
Problems that stumped me

Dan Segal

October 9, 2007

Everyone knows about the great problems of mathematics. So instead of
trying to emulate Hilbert, I want to discuss here a few quite humble questions
that I�ve come across over the years; ones that I wasn�t smart enough to answer
myself, but which look reasonably approachable.

1 The genus of polycyclic groups

Let�s say that two groups G and H lie in the same genus if their pro�nite
completions bG and bH are isomorphic (topologically); this is equivalent to saying
that F(G) = F(H) where F(G) denotes the set of �nite images of G. The main
result of [GPS] states that each genus of virtually polycyclic groups consists of
�nitely many isomorphism classes. The proof is in two stages:

(a) reduction to stage (b)

(b) a sort of �relative�version: if � is an arithmetic group, then each con-
gruential conjugacy class of virtually soluble subgroups of � consists of �nitely
many conjugacy classes of subgroups.

Here, subgroups of � = G(Z) are called congruentially conjugate if their
images in G(Z=mZ) are conjugate for each m 2 N (where G is a linear algebraic
group de�ned over Q). The result (b) is proved in [GS] using respectable main-
stream mathematics (�niteness properties of arithmetic groups, due to Borel
and Serre). Problem 1 is to �nd a natural and attractive way to do (a); the
existing proof is messy and technical, involving several non-canonical reduction
steps. A more suggestive way to state the result is as follows:

Let P be a pro�nite group and X the family of all dense virtually polycyclic
subgroups G of P that have the congruence subgroup property (i.e. the natural
mapping from bG to P is an isomorphism). Then Aut(P ) has �nitely many orbits
on X .

In this formulation the result sounds not too di¤erent from (b). The recent
paper of Baues and Grunewald [BG] demonstrates intimate connections between
automorphism groups of polycyclic groups and algebraic groups overQ; this may
point the way to a su¢ ciently good description of Aut(P ) and of its action on
X . (Actually, it can be shown that if P is the pro�nite completion of a virtually
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polycyclic group then every �nitely generated group having pro�nite completion
P is already virtually polycyclic; but this is a bit of a red herring here.)
An outline of the (original) proof is given in Chapters 9 and 10 of [PG].
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2 Generators of virtually polycyclic groups

The minimal size of a generating set for a group G is denoted d(G).

Problem 2a. Give an algorithm to determine d(G) for virtually polycyclic
groups G, or: prove that the problem is undecidable.

It is amazing, to me, that this is (apparently) not known, even for the
special case of �nitely generated abelian-by-�nite groups. All of the �traditional�
decision problems have a positive solution in virtually polycyclic groups ([DP]).
In the case of the word problem and the conjugacy problem this follows from
suitable �local-global�theorems (residual �niteness and conjugacy separability);
regarding the number of generators, there is an �almost� local-global theorem
due to Linnell and Warhurst:

Theorem [LW] If G is virtually polycyclic then d( bG) � d(G) � 1 + d( bG).
Here d( bG) denotes the number of topological generators of bG, namely the supre-
mum of d(Q) over all �nite quotients Q of G. This provides an algorithm which
determines d(G) up to a possible error of 1. It goes as follows. Enumerate (a)
�nite generating sets X for G and (b) minimal-size generating sets Y for �nite
quotients of G; then

jY j � d( bG) � d(G) � jXj
for each such X and Y , and eventually we will �nd a pair X; Y such that
jXj�jY j � 1. If in fact jXj = jY j = n we may conclude that d(G) = d( bG) = n;
but if jXj = n = 1 + jY j we can only infer that n � d( bG) � d(G) � n+ 1.
The indeterminacy could be removed by solving
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Problem 2b. Characterize those virtually polycyclic groups G such that d(G) =
d( bG).
This seems to be a very delicate matter. A basic example is

G = Ao h�i

where � is a root of unity and A is a non-zero ideal of Z[�]. Here d( bG) = 2,
while d(G) = 2 if A is principal, d(G) = 3 if not. Of course, this is decidable
by algebraic number theory in this case, but polycyclic groups are usually much
more complicated!
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3 Upper rank

I will use �rank�in the sense of Prüfer rank, that is

rk(G) = sup fd(H) j H � G; d(H) <1g :

The upper rank of a group G is

ur(G) = sup frk(Q) j Q 2 F(G)g
= rk( bG):

I am interested in �nitely generated residually �nite (fgRF) groups. Avinoam
Mann and I (and independently John Wilson) established the following

Theorem [MS] Let G be a fgRF group. Then G has �nite upper rank if and only
G is virtually soluble of �nite rank (hence a virtually soluble minimax group).

(See [SG], Section 5.5). Not long after, we showed with Alex Lubotzky that the
same class of groups is characterized by the condition of polynomial subgroup
growth (loc. cit., Chapter 5), and Alex asked me if one could weaken this
hypothesis: is there a function f which grows (a little) faster than polynomially
and such that every fgRF group with subgroup growth at most f is virtually
soluble minimax? In other words, is there a �subgroup growth gap�? The
answer turned out to be �no�; see [SG], Chapter 13. However, there is such
a gap for groups in certain classes, such as linear groups, and more generally
for groups that are virtually residually nilpotent (see [SG], Chapter 8). The
following is still open:
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Problem 3a. Is there a subgroup growth gap for �nitely generated soluble
groups?

Now, what our original proof did establish was the following

Proposition. Let G be a �nitely generated soluble group. If

log sn(G) = o

�
log n

log log n

�2
(*)

then G has �nite upper p-rank for every prime p.

Here sn(G) denotes the number of subgroups of index at most n in G; and the
upper p-rank of G is de�ned by

urp(G) = sup frp(Q) j Q 2 F(G)g ;

where rp(Q) for a �nite group Q denotes the rank of a Sylow p-subgroup of
Q. (Thus urp(G) is the rank of a Sylow pro-p subgroup of bG). A theorem of
Guralnick and Lucchini (�rst proved for soluble groups by Kovács) implies that
for every �nite group Q;

rk(Q) � 1 + sup
p
rp(Q);

it follows that for any group G we have

ur(G) � 1 + sup
p
urp(G):

Hence G has �nite upper rank if and only if the numbers urp(G) are bounded
as p ranges over all primes. Thus a positive answer to Problem 3a would follow
if one were to prove

Conjecture 3b. Let G be a �nitely generated soluble group. If the numbers
urp(G) are �nite for every prime p then they are bounded (hence ur(G) is �nite,
and modulo its �nite residual G is a minimax group).

It is worth remarking that any group G with ur2(G) �nite has bG virtually
prosoluble (this is due to Lubotzky and Mann; see [SG], Section 5.5). So re-
moving solubility from the hypothesis of the conjecture is not a very big step.
Still, the conjecture is not inconsistent with a positive solution to the following
slightly more general problem:

Problem 3c. Does there exist a �nitely generated group G of in�nite upper
rank such that the numbers urp(G) are �nite for every prime p?

In any case, to prove the conjecture it would su¢ ce to assume that the
group G is abelian-by-minimax (arguing by induction on the derived length).
Such groups are in particular abelian-by-nilpotent-by-polycyclic. Recently, in
joint work with Laci Pyber [PS], I have been able to establish the conjecture
for the special case of groups that are nilpotent-by-abelian-by-polycyclic (so for
�nitely generated groups in this class there is indeed a subgroup growth gap,
between polynomial and the type indicated in (*).
For more discussion of these problems, see [UR] and [FI].
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4 Verbal width, I

Let us say that a group word w has width m in a group G if every element of the
verbal subgroup w(G) is equal to a product of m values of w or their inverses.
The following observation was made by Brian Hartley in 1979:

Proposition. The following are equivalent for a pro�nite group G and a word
w:
(a) the (algebraically de�ned) verbal subgroup w(G) is closed in G;
(b) w has �nite width in G;
(c) there is a uniform �nite bound for the width of w in every �nite (continuous)
quotient of G.

Using the (easy) implication (c) =) (a), Serre had shown in the 1970s that
in any �nitely generated pro-p group, every subgroup of �nite index is open: he
deduced it from the fact that the commutator word [x; y] has width d in every
d-generator nilpotent group. In an attempt to generalize Serre�s result, Nikolay
Nikolov and I proved

Theorem. [NS] For each d 2 N there exists g1(d) 2 N such that [x; y] has width
g1(d) in every d-generator �nite group. Similarly for each c > 1 there exists
gc(d) such that the word [x1; x2; : : : ; xc+1] has width gc(d) in every d-generator
�nite group.

(Actually our proof, rather surprisingly, gives an explicit bound of the form
g1(d) = 12d

3 + O(d2).) It follows that the derived group, and the other terms
of the lower central series, are closed in every �nitely generated pro�nite group.
Interesting though this is, it doesn�t help much towards generalizing Serre�s
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result beyond prosoluble groups. To this end, we had to consider other kinds of
words:

Theorem. [NS] Let d 2 N and let w be a d-locally �nite word. Then there
exists f = f(w; d) such that w has width f in every d-generator �nite group.

(The word w is d-locally �nite if every d-generator group G satisfying w(G) = 1
is �nite.) From this, it is not hard to deduce that the �nite-index subgroups are
open in every �nitely generated pro�nite group.
This is a satisfactory conclusion to one story, but a successful blockbuster

should leave the audience wanting a sequel. The glaring question is: what is it
that the lower-central (iterated commutator) words and the locally �nite words
have in common? Let us say that the word w is uniformly elliptic in �nite
groups if there is a function f : N ! N such that w has width f(d) in in every
d-generator �nite group. This is equivalent to saying that w(G) is closed in
every �nitely generated pro�nite group G.

Problem 4a. Characterize the group words that are uniformly elliptic in �nite
groups.

What we have shown is that all lower central words and all locally �nite
words are uniformly elliptic; in 1982 V. A. Roman�kov [R] showed that the
second commutator word [[x; y]; [z; t]] is not, even in the restricted class of �nite
p-groups. Recently, Andrei Jaikin has established the de�nitive answer for this
subclass of �nite groups:

Theorem. [J] Let p be a prime. A non-trivial word w is uniformly elliptic in
�nite p-groups (equivalently, w(G) is closed in G for every �nitely generated
pro-p group G) if and only if w =2 F 00(F 0)p where F is the free group on the
variables of w.

(Here F 0 denotes the derived group and F 00 the second derived group of F .)
In a sense, this �explains� the distinction between the various kinds of word
mentioned in the preceding paragraph. I am tempted to make the

Conjecture 4b. A non-trivial word w is uniformly elliptic in �nite groups if
and only if w =2 F 00(F 0)p for every prime p.

Perhaps I should resist the temptation, however. I can show that this is
true for words w that satisfy a rather special extra hypothesis: F1=w(F1) is
residually virtually-soluble (here F1 is the free group on @0 generators); and
for arbitrary words if we restrict to �nite groups that are nilpotent (this was
already proved in [J]) or soluble of bounded derived length. But there is a hard
�test case� that has stubbornly resisted all our e¤orts: namely the �Burnside
words�w = xq (where q is a large-ish positive integer). So let me single out

Problem 4c. Prove or disprove: if G is a �nitely generated pro�nite group
then every �power subgroup�Gq is closed in G:

A special case was actually proved in [NS]: when the group G is non-universal,
which means that Alt(k) is not an upper section of G for some k. So while
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slightly doubtful about Conjecture 4b in general, I am fairly con�dent that it
is correct when restricted to �nite groups not involving Alt(k) for some �xed k
(and in particular for �nite soluble groups).
When Nikolay and I were working on Serre�s problem we spent a long time

trying to prove that the Burnside words are uniformly elliptic in all �nite groups;
in the end, we had to settle on locally �nite words instead. Now there is a
plausible metamathematical argument which seems to get round the problem;
it goes like this. According to the positive solution of the Restricted Burnside
Problem, every �nitely generated residually �nite group of exponent q is �nite;
hence the �nitely generated in�nite Burnside groups should be invisible within
the universe of �nite groups and pro�nite groups. In other words, in this universe
the word xq should behave just like a locally �nite word. To understand why
this won�t wash, we have to isolate the particular feature of a locally �nite word
w that our proof relies on; here it is: if w is d-locally �nite and G is a �nite
d-generator group then w(G) is generated by h w-values, where h depends only
on d and w. In particular, this holds for w = xq if the Burnside group B(d; q)
is �nite, but I don�t know if it does or not when B(d; q) is in�nite. If it does
not, we have found a way to detect the in�nitude of B(d; q) within the universe
of �nite groups! On the other hand, if it does, then our original proof will yield
a positive solution to Problem 4c. So let me formulate

Problem 4d. Does there exists a function h : N � N ! N such that in every
�nite d-generator group G the subgroup Gq is generated by h(d; q) qth powers?
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5 Verbal width, II

In the paper [J] cited above Andrei Jaikin also proves

Theorem. In a compact p-adic analytic group every word has �nite width
(equivalently, every verbal subgroup is closed).

Andrei�s beautiful proof is analytic, resting ultimately on an application of
the inverse function theorem for p-adic analytic functions. In particular, it is
non-e¤ective: one cannot extract from it a bound for the width of a particular
word. My student Nick Simons gives in his thesis a di¤erent, algebraic proof,
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modelled on Roman�kov�s proof that polycyclic groups are verbally elliptic [R];
but this also appears to be ine¤ective. Now Andrei�s theorem applies in partic-
ular to pro-p groups of �nite rank. If G is such a group, of rank r, say, then w
has �nite width in G if and only if w has bounded width in all the �nite quo-
tients of G; in other words, w is uniformly elliptic in F(G). The only obvious
feature that all groups in F(G) have in common is that their ranks are at most
r. The maxim �a qualitative result about pro�nite groups is equivalent to a
quantitative result about a family of �nite groups�leads one to suggest

Problem 5a. Let w be a word and p a prime. Prove: for each r 2 N there
exists k = k(w; p; r) such that w has width k in every �nite p-group of rank r.

This would be the ��nite�version of Jaikin�s theorem. If the claim is not
true, we are left with the following fundamental question:

Problem 5b. Let X be a family of �nite p-groups of bounded rank. What
conditions on X are su¢ cient to imply that X � F(G) for some pro-p group G
of �nite rank?
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