Using Lie algebras to parametrize certain types of algebraic varieties II

Willem A. de Graaf, University of Trento, Italy Janka Pílniková, RICAM Linz / RISC Linz, Austria Josef Schicho, RICAM Linz, Austria

Lie Algebras, their Classification and Applications
University of Trento
25-27 July 2005

Outline

(i) Surfaces in algebraic geometry, parametrizing surfaces
(ii) The Lie algebra of a surface.
(iii) Using the method to parametrize non-trivial cases of Del Pezzo surfaces of degree 8:

- "non-split" case: the unit sphere as a twist of $\mathbb{P}^{1} \times \mathbb{P}^{1}$
- "non-semisimple" case: the blowup of \mathbb{P}^{2}

Surfaces in projective space

The n-dimensional projective space:

$$
\mathbb{P}^{n}=\left\{\left(t_{0}: \cdots: t_{n}\right) \mid\left(t_{0}: \cdots: t_{n}\right) \neq(0: \cdots: 0)\right\} .
$$

Let $f_{1}, \ldots, f_{k} \in \mathbb{Q}\left[x_{0}, \ldots, x_{n}\right]$ are forms over \mathbb{Q}.
Projective variety S is the set of solutions to f_{1}, \ldots, f_{k}, i.e. all points in \mathbb{P}^{n} such that

$$
f_{1}\left(a_{0}, \ldots, a_{n}\right)=\cdots=f_{k}\left(a_{0}, \ldots, a_{n}\right)=0
$$

Let S be a surface: $\operatorname{dim}(S)=2$.
Finding a rational parametrization over \mathbb{Q} means finding all rational solutions to the system.

We need a map $\varphi: \mathbb{P}^{2}\left(\right.$ or $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow S \subset \mathbb{P}^{n}$ subject to the following:

Parametrization of a surface

$S \subset \mathbb{P}^{n}$ a surface.
$\varphi: \mathbb{P}^{2}\left(\right.$ or $\left.\mathbb{P}^{1} \times \mathbb{P}^{1}\right) \rightarrow \mathbb{P}^{n}$ is a rational parametrization of S over \mathbb{Q}, if
(i) $\varphi=\left(p_{0}: \cdots: p_{n}\right)$ and $p_{0}, \ldots p_{n} \in \mathbb{Q}\left[t_{0}, t_{1}, t_{2}\right]$ are forms of the same degree,
(ii) $\varphi(p) \in S$ for all p from the domain of φ,
(iii) the image of φ is a dense subset of S.

Preprocessing: By embeddings of S we reduce to few basic cases:

- tubular surfaces
- some trivial cases
- Del Pezzo surfaces of degree 5, 6, 7, 8, 9.

The Lie algebra of a surface

For a given surface $S \subset \mathbb{P}^{n}$,
$G(S, \mathbb{Q}):=\left\{g \in \mathrm{GL}_{n+1}(\mathbb{Q}) \mid \forall p \in S g p \in S\right\}$.
$L(S, \mathbb{Q}):=\operatorname{Lie}(G(S, \mathbb{Q}))$ - the Lie algebra of S.
How to compute $L(S, \mathbb{Q})$?
If $S \subset \mathbb{P}^{3}$ is given by a quadratic form $f(x)=x^{T} A x$ over \mathbb{Q} :
$S=\left\{p=\left(x_{0}: x_{1}: x_{2}: x_{3}\right)^{T} \mid p^{T} A p=0\right\}$,
then $G(S, \mathbb{Q})=\left\{g \in \mathrm{GL}_{4}(\mathbb{Q}) \mid g^{T} A g=\lambda A\right\}$
and $L(S, \mathbb{Q})=\left\{X \in \mathfrak{g l}_{4}(\mathbb{Q}) \mid X^{T} A+A X=\lambda A\right\}$.
If $S \subset \mathbb{P}^{n}$ is given by a set of quadratic forms f_{1}, \ldots, f_{k} over $\mathbb{Q}, f_{i}(x)=x^{T} A_{i} x$:
$S=\left\{p=\left(x_{0}: \cdots: x_{n}\right)^{T} \mid p^{T} A_{i} p=0 \forall i\right\}$,
then $G(S, \mathbb{Q})=\left\{g \in \mathrm{GL}_{n+1}(\mathbb{Q}) \mid g^{T} A_{i} g \in\left\langle A_{1}, \ldots A_{k}\right\rangle_{\mathbb{Q}} \forall i\right\}$
and $L(S, \mathbb{Q})=\left\{X \in \mathfrak{g l}_{n+1}(\mathbb{Q}) \mid X^{T} A_{i}+A_{i} X \in\left\langle A_{1}, \ldots A_{k}\right\rangle_{\mathbb{Q}} \forall i\right\}$.

Parametrizing twists of $\mathbb{P}^{1} \times \mathbb{P}^{1}$

The canonical surface $S_{0}: x_{1} x_{2}=x_{0} x_{3}$ is parametrized by $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

$$
\varphi_{0}:\left(s_{0}: s_{1} ; t_{0}: t_{1}\right) \mapsto\left(s_{0} t_{0}: s_{0} t_{1}: s_{1} t_{0}: s_{1} t_{1}\right)=\left(x_{0}: x_{1}: x_{2}: x_{3}\right) .
$$

$$
G\left(S_{0}, \mathbb{Q}\right)=\left\{g \in \mathrm{GL}_{4}(\mathbb{Q}) \mid \forall p \in S_{0} g p \in S_{0}\right\}
$$

The Lie algebra $L\left(S_{0}, \mathbb{Q}\right)=\operatorname{Lie}\left(G\left(S_{0}, \mathbb{Q}\right)\right)$ is isomorphic to $\mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{H l}_{2}(\mathbb{Q}) \oplus \mathbb{Q}$. $L\left(S_{0}, \mathbb{Q}\right) \subset \mathfrak{g l}_{4}(\mathbb{Q})$.

The module V_{0} of $L\left(S_{0}, \mathbb{Q}\right)$ is 4-dimensional irreducible $\mathfrak{s l}_{2} \oplus \mathfrak{S l}_{2}$-module with the heighest weight $(1,1)$.

Short review of the basic method

ExAmple: $S: x_{0}^{2}-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}$ is projectivelly equivalent to S_{0} over \mathbb{Q} :

- the Lie algebra $L(S, \mathbb{Q}) \cong \mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathfrak{s l}_{2}(\mathbb{Q}) \oplus \mathbb{Q}$.
- the module W of $L(S, \mathbb{Q})$ is 4-dimensional irredcible $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$-module with the heighest weight $(1,1)$.

The isomorphism $\psi: V_{0} \rightarrow W: e_{0} \mapsto v_{3}+v_{0}$,

$$
\begin{aligned}
& e_{1} \mapsto v_{3}-v_{0} \\
& e_{2} \mapsto v_{2}+v_{1} \\
& e_{3} \mapsto v_{2}-v_{1}
\end{aligned}
$$

is unique, up to multiplication by scalars.
Therefore ψ is also the projective equivalence of S_{0} and S

$$
\psi:\left(x_{0}: x_{1}: x_{2}: x_{3}\right) \mapsto\left(x_{3}+x_{0}: x_{3}-x_{0}: x_{2}+x_{1}: x_{2}-x_{1}\right)
$$

and gives us a parametrization of S :
$\varphi=\psi \circ \varphi_{0}:\left(x_{0}: x_{1}: x_{2}: x_{3}\right)=\left(s_{1} t_{1}+s_{0} t_{0}: s_{1} t_{1}-s_{0} t_{0}: s_{1} t_{0}+s_{0} t_{1}: s_{1} t_{0}-s_{0} t_{1}\right)$.

Sphere as a twist of $\mathbb{P}^{1} \times \mathbb{P}^{1}$

The unit sphere

$$
S: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=x_{0}^{2}
$$

is not isomorphic to $S_{0}\left(x_{1} x_{2}=x_{0} x_{3}\right)$ over $\mathbb{Q}: L(S, \mathbb{Q})=L_{0}(S, \mathbb{Q}) \oplus I_{4}$, where $L_{0}(S, \mathbb{Q})$ is 6-dimensional simple Lie algebra which is a twist of $\mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}$.

But still S has a rational parametrization.
We find a splitting field E of $L_{0}(S, \mathbb{Q})$ as the centroid of the algebra:
Let E be the centralizer of $\operatorname{ad}\left(L_{0}(S, \mathbb{Q})\right)$ in $\mathfrak{g l}\left(L_{0}(S, \mathbb{Q})\right)$.
Then $E=\mathbb{Q}(i)$ and $L_{0}(S, E) \cong \mathfrak{s l}_{2}(E) \oplus \mathfrak{s l}_{2}(E)$. The corresponding module becomes $\mathfrak{s l}_{2} \oplus \mathfrak{S l}_{2}$-module over E with maximal weight $(1,1)$.

We get a parametrization of S over $E: \psi: S_{0} \rightarrow S$:

$$
\left(x_{0}: x_{1}: x_{2}: x_{3}\right)=\left(-s_{0} t_{1}+s_{1} t_{0}: s_{0} t_{0}-s_{1} t_{1}: i s_{0} t_{0}+i s_{1} t_{1}: s_{0} t_{1}+s_{1} t_{0}\right)
$$

Sphere as a twist of $\mathbb{P}^{1} \times \mathbb{P}^{1}-$ continued

$\mathcal{F}_{1}, \mathcal{F}_{2}$ - the two families of lines on the surface.
\mathcal{F}_{1} is a 1-dimensional family of lines over $E: \forall(s: t) \in \mathbb{P}^{1}(E) \quad l_{(s: t)} \in \mathcal{F}_{1}$.
For the centroid E we have $[E: \mathbb{Q}]=2$.
Let σ be the nontrivial automorphism of E over \mathbb{Q}.
If $l \in \mathcal{F}_{1}$ then $\sigma(l) \in \mathcal{F}_{2}$. Therefore $l \cap \sigma(l)=\{p\}$.
p is fixed under σ, hence p is a rational point
and $(s: t) \mapsto l_{(s: t)} \cap \sigma\left(l_{(s: t)}\right)$ is a map $\mathbb{P}^{1}(E) \rightarrow S(\mathbb{Q})$.
The projective line $\mathbb{P}^{1}(E)$ can be parametrized by the projective plane $\mathbb{P}^{2}(\mathbb{Q})$: $(a: b: c) \mapsto(a+i b: c)$.

This leads to a rational parametrization of the sphere

$$
(a: b: c) \mapsto\left(c^{2}+a^{2}+b^{2}: 2 a c:-2 b c: c^{2}-a^{2}-b^{2}\right)
$$

with $a, b, c, \in \mathbb{Q}$.

Parametrizing blowups of \mathbb{P}^{2}

The canonical blowup $S_{0} \subset \mathbb{P}^{8}$ is parametrized

$$
(s: t: u) \mapsto\left(s^{2} t: s^{2} u: s t^{2}: s t u: s u^{2}: t^{3}: t^{2} u: t u^{2}: u^{3}\right) .
$$

Let $S \subset \mathbb{P}^{8}$ be projectively equivalent to S_{0} over \mathbb{Q}.
The Lie algebras of S_{0} and S decompose as a sum of $\mathfrak{s l}_{2}(\mathbb{Q})$ and a 3-dimensional radical R :

$$
\begin{array}{r}
\varphi_{0}: \mathfrak{s l}_{2}(\mathbb{Q})+R \rightarrow L\left(S_{0}, \mathbb{Q}\right), \\
\varphi: \mathfrak{s l}_{2}(\mathbb{Q})+R \rightarrow L(S, \mathbb{Q}) .
\end{array}
$$

As $\mathfrak{s l}_{2}$-modules:

$$
\begin{aligned}
V\left(\varphi_{0}\right) & =W_{2}\left(\varphi_{0}\right) \oplus W_{3}\left(\varphi_{0}\right) \oplus W_{4}\left(\varphi_{0}\right) \\
V(\varphi) & =W_{2}(\varphi) \oplus W_{3}(\varphi) \oplus W_{4}(\varphi)
\end{aligned}
$$

with $\operatorname{dim}\left(W_{i}\left(\varphi_{0}\right)\right)=\operatorname{dim}\left(W_{i}(\varphi)\right)=i$.

Parametrizing blowups of \mathbb{P}^{2} - continued

(1)

Any isomorphism $\psi: V\left(\varphi_{0}\right) \rightarrow V(\varphi)$ maps $W_{i}\left(\varphi_{0}\right)$ to $W_{i}(\varphi), i=2,3,4$.
$\mathbb{P}\left(W_{2}\left(\varphi_{0}\right)\right)\left(\mathbb{P}\left(W_{2}(\varphi)\right)\right)$ is the exceptional line of $S_{0}(S)$. One can use geometric methods to parametrize S.

Consider $V\left(\varphi_{0}\right)$ as an $\left(\mathfrak{s l}_{2}+R\right)$-module: Elements of the radical carry $W_{i}\left(\varphi_{0}\right)$ to $W_{i-1}\left(\varphi_{0}\right), i=3,4$, so $V\left(\varphi_{0}\right)$ is irreducible. The same with $V(\varphi)$.

The isomorphism $\psi: V\left(\varphi_{0}\right) \rightarrow V(\varphi)$ as $\left(\mathfrak{s l}_{2}+R\right)$-modules is unique up to multplication by scalars.

Therefore it is also an isomorphism of S_{0} and S and hence a parametrization of S.

