The LEX Game and some applications

Bálint Felszeghy
Supervisor: Lajos Rónyai

Budapest University of Technology and Economics, Department of Algebra

Standard monomials and leading monomials

\mathbb{F} field, $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{F}[\mathrm{x}]$ polynomial ring in n variables
monomial: polynomials of the form $\mathbf{x}^{\mathbf{w}}:=x_{1}^{w_{1}} x_{2}^{w_{2}} \ldots x_{n}^{w_{n}}$
lexicographic order of monomials: $\mathrm{x}^{\mathbf{w}} \prec \mathrm{x}^{\mathbf{u}} \Longleftrightarrow \mathbf{w}<_{\text {lex }} \mathbf{u}$
complete order, refinement of divisibility, compatible with multiplication leading monomial $\ell \mathrm{m}(f)$ of $f(\mathrm{x})$ is its greatest monomial

Let $I \unlhd \mathbb{F}[\mathrm{x}]$ be an ideal.
leading monomials of $I: \operatorname{Lm}(I)=\{\ell \mathrm{m}(f): f \in I\}$;
upwards closed (with respect to divisibility)
standard monomials of $I: \mathrm{Sm}(I)$ the others;

Examples

Example $I=\left\langle x_{1}+x_{2}\right\rangle$
leading monomials: monomials divisible by x_{1}
standard monomials: powers of x_{2}

Example $I=\left\langle x_{1} x_{2}+x_{1}, \quad x_{1} x_{2}+x_{2}\right\rangle$
since $x_{1}-x_{2} \in I$ and $x_{2}^{2}+x_{2} \in I$
standard monomials can only be: 1 and x_{2}

Vanishing ideal of a finite set of points

Let $V \subseteq \mathbb{F}^{n}$ be finite.
$I(V):=\{f(\mathrm{x}) \in \mathbb{F}[\mathrm{x}]: f$ vanishes on $V\}$
$\mathbb{F}[\mathrm{x}] / I(V)$ is the vector space of functions $V \rightarrow \mathbb{F}$.

Theorem $\mathrm{Sm}(I)$ is a linear base of the vector space $\mathbb{F}[\mathrm{x}] / I$.
Corollary $|V|=|\operatorname{Sm}(I(V))|$
Example $\left\langle x_{1} x_{2}+x_{1}, x_{1} x_{2}+x_{2}\right\rangle=I(\{(0,0),(-1,-1)\})$.

The LEX Game

$V \subseteq \mathbb{F}^{n}$ finite, $\mathbf{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{N}^{n}$. Lex $(V$; w) game:
0 Stan thinks of a $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in V$.
1 Lea has w_{n} guesses for y_{n}. If she finds out she wins. Otherwise, Stan reveals y_{n}.
2 Lea has w_{n-1} guesses for y_{n-1}. If she finds out she wins. Otherwise, Stan reveals y_{n-1}.
$n \quad$ Lea has w_{1} guesses for y_{1}. If she finds out she wins. Otherwise, Stan reveals y_{1} and he wins the game.

Example $n=5$,
V consists of $\alpha-\beta$ sequences of length 5 in which there is exactly 1,2 or 3α.
With $\mathrm{w}=(11100)$ Lea has winning strategy.
With $\mathrm{w}=(01110)$ she does not have.

The theorem

Theorem $\operatorname{In} \operatorname{Lex}(V ; \mathbf{w})$ Lea has winning strategy $\Longleftrightarrow \mathbf{x}^{\mathbf{w}} \in \operatorname{Lm}(I(V))$.
Stan may win Lex $(V$; w $) \Longleftrightarrow \mathrm{x}^{\mathbf{w}} \in \operatorname{Sm}(I(V))$.

Example
With $\mathbf{w}=(11100)$ Lea wins, thus $x_{1} x_{2} x_{3} \in \operatorname{Lm}(I(V))$; but with $\mathbf{w}=(01110)$ Stan can win, so $x_{2} x_{3} x_{4} \in \operatorname{Sm}(I(V))$.

Proof of the theorem (\Rightarrow)

Theorem Lea wins $\operatorname{Lex}(V ; \mathbf{w}) \Longleftrightarrow \mathbf{x}^{\mathbf{w}} \in \operatorname{Lm}(I(V))$.

Proof:

$$
l(\mathbf{x})=\prod_{j=1}^{n}\left(\prod_{i=1}^{w_{j}}\left(x_{j}-f_{j, i}\left(x_{j+1}, \ldots, x_{n}\right)\right)\right)
$$

where $f_{j, 1}, f_{j, 2} \ldots f_{j, w_{j}}$ are Lea's guesses for y_{j}.
$f_{j, i}$ can be considered as a polynomial $\Rightarrow l(\mathrm{x}) \in \mathbb{F}[\mathrm{x}]$
$l(\mathrm{x})$ vanishes on V
$\Rightarrow \quad l(\mathrm{x}) \in I(V)$
$\ell \mathrm{m}(l(\mathrm{x}))=\mathrm{x}^{\mathrm{w}}$
$\Rightarrow \quad \mathrm{x}^{\mathrm{w}} \in \operatorname{Lm}(I(V))$

Standard monomials of permutations

Let $n=4$ and $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{F}$ distinct elements.
$V=\left\{\left(\pi\left(\alpha_{1}\right), \pi\left(\alpha_{2}\right), \pi\left(\alpha_{3}\right), \pi\left(\alpha_{4}\right)\right): \pi\right.$ is a permutation of $\left.\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}\right\}$.
(Thus $4!=|V|=|\operatorname{Sm}(I(V))|$.)
Who wins the game $\operatorname{Lex}(V ; \mathbf{w}=(0,1,2,3))$?

And the games
Lex(V; ($0,0,0,4)$),
$\operatorname{Lex}(V ;(0,0,3,0))$,
Lex(V; ($0,2,0,0)$),
$\operatorname{Lex}(V ;(1,0,0,0))$?
Answering these questions we have determined the set $\mathrm{Sm}(I(V))$.

'Independence' of Sm $(I(V))$ from V

Corollary

If we apply the injective functions $p_{i}: \mathbb{F} \rightarrow \mathbb{F}^{\prime}(i=1, \ldots, n)$ on the elements of $V \subseteq \mathbb{F}^{n}$ coordinatewise then the image $V^{\prime} \subseteq \mathbb{F}^{\prime n}$ has the same standard monomials as V.

Standard monomials have recursive structure

$V_{\alpha}=\left\{\left(v_{1}, \ldots, v_{n-1}\right):\left(v_{1}, \ldots, v_{n-1}, \alpha\right) \in V\right\}$ (prefixes of V)
If Lea doesn't find out $y_{n}=\alpha$ in $\operatorname{Lex}(V ; \mathbf{w})$ then comes $\operatorname{Lex}\left(V_{\alpha} ;\left(w_{1}, \ldots, w_{n-1}\right)\right)$.
Corollary
Let $n>1$. Then $\mathrm{x}^{\mathbf{w}} \in \operatorname{Sm}(I(V)) \Longleftrightarrow$
there exist at least $w_{n}+1$ such α that $x_{1}^{w_{1}} \ldots x_{n-1}^{w_{n}-1} \in \operatorname{Sm}\left(I\left(V_{\alpha}\right)\right)$.
Proof:
Stan wins Lex $\left(V ;\left(w_{1}, \ldots, w_{n}\right)\right) \Longleftrightarrow$ there exist at least $w_{n}+1$ such α that
Stan wins $\operatorname{Lex}\left(V_{\alpha} ;\left(w_{1}, \ldots, w_{n-1}\right)\right)$.

Algorithm for computing standard monomials

word tree: rooted tree of depth n, with elements of \mathbb{F} on the edges. Each leaf corresponds to an element of \mathbb{F}^{n} : consider the way from the leaf to the root.
Example The word tree of
$V=\{(2,1,1),(3,1,1),(4,1,1),(4,2,1),(1,1,3),(3,1,3)\}$ is

Observation:
The subtree belonging to the child α of the root is the word tree of V_{α}.
Algorithm:
Write on every vertex v the standard monomial set of the subtree of v.
Thus on the $(n-i)^{t h}$ level there are monomials of $x_{1} \ldots x_{i}$.

Algorithm for computing standard monomials

Algorithm

$n^{\text {th }}$ level: \quad write 1 on every vertex (leaf)
$(n-i)^{t h}$ level: if the monomial $m(\mathbf{x}) \in \mathbb{F}\left[x_{1}, \ldots, x_{i-1}\right]$ can be found in at least $w+1$ sets of children of v then we put $m(\mathbf{x}) x_{i}^{w}$ in the set of vertex v Example

Runtime: (implementing the above carefully) $O(n \cdot|V| \cdot r)$, where r is the maximum degree of the wordtree.

