p-groups and pro-p-groups, to infinity and back.
Bettina Eick and Charles Leedham-Green

This lecture is not a lecture, but is rather a shameless advertisement, for the book ‘The
structure of groups of prime power order’, London Mathematical Society Monographs, New
Series 27, Oxford University Press, ISBN 0-19-853584-1, by Susan McKay and myself. Most
of the lectures in this conference would require a book to give an adequate background to
the material presented. For this lecture, the book has been written.

The lecture is based on the concept of ‘coclass’, as defined and elaborated by the
previous speaker (Yiftach Barnea), but to remind you, if P is a p-group of order p™ and
class ¢, the coclass of P is defined to be n — c.

I have tried counting the mathematicians involved in the coclass project as a means
of getting to sleep, and have got up to 16; I mention a few. The initial work that lead
to the conjectures was joint work with Susan McKay, who also played the central role
in the first major breakthrough in proving the conjectures. The conjectures themselves
were made by Mike Newman and myself. The proofs of the conjectures rely heavily on
the work of Avinoam Mann and Alex Lubotsky on powerful p-groups, and a huge and
brilliant contribution was made by Aner Shalev. The theorem that I wish to discuss
proves (with explicit bounds) a conjecture made by Mike Newman and Eamonn O’Brien.
An amazing proof of the conjecture, without bounds, was given by Marcus du Sautoy, using
zeta functions. His techniques have rather general applicability, but as an unavoidable
consequence, do not give such a precise result as the theorem in question.

This theorem is joint work with Bettina Eick, and is about to be published in the
Bulletin of the London Mathematical Society.

The coclass project, with the proof of the five conjectures, as displayed in the previous
lecture, has got to the point that, given a reasonable problem about p-groups, we can either
find a counterexample (as with the class-breadth conjectures); or prove a positive result,
which you may or may not like (Bettina Eick proved that the conjecture stating that
every finite p-group, with a few obvious exceptions, has order dividing the order of its
automorphism group, has only finitely many counterexample among p-groups of coclass r,
for fixed p and r); or we can assert that the problem was not reasonable in the first case.

So, does anyone have any problems about finite p-groups that they want solved?
(Shocked silence.) How about classifying finite p-groups up to isomorphism? (Dismissive
laughter.) Well, T shall classify finite p-groups up to isomorphism in the case p = 2 (odd
primes in this case are harder; we hope to deal with these groups as well).

I shall illustrate our techniques with the case of 2-groups of coclass 1. There are three
such groups of order 2" (for n > 4), denoted by Dsn, the dihedral group; SDyn, the semi-
dihedral group; and (Q3», the quaternion group. All these groups have a cyclic subgroup
of order 2”1, so we can make a table as follows.

Dzn Czn—l : Cg

SDoyn Con-1:(Cy.

Qo Can-1.Cy
This exhibits the fact that the dihedral and semi-dihedral groups are split extensions of
a cyclic group of order 2"~ ! by a cyclic group of order 2, and the quaternion group is a
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non-split extension. The distinction between the semi-dihedral and dihedral groups lies
in a (slight) difference in the actions of the cyclic group of order 2 on the cyclic group of
order 2"~!. The quaternion and dihedral groups exhibit the same action: the cyclic group
of order 2 acts in both cases by inversion; but in the quaternionic case the extension does
not split. (Hence the full stop (or period), as opposed to a colon, in the notation.) While
proving this trivial result on 2-groups of coclass 1 to your third year undergraduates you
observe that the semi-dihedral and quaternion groups have departed from the straight and
narrow path followed by the dihedral groups in two different ways. In one case the module
has been corrupted, and in the other case the cohomology has caused the problem. There
being two different types of obstruction, one observes ‘this will never generalise’. Indeed,
in the spirit of the coclass conjectures, we note that all three of the above groups have
centres of order 2, and that, after dividing out by these centres, we are reduced to dihedral
groups. So if we divide out by a contemptibly small normal subgroup we get a dihedral
group, and the semi-dihedral and quaternion groups may be ignored. However, we have set
our minds on the classification of 2-groups up to isomorphism; so we have to undivide out
by the centre, and gaze at the three groups in our table, saying ‘Om’ until the following
thought occurs. The three groups in question (for given n) contain unique cyclic normal
subgroups C of order 2”2, namely the unique subgroup of that order in the maximal
cyclic subgroup. Moreover, the quotient group is the Klein 4-group V' (elementary abelian
of order 4), and we can pick generators z and y of V in such a way that z centralises C
and y inverts C'. The module structure is identical for all three groups; and all are now
of the form C.V. So now we have only one invariant to concern ourselves with, name the
cohomology.

Homological algebra is, in a sense, at the heart of the theory of p-groups. If all
the cohomology groups vanished, all p-groups would degenerate into elementary abelian
groups. But because cohomology explains everything it explains nothing, and in general
p-groups are too flaccid for us to be able to compute the cohomology groups. However,
in this case we can compute the cohomology groups, as follows. I shall write the cyclic
group C as T'/S, where T is the ring of 2-adic integers, considered as an additive group,
and S is the unique subgroup of index 2" 2. Now T, and S, and T/S, are V-modules,
where x centralises and y multiplies by —1; and it turns out, by a simple exercise in
homological algebra, that H?(V,T/S) = H?(V,T) @ H3(V,S). Now we do not wish to
consider every element of H?(V,T/S); only those elements that give rise to 2-groups of
coclass 1. Unsurprisingly the classes that correspond to groups of coclass 1 are those
that correspond to elements («, 3) € H?(V, T) @ H3(V, S) where « defines the limit group
Z, : (5. Here Z5 is the additive group of p-adic integers, with the generator of Cy acting
as multiplication by —1; so this limit group is the unique pro-2-group of coclass 1, and is
the inverse limit of the dihedral groups of order 2™: that is, Zs : Cy = lim. Dsn. It is easy
to see that H2(V,T) is cyclic of order 2, so « is constrained to be the unique non-trivial
element of this group, and 3 can be chosen freely from H2(V,S), a group isomorphic to
Cy x (5. Thus we have four cohomology classes to describe three isomorphism classes
of groups. This corresponds to the fact that different cohomology classes, that is to say
different extension classes, can give rise to isomorphic extension groups. So we need to
consider, not elements of H3(V, S), but rather equivalence classes of elements of H3(V, S)
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under a certain automorphism group. This is a minor technical detail that will be clear to
the experts, and of no interest to the rest.

We can now describe our three classes of groups by presentations that describe these
groups as extensions of the form (7'/5).V as follows.

Gap=(tay |t =1, 1=t V=t a2 =t, y>=1"2" " [y,a] = '),

Here t generates T'/S, which is cyclic of order 2"72; and z and y generate V. Note that
Z, : Cy has the presentation

Zo:Coy = (t,x,y|t* =1, V=11 2?=t, y? =1, ly, x] = t).

The above presentation for G is obtained from this presentation by adding the extra

relation 2"~ = 1, and introducing the (small) variations given by a and b. Clearly a
and b can be regarded as lying in Cs; so we see that the above parametrisation of the
presentation may be regarded as a parametrisation by H3(V, S) =2 Cy x Cy. One sees easily
that Ggq is the dihedral group, the isomorphic groups GGg; and (17 are semi-dihedral, and
that G1¢ is the quaternion group.

All of the above remarks have been relatively elementary. Our theorem states that
these descriptions of the isomorphism classes of 2-groups of coclass 1 can be extended
to give descriptions of the isomorphism classes of all sufficiently large 2-groups of any
coclass. This requires the full force of the coclass theory (for p = 2). At the centre of
this theory are conjectures C, D and E, as given in the previous lecture, that describe the
pro-p-groups of finite coclass, and assert that there are only finitely many such for fixed p
and fixed coclass. These pro-p-groups in the general case play the role of Zs : C5 in the
case of coclass 1. To give an example of such a pro-p-group consider the split extension
of T =25 ®Zy DZy D Zs by P= Cy1C30C5. The wreath product has a base group
that is elementary abelian of rank 4, and acts on 7" by multiplying each of the direct
summands powers of —1. Modulo this base group we have Cy ! Cy = Dg that permutes
naturally the four summands by the usual permutational wreath product action of Dsg.
Now certain subgroups of G = T : P will also be of finite coclass. The delicate issue is
that these subgroups will generally be of smaller coclass than the parent group. Moreover,
these subgroups may be non-split extensions of an open subgroup of T' by a subgroup of
P, and the fact that the extension is non-split will reduce the coclass. In other words,
if the coclass is given, the existence of non-split extensions has the potential to increase
the dimensions of the pro-p-groups in question, and this introduced serious problems with
proving the coclass conjectures. As another example of a pro-2-group of finite coclass, there
is a representation of the quaternion group of order 16, acting in dimension 4 over Zs: the
corresponding (split) extension gives rise to a pro-2-group of coclass 4. Thus all examples
of just-infinite pro-2-groups of finite coclass arise either from Z, : Cy, or from Z3 : Q16, by
taking wreath products with Cy and taking certain open subgroups. The case of Z3 : Q16
has the property that it is not the 2-adic completion of a discrete representation, since (014
has no faithful 4-dimensional representation over the integers (or over the rationals).

The methodology of this work may be described as follows. We first examine the pro-
2-groups of finite coclass (going to infinity), and then use the structure of these infinite
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groups to deduce the precise structure of the 2-groups of finite coclass (returning to the
finite universe).

Apart from dealing with odd primes, there are also similar theorems to be proved to
classify p-groups by rank and obliquity.

I thank Fabrizio Catanese for his very constructive questions during the lecture, and
Dan Segal for shedding a bright light on the proceedings.



