as for C_0 we define

$$L(C,\mathbb{Q}) = \{ X \in \mathfrak{gl}_3(\mathbb{Q}) \mid X^T A + A X = \lambda A \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

FACT: if $M : C_0 \to C$ exists then $X \mapsto MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

So we check whether $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$. If not, then C cannot be parametrized. We stop (maybe slightly distressed).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FACT: if $M : C_0 \to C$ exists then $X \mapsto MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

So we check whether $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$.

If not, then *C* cannot be parametrized. We stop (maybe slightly distressed).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

FACT: if $M : C_0 \to C$ exists then $X \mapsto MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

So we check whether $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$. If not, then *C* cannot be parametrized. We stop (maybe slightly distressed).

FACT: if $M : C_0 \to C$ exists then $X \mapsto MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

So we check whether $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$. If not, then *C* cannot be parametrized. We stop (maybe slightly distressed).

Basis of $L(C, \mathbb{Q})$:

$$I_{3}, b_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b_{2} = \begin{pmatrix} -2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$b_{3} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

Let x, y, h be the standard basis elements of $\mathfrak{sl}_2(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$, given by

$$\varphi(h) = 2b_1, \ \varphi(x) = -b_1 + b_3, \ \varphi(y) = 2b_1 + b_2.$$

In particular $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$.

Basis of $L(C, \mathbb{Q})$:

$$I_{3}, b_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b_{2} = \begin{pmatrix} -2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$b_{3} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

Let x, y, h be the standard basis elements of $\mathfrak{sl}_2(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$, given by

$$\varphi(h) = 2b_1, \ \varphi(x) = -b_1 + b_3, \ \varphi(y) = 2b_1 + b_2.$$

In particular $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$.

Basis of $L(C, \mathbb{Q})$:

$$I_{3}, b_{1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}, b_{2} = \begin{pmatrix} -2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$b_{3} = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & -1 \end{pmatrix}.$$

Let x, y, h be the standard basis elements of $\mathfrak{sl}_2(\mathbb{Q})$, then we have an injective Lie algebra homomorphism $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$, given by

$$\varphi(h) = 2b_1, \ \varphi(x) = -b_1 + b_3, \ \varphi(y) = 2b_1 + b_2.$$

In particular $L(C_0, \mathbb{Q}) \cong L(C, \mathbb{Q})$.

Both $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$ and $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -modules.

Let V_0 be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis e_1, e_2, e_3 . Let V be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis

 $v_1, v_2, v_3.$

Then there is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules, given by

 $e_1 \mapsto v_1$ $e_2 \mapsto v_2 + v_3$ $e_3 \mapsto v_2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Both $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$ and $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -modules.

Let V_0 be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis e_1, e_2, e_3 . Let V be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis V_0, V_0 .

Then there is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules, given by

 $e_1 \mapsto v_1$ $e_2 \mapsto v_2 + v_3$ $e_3 \mapsto v_2.$

Both $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$ and $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -modules.

Let V_0 be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis e_1, e_2, e_3 . Let V be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis v_1, v_2, v_3 .

Then there is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules, given by

 $e_1 \mapsto v_1$ $e_2 \mapsto v_2 + v_3$ $e_3 \mapsto v_2.$

Both $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q})$ and $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ yield 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -modules.

Let V_0 be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis e_1, e_2, e_3 .

Let V be the $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to φ_0 , with basis v_1, v_2, v_3 .

Then there is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules, given by

 $e_1 \mapsto v_1$ $e_2 \mapsto v_2 + v_3$ $e_3 \mapsto v_2.$

The module isomorphism

The matrix of this isomorphism is

$$N = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 0 \end{pmatrix}$$

Now
$$N\begin{pmatrix} s^2\\st\\t^2 \end{pmatrix} = \begin{pmatrix} s^2\\st+t^2\\st \end{pmatrix}$$

And if we define $\psi(s:t) = (s^2:st + t^2:st)$ then we get a parametrization of *C* (easy to check directly).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The module isomorphism

The matrix of this isomorphism is

$$N = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 0 \end{pmatrix}$$

Now
$$N\begin{pmatrix} s^2\\st\\t^2 \end{pmatrix} = \begin{pmatrix} s^2\\st+t^2\\st \end{pmatrix}$$

And if we define $\psi(s:t) = (s^2:st + t^2:st)$ then we get a parametrization of *C* (easy to check directly).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The module isomorphism

The matrix of this isomorphism is

$$N = egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 1 & 0 \end{pmatrix}$$

Now
$$N\begin{pmatrix} s^2\\st\\t^2 \end{pmatrix} = \begin{pmatrix} s^2\\st+t^2\\st \end{pmatrix}$$

And if we define $\psi(s:t) = (s^2:st + t^2:st)$ then we get a parametrization of *C* (easy to check directly).

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(C_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M : V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(\mathcal{C}_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C,\mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M : V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(\mathcal{C}_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M : V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(\mathcal{C}_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M : V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(\mathcal{C}_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M: V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

We have $\varphi_0 : \mathfrak{sl}_2(\mathbb{Q}) \to L(\mathcal{C}_0, \mathbb{Q}).$

Suppose that $M : C_0 \to C$ exists. Then $X \to MXM^{-1}$ is an isomorphism $L(C_0, \mathbb{Q}) \to L(C, \mathbb{Q})$.

In that case we have the map $\psi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ by $\psi(u) = M\varphi_0(u)M^{-1}$.

Let W be the 3-dimensional $\mathfrak{sl}_2(\mathbb{Q})$ -module corresponding to ψ . Then $M: V_0 \to W$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So since isomorphisms of irreducible $\mathfrak{sl}_2(\mathbb{Q})$ -modules are unique upto a scalar, we can recover M (upto a scalar) from V_0 and W. (And the scalar doesn't matter, because we are in projective space.)

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h : W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show). So N = hM (upto a scalar that doesn't matter)

But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$.

Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show). So N = hM (upto a scalar that doesn't matter)

But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

So if the map $\varphi : \mathfrak{sl}_2(\mathbb{Q}) \to L(C, \mathbb{Q})$ that we chose happens to be equal to ψ , then we recover M.

What happens if $\psi \neq \varphi$? Then we set $g = \varphi^{-1} \circ \psi$. Then g is an automorphism of $\mathfrak{sl}_2(\mathbb{Q})$.

FACT: then g is a product of $\exp(\operatorname{ad} u)$, where $u \in \mathfrak{sl}_2(\mathbb{Q})$ is such that $\operatorname{ad} u$ is nilpotent. (Well, over $\overline{\mathbb{Q}}$, but that desn't matter here.)

Suppose that $g = \exp(\operatorname{ad} u)$. And set $h = \exp(\psi(u))$. Then $h: W \to V$ is an isomorphism of $\mathfrak{sl}_2(\mathbb{Q})$ -modules (easy to show).

So N = hM (upto a scalar that doesn't matter). But $h \in G(C, \mathbb{Q})$ (also easy to show) so

$$C_0 \xrightarrow{M} C \xrightarrow{h} C$$

This can be generalised to $\mathbb{P}^2(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^9(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^2(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{gl}_3(\mathbb{Q})$, and we deal with $\mathfrak{sl}_3(\mathbb{Q})$ -modules.

Everything is analogous, except that the automorphism of $\mathfrak{sl}_3(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to (0,3). So, since the modules are isomorphic, this cannot occur.

(日) (同) (三) (三) (三) (○) (○)

This can be generalised to $\mathbb{P}^2(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^9(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^2(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{gl}_3(\mathbb{Q})$, and we deal with $\mathfrak{sl}_3(\mathbb{Q})$ -modules.

Everything is analogous, except that the automorphism of $\mathfrak{sl}_3(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to (0,3). So, since the modules are isomorphic, this cannot occur.

This can be generalised to $\mathbb{P}^2(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^9(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^2(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{gl}_3(\mathbb{Q})$, and we deal with $\mathfrak{sl}_3(\mathbb{Q})$ -modules.

Everything is analogous, except that the automorphism of $\mathfrak{sl}_3(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to (0,3). So, since the modules are isomorphic, this cannot occur.

This can be generalised to $\mathbb{P}^2(\mathbb{Q})$. There we work with varieties in $\mathbb{P}^9(\mathbb{Q})$, and we ask whether they are isomorphic to $\mathbb{P}^2(\mathbb{Q})$.

There we get a Lie algebra isomorphic to $\mathfrak{gl}_3(\mathbb{Q})$, and we deal with $\mathfrak{sl}_3(\mathbb{Q})$ -modules.

Everything is analogous, except that the automorphism of $\mathfrak{sl}_3(\mathbb{Q})$ could be a "diagram automorphism". For such an automorphism we cannot perform the trick with the exponents.

However, the highest weight of the modules is (3,0). Inserting a diagram automorphism would change that to (0,3). So, since the modules are isomorphic, this cannot occur.

Same story again. Here we work inside $\mathbb{P}^{3}(\mathbb{Q})$ or $\mathbb{P}^{8}(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{sl}_{2}(\mathbb{Q}) \oplus \mathfrak{sl}_{2}(\mathbb{Q})$. And the modules have highest weights (1,1) (in the case of $\mathbb{P}^{3}(\mathbb{Q})$) or (2,2) (in the case of $\mathbb{P}^{8}(\mathbb{Q})$).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of \mathbb{P}^1 . So also in this case the method works.

Same story again. Here we work inside $\mathbb{P}^3(\mathbb{Q})$ or $\mathbb{P}^8(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{sl}_2(\mathbb{Q}) \oplus \mathfrak{sl}_2(\mathbb{Q})$. And the modules have highest weights (1,1) (in the case of $\mathbb{P}^3(\mathbb{Q})$) or (2,2) (in the case of $\mathbb{P}^8(\mathbb{Q})$).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of \mathbb{P}^1 . So also in this case the method works.

(日) (同) (三) (三) (三) (○) (○)

Same story again. Here we work inside $\mathbb{P}^3(\mathbb{Q})$ or $\mathbb{P}^8(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{sl}_2(\mathbb{Q}) \oplus \mathfrak{sl}_2(\mathbb{Q})$. And the modules have highest weights (1,1) (in the case of $\mathbb{P}^3(\mathbb{Q})$) or (2,2) (in the case of $\mathbb{P}^8(\mathbb{Q})$).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of \mathbb{P}^1 . So also in this case the method works.

Same story again. Here we work inside $\mathbb{P}^3(\mathbb{Q})$ or $\mathbb{P}^8(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{sl}_2(\mathbb{Q}) \oplus \mathfrak{sl}_2(\mathbb{Q})$. And the modules have highest weights (1,1) (in the case of $\mathbb{P}^3(\mathbb{Q})$) or (2,2) (in the case of $\mathbb{P}^8(\mathbb{Q})$).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of \mathbb{P}^1 . So also in this case the method works.

Same story again. Here we work inside $\mathbb{P}^3(\mathbb{Q})$ or $\mathbb{P}^8(\mathbb{Q})$. The Lie algebras are isomorphic to $\mathfrak{sl}_2(\mathbb{Q}) \oplus \mathfrak{sl}_2(\mathbb{Q})$. And the modules have highest weights (1,1) (in the case of $\mathbb{P}^3(\mathbb{Q})$) or (2,2) (in the case of $\mathbb{P}^8(\mathbb{Q})$).

So in this case the diagram automorphism leaves the highest weights invariant. So it can pay a role.

However, here the diagram automorphism also correponds to an element of the group of automorphisms of the variety: namely to the automorphism that flips the two copies of \mathbb{P}^1 . So also in this case the method works.

Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.

For $\mathfrak{sl}_3(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.

Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.

For $\mathfrak{sl}_3(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.

Problem

One step in the algorith consists of finding isomorphisms between semisimple Lie algebras.

This is a very hard problem.

For $\mathfrak{sl}_3(\mathbb{Q})$ we reduce it to a norm equation. This can be solved, but in practical examples it turns out to be hard.