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Associated Lie ring

Let (R,+, ·) be an associative ring. We consider the
operation [, ] defined in R in the following manner:

∀x , y ∈ R [x , y ] := xy − yx

and we call the element [x , y ] the Lie commutator or the
Lie product of x and y .
The structure (R,+, [, ]) is easily verified to be a Lie ring

I ∀a ∈ R [a, a] = 0 ;
I ∀a, b, c ∈ R [[a, b], c] + [[b, c], a] + [[c, a], b] = 0.

This structure is said to be the Lie ring associated with R.
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Lie nilpotent rings

I The lower Lie power series of R is the series

R[1] ≥ R[2] ≥ R[3] ≥ · · ·

whose n-th term R[n] is the associative ideal
generated by all the Lie commutators [x1, . . . , xn],
with the assumption that R[1] := R.

I The upper Lie power series of R is the series

R(1) ≥ R(2) ≥ R(3) ≥ · · ·

whose n-therm R(n) is defined by induction as the
associative ideal generated by [R(n−1), R], with the
assumption that R(1) := R.

I R is called Lie nilpotent (strongly Lie nilpotent) if
there exists m such that R[m] = 0 (R(m) = 0) .
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If R is Lie nilpotent, (strongly Lie nilpotent) the smallest
integer m for which R[m] = 0 (R(m) = 0) is called the Lie
nilpotency index (upper Lie nilpotency index) of R and it is
denoted by tL(R) (tL(R)) .
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I Clearly, R[n] ⊆ R(n) for all integer n and thus, if R is
strongly Lie nilpotent, it is Lie nilpotent and
tL(R) ≤ tL(R).

I A. Giambruno and S.K. Sehgal (1989) proved that
the exterior algebra on a countable
infinite-dimensional vector space over a field of
characteristic not 2 is Lie nilpotent, but not strongly
Lie nilpotent.
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Lie nilpotent group algebras

Theorem (Passi-Passman-Sehgal, 1973)
Let KG be a non-commutative group algebra. The
following statements are equivalent:

(i) KG is strongly Lie nilpotent;

(ii) KG is Lie nilpotent;

(iii) K has positive characteristic p, G is a nilpotent group
and its commutator subgroup G′ is a finite p-group.
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The nilpotency class of the unit group

Let U(KG) be the unit group of a group algebra KG.

Theorem (Passi-Passman-Sehgal, 1973 + Khripta,
1972)
Let KG be a non-commutative group algebra over a field
K of positive characteristic p. The following statements
are equivalent:

(i) KG is strongly Lie nilpotent;

(ii) KG is Lie nilpotent;

(iii) U(KG) is nilpotent.

According to a result by N.D. Gupta and F. Levin (1983)
for arbitrary associative unitary rings, if KG is Lie nilpotent
cl(U(KG)) ≤ tL(KG) − 1.
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Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Computation of cl(U(KG))

I A. Shalev (1989) began a systematical study of the
nilpotency class of the unit group of a group algebra
of a finite p-group over a field with p elements.

I Using the idea by D.B. Coleman and D.S. Passman
(1968), the attempts by Shalev were based on seeing
if a wreath product of the type Cp o H was involved in
V (KG) (in fact, according to an observation by
Buckley, in this case t(H) = cl(Cp o H) ≤ cl(U(KG))).

I Shalev conjectured that V ((KG)) always possesses
a section isomorphic to the wreath product Cp o G′.

I He proved the result in 1990 when G′ is cyclic and
the characteristic of the ground field is odd and A.B.
Konovalov (2001) confirmed the statement in the
case in which G is a 2-group of maximal class.

I Du’s Theorem (1992) gave a great contribution since
it reduced the computation of the nilpotency class
cl(U(KG)) to that of the Lie nilpotency index tL(KG)
of the group algebra.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Du’s Theorem

I S.A. Jennings (1955) proved that if R is a radical
ring, the adjoint group R◦ is nilpotent if, and only if, R
is Lie nilpotent.

I Jennings conjectured that if R is radical,
cl(R◦) = tL(R) − 1.

I H. Laue (1984) conjectured that if R is radical, for
every non-negative integer n, Zn(R) = ζn(R◦).

I X. Du (1992) proved Laue conjecture’s.
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Let R be an associative ring. For all a, b ∈ R we set

a ◦ b := a + b + ab.

It is well known that (R, ◦) is a monoid (with 0 as neutral
element). The group R◦ of all the invertible elements of
(R, ◦) is called the adjoint group of R. If R = R◦, which
means that R coincides with its Jacobson radical, then
the ring R is called radical.
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Zn(R) are the terms of the Lie upper central series of R,
defined by induction as Z0(R) := 0 and

Zi(R) := {x | x ∈ R ∀y ∈ R [x , y ] ∈ Zi−1(R)}.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Du’s Theorem

I S.A. Jennings (1955) proved that if R is a radical
ring, the adjoint group R◦ is nilpotent if, and only if, R
is Lie nilpotent.

I Jennings conjectured that if R is radical,
cl(R◦) = tL(R) − 1.

I H. Laue (1984) conjectured that if R is radical, for
every non-negative integer n, Zn(R) = ζn(R◦).

I X. Du (1992) proved Laue conjecture’s.

Zn(R) are the terms of the Lie upper central series of R,
defined by induction as Z0(R) := 0 and

Zi(R) := {x | x ∈ R ∀y ∈ R [x , y ] ∈ Zi−1(R)}.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Application to the Unit Group

Applying Du’s Theorem to group algebras we obtain that
if K is a field of positive characteristic p and G is a finite
p-group, then

cl(U(KG)) = tL(KG) − 1.

I The computation of cl(U(KG)) is reduced to that of
tL(KG).

I A.K. Bhandari and I.B.S. Passi (1992) proved that
tL(KG) = tL(KG) under the assumption that p ≥ 5.

I Under this assumption the computation of cl(U(KG))
is reduced to that of tL(KG).

I Jennings’s Theory provides a rather satisfactory
method for the computation of tL(KG).
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We set for all positive integer n

D(n)(KG) := G ∩ (1 + KG(n)) = G ∩ (1 + ω(G)(n)),

the so called n-th upper Lie dimension subgroup of G.
Put pd(k) := |D(k)(G) : D(k+1)(G)|, where k ≥ 1. If KG is
Lie nilpotent,

tL(KG) = 2 + (p − 1)
∑
m≥1

md(m+1).
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The definition

Let KG be the group algebra of a group G over a field K .
We consider the upper Lie central series of KG,

0 =: Z0(KG) < Z1(KG) ≤ Z2(KG) ≤ · · · ≤ Zm(KG) ≤ · · · .

We set

∀n ∈ N0 Cn(G) := G∩(1+Zn(KG)) = G∩(1+Zn(ω(G))).

I Cn(G) is a subgroup of G.

We call the i-th term Ci(G) the i-th upper Lie codimension
subgroup of G.
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Theorem (Catino, S.)
Let KG be the group algebra of a group G over a field K .
Then

I 〈1〉 = C0(G) ≤ C1(G) = ζ(G) ≤ · · · ≤ Cm(G) ≤ · · · is
an ascending central series of G;

I if K has positive characteristic p, then, for every
positive integer n, Cn+1(G)/Cn−p+2(G) is an
elementary abelian p-group.
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an ascending central series of G;

I if K has positive characteristic p, then, for every
positive integer n, Cn+1(G)/Cn−p+2(G) is an
elementary abelian p-group.

G = D(1)(G) ≥ D(2)(G) = G′ ≥ · · · ≥ D(m)(G) ≥ · · · is a
descending central series of G.
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integer n ≥ 2, D(n)(G)/D(n+1)(G) is an elementary
abelian p-group.
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Du’s Theorem and ULC subgroups

Let K be a field of positive characteristic p and let G be a
finite p-group. Then

I ∀i ∈ N Ci(G) = G ∩ ζi(V (KG));
I the minimal integer n such that Cn(G) = G is the

nilpotency class of U(KG).
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Theorem (Catino, S.)
Let K be a field of positive characteristic p. Then
cl(U(KG)) = tL(KG) = tL(KG) if

I G is in CF (4, n, p);
I G is in CF (5, n, 2).

According to Blackburn’s definition, a finite group G
belongs to CF (m, n, p) if |G| = pn, cl(G) = m − 1 and

∀i ∈ m − 1c \ {1} |γi(G) : γi+1(G)| = p.
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Remarks and applications
According to a result by R.K. Sharma and Vikas Bist
(1992), tL(KG) ≤ tL(KG) ≤ |G′| + 1.

I A. Shalev (1993) proved that, if p ≥ 5, |G′| = pn for
some integer n and tL(KG) < |G′| + 1, then
tL(KG) ≤ pn−1 + 2p − 1 and the equality holds if, and
only if, G′ has a cyclic subgroup of index p and
γ3(G) 6≤ G′p.

I Assume that G is a CF (5, n, 2) group and K is a field
of even characteristic.Then

tL(KG) = tL(KG) = 8 > 23−1 + 4 − 1 = 7.

In this sense, Shalev’s inequality does not hold in
characteristic 2.

I Let f (2, n) be a function such that tL(KG) ≤ f (2, n)
when tL(KG) is not maximal. The upper bound is
exact when G is a CF (5, n, 2) group and G′ is
elementary abelian. In this case G′ does not contain
any cyclic subgroup of index 2, thus also the
group-theoretical condition required by Shalev’s
result does not hold.
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Almost maximal Lie nilpotency index

I Shalev (1993) classified non-commutative Lie
nilpotent group algebra KG whose Lie nilpotency
index is |G′| + 1 under the assumption that
char K ≥ 5.

I V. Bovdi and Spinelli (2004) completed the
classification in the cases in which char K ≤ 3.

I According to results by Shalev and V. Bovdi and
Spinelli, if tL(KG) is not maximal, the next highest
possible value assumed by tL(KG) and tL(KG) is
|G′| − p + 2, supposed char K = p.
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Theorem AM

Theorem ()
Let KG be over a field K of positive characteristic p.
Then the following conditions are equivalent:

(b) U(KG) has almost maximal nilpotency class;
(c) p and G satisfy one of the following conditions:

(i) p = 2, cl(G) = 2 and G′ is non-cyclic of order 4;
(ii) p = 2, cl(G) = 4 and G′ is abelian non-cyclic of

order 8;
(iii) p = 3, cl(G) = 3 and G′ is abelian non-cyclic of

order 9.
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Theorem
Let K be a field of positive characteristic p and let G be in
CF (m, n, p) (m ≥ 4) such that G′ is cyclic and
|ζi+1(G) : ζi(G)| = p for i ∈ m − 3c. Then

(1) C1(G) = . . . = C(p−1)pm−3(G) = ζ1(G);

(2) C∑i
j=0(p−1)pm−3−j+1(G) = . . . = C∑i+1

j=0(p−1)pm−3−j (G) =

ζi+2(G) if i ∈ m − 5c ∪ {0};

(3) C∑m−4
j=0 (p−1)pm−3−j+1(G) = ζm−2(G).

In the case in which p is even the following holds:

(2a) C∑i
j=0(p−1)pm−3−j+1(G) = . . . = C∑i+1

j=0(p−1)pm−3−j (G) =

ζi+2(G) if i ∈ m − 4c ∪ {0};

(3a) Cpm−2(G) = G.
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Theorem
Let K be a field of positive characteristic p and let G be in
CF (4, n, p) such that G′ is not cyclic and
|ζ2(G) : ζ1(G)| = p. Then

(1) C1(G) = . . . = C3(p−1)−1(G) = ζ1(G);

(2) C3(p−1)(G) = ζ2(G);

(3) C3(p−1)+1(G) = G.

Theorem
Let K be a field of characteristic 2 and let G be in
CF (5, n, 2) such that G′ is not cyclic and
|ζ2(G) : ζ1(G)| = 2. Then

(1) C1(G) = . . . = C4(G) = ζ1(G);

(2) C5(G) = ζ2(G);

(3) C6(G) = ζ3(G);

(4) C7(G) = G.
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Open questions and research lines

I The conjecture tL(KG) = tL(KG)
I We tested for all finite 2-groups of GAP library (that

is, for all finite 2-groups of order ≤ 29).
I A possibile approach is to describe in terms of the

elements of G the upper Lie codimension subgroups,
providing us of a means to compute tL(KG).

I To find the function f (2, n) such that tL(KG) ≤ f (2, n)
when tL(KG) is not maximal and to study when the
upper bound is achieved.
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I Are the assumptions on the centres of G of the
previous theorems essential?

I Computer investigation by GAP confirms the results
without assumptions on the centres of G.

I To go on describing the terms of the series of the
upper Lie codimension subgroups of G when G is a
CF (m, n, p) group proving if, in this case, the terms
of the series coincide with those of the upper central
series of G.

I Computer investigation by GAP confirms the result,
which is in general not true.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

I Are the assumptions on the centres of G of the
previous theorems essential?

I Computer investigation by GAP confirms the results
without assumptions on the centres of G.

I To go on describing the terms of the series of the
upper Lie codimension subgroups of G when G is a
CF (m, n, p) group proving if, in this case, the terms
of the series coincide with those of the upper central
series of G.

I Computer investigation by GAP confirms the result,
which is in general not true.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

I Are the assumptions on the centres of G of the
previous theorems essential?

I Computer investigation by GAP confirms the results
without assumptions on the centres of G.

I To go on describing the terms of the series of the
upper Lie codimension subgroups of G when G is a
CF (m, n, p) group proving if, in this case, the terms
of the series coincide with those of the upper central
series of G.

I Computer investigation by GAP confirms the result,
which is in general not true.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

I Are the assumptions on the centres of G of the
previous theorems essential?

I Computer investigation by GAP confirms the results
without assumptions on the centres of G.

I To go on describing the terms of the series of the
upper Lie codimension subgroups of G when G is a
CF (m, n, p) group proving if, in this case, the terms
of the series coincide with those of the upper central
series of G.

I Computer investigation by GAP confirms the result,
which is in general not true.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

I Are the assumptions on the centres of G of the
previous theorems essential?

I Computer investigation by GAP confirms the results
without assumptions on the centres of G.

I To go on describing the terms of the series of the
upper Lie codimension subgroups of G when G is a
CF (m, n, p) group proving if, in this case, the terms
of the series coincide with those of the upper central
series of G.

I Computer investigation by GAP confirms the result,
which is in general not true.



Lie nilpotent group
algebras

and central series

Ernesto Spinelli

Lie nilpotent group
algebras and
central series
Lie nilpotency index

Computation of cl(U(KG))

Upper Lie codimension
subgroups

Open questions

Example
Let G := 〈x , y | x4 = y4 = (x , y , y) = (x , y , x) = 1〉. G is a
group of order 64 with |ζ(G)| = |G′| = 4 and |Φ(G)| = 16.
In this case

(1) C1(G) = C2(G) = ζ(G);

(2) C3(G) = Φ(G);

(3) C4(G) = G.
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group of order 64 with |ζ(G)| = |G′| = 4 and |Φ(G)| = 16.
In this case

(1) C1(G) = C2(G) = ζ(G);

(2) C3(G) = Φ(G);

(3) C4(G) = G.
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