Using modular Lie algebras to compute with algebraic groups

Scott H. Murray

$$
\text { July } 24,2005
$$

Joint work with Don Taylor (University of Sydney),
Arjeh Cohen and Sergei Haller (Technical University of Eindhoven)

Linear algebraic groups

A subgroup of $\mathrm{GL}_{n}(k)$ defined by polynomial equations eg: $\mathrm{GL}_{n}(k), \mathrm{SL}_{n}(k)$, group of lower triangular matrices, group of lower unitriangular matrices

We are mostly interested in reductive groups, for now

Lie "correspondence"

Char 0: connected linear algebraic groups \longleftrightarrow Lie algebras
This breaks down in characteristic p

The classification uses algebraic geometry and group theory
These are not very useful for computation

TU/e

Conjugating semisimple elements

G connected reductive linear algebraic group over k
T_{0} standard maximal torus
$s \in G(\bar{k})$ semisimple
Wish to find $\quad x \in G(\bar{k}) \quad$ s.t. $\quad s^{x} \in T_{0}$

Outline algorithm

- $L=L(G), \quad M=C_{L}(s)$
- H a Cartan subalgebra of M [de Graaf]
- find Chevalley bases of L w.r.t. H and H_{0}
- we now have $a \in \operatorname{Aut}(L)$ s.t. $\quad H^{a}=H_{0}$
- decompose $a=x b \quad$ s.t. $\quad x \in G(\bar{k})$ and $H_{0}^{b}=H_{0}$
- now $s^{x} \in T_{0}$

Rational conjugation

Rational tori:
T_{w} for w a class representatives in the Weyl group W
$s \in G(k)$ semisimple
Wish to find $\quad x \in G(k)$ and $w \in W \quad$ s.t. $\quad s^{x} \in T_{w}$

Outline algorithm

- $L=L(G), \quad M=C_{L}(s)$
- H a maximally split Cartan subalgebra of M
- find w corresponding to H
- find "standard" bases of L w.r.t. H and $H_{w}=L\left(T_{w}\right)$
- we now have $a \in \operatorname{Aut}(L)(k)$ s.t. $H^{a}=H_{w}$
- decompose $a=x b \quad$ s.t. $\quad x \in G(k)$ and $H_{w}^{b}=H_{w}$
- now $s^{x} \in T_{w}$

Computing a splitting Cartan subalgebra

k finite
$L=L(G)$ for some k-split connected reductive G

Outline algorithm

- repeatedly take random semisimple $s \in L$ until $M=C_{M}(s)$ is split
- recurse until M is a torus

First wish: restriction map

Efficient computation of the p-map
$\left[x^{p}, y\right]=(\operatorname{ad} x)^{p} y \quad \Longrightarrow \quad$ can compute $x^{p}+Z(L)$ in time $O\left(d^{3} \log (p)\right)$
the s_{i} involve at least $O(p)$ Lie multiplications

Second wish: recognition

- Statistical
- Name
- Constructive

Characteristics 2 and 3

Third wish: automorphisms

Find the automorphism group of a Lie algebra Decompose automorphisms

References

- de Graaf, Ivanyos, and Rónyai,

Computing Cartan subalgebras of Lie algebras, Appl. Algebra Engrg. Comm. Comput. 7(5) 339-349

- Cohen and Murray,

Algorithm for Lang's Theorem,
www.win.tue.nl/~smurray

