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Chapter 1

Varieties, the Picard Group
and the Riemann-Roch
Theorem

1.1 Varieties

Throughout this course we will deal with complex geometry, hence the field
we will use will be K = C; most of the results we will see hold for a general
algebraically closed field.

1.1.1 Affine varieties

By An = Kn = Cn we will denote the affine space.
A polynomial f ∈ K[x1, . . . , xn] can be easily seen as a function f ∶ An → K.

Definition 1.1. For S ⊂ K[x1, . . . , xn] we define the set

Z(S) ∶= {p ∈ An ∶ ∀f ∈ S f(p) = 0},

such a set is called affine algebraic set (a.a.s).
Z ∶= Z(S) is said to be irreducible if /∃ Y1, Y2 proper affine algebraic subsets
of Z such that Z = Y1 ∪ Y2.

By the Hilbert basis Theorem it can be proved that to define an affine
algebraic set it suffices a finite number of polynomials, thus we can always
suppose that #S < ∞.

Definition 1.2. An affine variety is an irreducible affine algebraic set.
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Remark 1.3. By this definition, an affine variety can either be smooth (i.e.
an embedded complex submanifold of the affine space) or admit some singular
points, such cusps or nodes; for example all of the three affine algebraic sets
represented in Figure 1.1 are affine varieties.

(a) Z({x2
+ y2 − 1}) (b) Z({x3

− y2})

(c) Z({x2
+ x3

− y2})

Figure 1.1: Some examples of affine varieties.

Definition 1.4. Let Z ⊂ An; we define the set I(Z) to be the set of all
polynomials vanishing on Z, that is

I(Z) ∶= {f ∈ K[x1, . . . , xn] ∶ ∀p ∈ Z f(p) = 0}.

It is easy to prove that I(Z) is an ideal. The quotient ring

K[x1, . . . , xn]/I(Z)

is called structure ring of Z.

Basically, the structure ring of Z is the set of the restrictions of polyno-
mials to the variety, since two polynomials that differs by an element of I(Z)
assume the same values on the variety.

An affine variety Z ⊂ An can be endowed with two different topologies:

• the natural topology induced over Z by An;

• the topology whose closed sets are the algebraic subset of Z.
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The latter topology - which is the one we will work the most with - is the
Zariski topology and it is immediate to see that it is coarser than the one
induced by An.

1.1.2 Projective varieties

In this case the space we are working in is the projective space

PnK ∶= (Kn+1 ∖ {0}) /K∗;

let f ∈ K[x0, . . . , xn] be an homogeneous polynomial of degree d, that is

f = ∑ak1...knx
d−Σki
0 xk11 . . . xknn .

Watch out! f is not a function defined over Pn, since

f(λx0, . . . , λxn) = λnf(x0, . . . , xn). (1.1)

Asking the value of f in a generic point makes no sense, nevertheless it is
possible to see whether a polynomial vanishes in a certain point.

Definition 1.5. Let S ⊂ K[x0, . . . , xn] such that ∀f ∈ S f is homogeneous.
By (1.1), the set

Z(S) ∶= {p ∈ Pn ∶ ∀f ∈ S f(p) = 0}

is well defined. The set Z(S) is said to be a projective algebraic set (p.a.s).
Z ∶= Z(S) is said to be irreducible if /∃ Y1, Y2 proper projective algebraic

subsets of Z such that Z = Y1 ∪ Y2.

In this case too, by the Hilbert basis Theorem, a finite number of poly-
nomials suffices to define a projective algebraic set.

Definition 1.6. A projective variety is an irreducible projective algebraic
set.

Definition 1.7. Let Z ⊂ Pn; we define the set I(Z) to be

I(Z) ∶= ideal generated by {f ∈ K(x0, . . . , xn) homogeneous ∶ ∀p ∈ Z f(p) = 0}.

The structure ring of Z is the quotient ring

K[x0, . . . , xn]/I(Z).

Analogously to the affine case, a projective variety can be endowed with
the standard topology induced by Pn or with the Zariski topology.
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1.1.3 Quasi-projective varieties

Definition 1.8. Z is said to be a quasi-projective variety if Z is a Zariski
open subset of a projective variety.

Example 1.9. Let us see some example of quasi-projective varieties.

1. Every projective variety is trivially a quasi-projective variety.

2. An is a quasi-projective variety; indeed

Pn ∖ {x0 = 0} ≅ An

(x0 ∶ ⋅ ⋅ ⋅ ∶ xn) ↦ (x1

x0

, . . . ,
xn
x0

) .

3. Every affine variety is quasi-projective. Let us prove this statement.

Let V = Z({f1, . . . , fl}) be an affine variety, where fi ∈ K[z1, . . . , zn]
with deg fi = di. For every j = 1, . . . , l, let us define fhj , the homoge-
nization of fj, in the following way:

if fj = ∑ak1...knz
k1
1 . . . zknn

then fhj ∶= ∑ak1...knz
dj−Σki
0 zk11 . . . zknn

The set Z ∶= Z({fh1 , . . . , fhl }) ⊂ Pn is a projective variety and it is called
projective closure of V .

Since Z ⊂ Pn, we can work just like in the second example; we remove
from Z the set {x0 = 0} to get a subset of Pn ∖ {x0 = 0} ≅ An.

Exercise 1.10. Prove that Z ∖ {x0 = 0} ≅ V .

In these latter examples we have seen how it is possible to move from the
affine case to the projective case by homogenization. We can move in the
other way too, by dehomogenization. Let f ∈ K[x0, . . . , xn] be a homogeneous
polynomial; a dehomogenization of f is

f0 ∈ K[z1, . . . , zn] f0(z1, . . . , zn) ∶= f(1, z1, . . . , zn).

We have n + 1 different dehomogenizations of f .

Since PnC is a complex variety of dimension n, a quasi projective variety
Z ⊂ PnC can be a submanifold.

Definition 1.11. Z ⊂ PnC quasi projective variety is said to be smooth if it
is an embedded submanifold.

From now on by variety we will always mean a quasi-projective variety.
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1.1.4 Maps

Definition 1.12. Let X, Y be two varieties; f ∶X → Y is said to be regular
(or a morphism of varieties) if

∀x ∈X ∃ U(x) Zariski open, U ⊂ An

V (f(x)) Zariski open, V ⊂ Am

such that f(U) ⊂ V and f ∣U = (g1, . . . , gm) with

gi =
ni
di
, ni, di ∈ K[x1, . . . , xn]

and di(p) ≠ 0 ∀p ∈ U ∀i = 1, . . . ,m.

Basically this means that locally a morphism of algebraic varieties can be
expressed by rational functions.

Definition 1.13. Let X and Y be two quasi-projective varieties; f ∶ X → Y
is said to be biregular if it is regular, invertible and with regular inverse.

In algebraic geometry biregular mappings play the role of the diffeomor-
phisms in differential geometry and homeomorphisms in topology; that is, if
there exists a biregular map between two algebraic varieties, it means that
they look like the same.

Definition 1.14. Let X and Y be two quasi-projective varieties, a rational
map f ∶ X ⇢ Y is the equivalence class of pair (U, fU) where U is Zariski
open, fU ∶ U → Y is regular, modulo the equivalence relation

(U, fU) ∼ (U ′, fU ′) ⇔ fU ∣U∩U ′ = fU ′ ∣U∩U ′ .

Example 1.15. Let us see an example of a biregular mapping.
Let us define Q ∶= {x0x2 = x2

1}1⊂ P2 and the map

F ∶ P1 → Q
(t0 ∶ t1) ↦ (t20 ∶ t0t1 ∶ t21)

.

It is easy to see that this map is well defined (the things to check are that
F (P1) ⊂ Q, that F (λt0, λt1) = F (t0, t1) and that no points are mapped into
(0 ∶ 0 ∶ 0) that is not a point of P2).

1With a slight abuse of notation, by this we mean that Q = Z({x0x2 − x2
1}).
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Let us prove that this is a regular map. Let x = (t0 ∶ t1) ∈ P1 and suppose
that t0 ≠ 0, hence x = (1 ∶ t1); in order to satisfy the conditions of Definition
1.12, we can define

U(x) = U0 ∶= {(t0 ∶ t1) ∈ P1 ∶ t0 ≠ 0}
V (f(x)) = V0 ∶= {(z0 ∶ z1 ∶ z2) ∈ Q ∶ z0 ≠ 0}.

U and V are Zariski open subsets of the respective projective subspaces. Re-
stricting F to U we get

F ∣U ∶ (1 ∶ t) ↦ (1 ∶ t ∶ t2).

Working in an analogous way for point with t0 = 0 and t1 ≠ 0, we get that F
is locally defined by rational functions, hence it is a regular map.

Is this map invertible? Let us then consider the map

G ∶ Q → P1

(x0 ∶ x1 ∶ x2) ↦ (x1

x2

∶ 1)

Apparently, this function is defined only for x2 ≠ 0; but

(x1

x2

∶ 1) = (1 ∶ x2

x1

) ,

thus, G can be equivalently defined for x1 ≠ 0 as

G(x0 ∶ x1 ∶ x2) = (1 ∶ x2

x1

) .

We are still missing the point p = (0 ∶ 0 ∶ 1) ∈ Q; is it possible to define G in
an open neighbourhood of p? Exploiting the fact that in Q x0x2 = x2

1 we get

(x1

x2

∶ 1) = (x
2
1

x2

∶ x1) = (x0x2

x2

∶ x1) = (x0 ∶ x1) = (1 ∶ x1

x0

) .

We have then defined the function G over the whole Q.

Exercise 1.16. Prove that G is rational and that G = F −1. Thus F is a
biregular mapping.

Remark 1.17. The projection map

π ∶ P2 ⇢ P1

(x0 ∶ x1 ∶ x2) ↦ (x0 ∶ x1)
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is a rational map, in the sense that its restriction to the open set P2 ∖ {(0 ∶ 0 ∶ 1)}
is a regular map. Moreover it’s immediate to see that π = G in the common
domain; but π cannot be defined in p = (0 ∶ 0 ∶ 1), whereas G is. This is due
to the fact that restricting the function to Q the limit

lim
z→p
z∈Q

π(z) = (0 ∶ 1)

exists, while
lim
z→p π(z)

does not exist.

Exercise 1.18. Let l ∶= {ax0 + bx1 = 0} ⊂ P2 with a, b ∈ C; compute using the
standard topology limz→p π∣l and prove that it depends on a, b.

Definition 1.19. A rational map F ∶X ⇢ Y is said to be birational if there
exists a rational map G ∶ Y ⇢X such that F ○G = IdY and G ○ F = IdX .

If X and Y are two varieties such that there exists a birational map
F ∶X ⇢ Y , then they are said to be birational.

Definition 1.20. Let X be a variety; X is rational if it is birational to a
projective space.

Definition 1.21. Let X be a variety; X is unirational if it is dominated by
a projective space, i.e. there exists a rational map from a projective space to
X with dense image.

1.2 Cartier divisors

In this section we introduce the Cartier divisors; the formal definition gives
rise to objects that seem quite different from the divisors that are concretely
used. In order to become familiar with divisors, let us first see a concrete
example and then, just after the formal definition, we will see how the first
corresponds to the latter.

Example 1.22. Let us consider the function

F ∶ P2 ⇢ C

(x0 ∶ x1 ∶ x2) ↦ x0x2
1

x2(x0x2 − x2
1)

The function F is well defined wherever it is defined (since it is the ratio of
two homogeneous polynomials of the same degree). This function naturally
defines four curves:
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l0 ∶= {x0 = 0}
l1 ∶= {x1 = 0}
l2 ∶= {x2 = 0}
Q ∶= {x0x2 − x2

1}.

We say that the divisor of F is

(F ) = l0 + 2l1 − l2 −Q.

Formally, we are describing the zeroes and the poles of F by considering the
zero locus of F and 1/F with suitable coefficients:

• l0 has coefficient 1, since F vanishes with multiplicity 1 along it;

• l1 has coefficient 2, since F vanishes with multiplicity 2 along it;

• both l2 and Q have coefficient −1, since F has simple poles along both
of them.

Definition 1.23. Let X be a quasi-projective variety; a (Cartier) divisor
over X is a collection {(Ui, fi)} where:

• {Ui} is an (affine) open cover of X;

• fi ∶ Ui ⇢ C are such that ∀i, j

fi/fj ∶ Ui ∩Uj → C

is regular.

The second condition implies that fi/fj(p) ≠ 0 ∀p ∈ Ui ∩ Uj, otherwise
fj/fi would not be regular.

We say that two divisors A = {(Ui, fi)} and B = {(Vi, gi)} are equivalent
if and only if A∪B is still a divisor.

Let us see now by an example how these objects can be represented by a
formal sum of subvarieties with suitable integer coefficients.
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Example 1.24. Let Ui ∶= {xi ≠ 0} ⊂ P2 and let us define the following
functions:

f0 ∶ U0 → C f0 (
x1

x0

,
x2

x0

) = x2

x0

− (x1

x0

)
2

;

f1 ∶ U1 → C f1 (
x0

x1

,
x2

x1

) = x0

x1

x2

x1

− 1;

f2 ∶ U2 → C f2 (
x0

x2

,
x1

x2

) = x0

x2

− (x1

x2

)
2

.

It’s immediate to see that

fi
fj

=
x2
j

x2
i

∶ Ui ∩Uj → C

are regular functions, so {(Ui, fi)} is a divisor. The name we give to this divi-
sor is Q = {x0x2−x2

1 = 0}; indeed, it is immediate to see that, if q = x0x2 − x2
1,

we have
f0 =

q

x2
0

, f1 =
q

x2
1

, f2 =
q

x2
2

,

thus the curve {x0x2 − x2
1 = 0} coincides locally with the zero locus of the

functions fi.

We will never give a Cartier divisor via a collection {(Ui, fi)}, but al-
ways describing its zero locus and the set of its poles with a formal sum of
subvarieties with integer coefficients: indeed, we will write

D = ∑
i∈I
aiDi,

where ai ∈ Z, every Di is an irreducible variety that can locally be expressed
as zero locus of a unique regular function2 and

• D has zeroes of order ai along Di if ai > 0;

• D has poles of order −ai along Di if ai < 0.

The divisor D is said to be effective if ai ≥ 0 ∀i.
2Be aware that not all subvarieties are Cartier divisor, but only the subvarieties which

can be locally defined as zero locus of a single rational function.
The simplest example is the origin in A2: this is not a Cartier divisor, since we cannot
describe it using a single function, since its ideal is not principal but needs at least two
generators. The following exercise give a different and more interesting example.
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Exercise 1.25. Consider the following affine varieties in C3:

C ∶= Z({y2 − xz}), L ∶= Z({x, y});

obviously L ⊂ C. Show that L is not a Cartier divisor in C, but L ∖ {O} is
a Cartier divisor in C ∖ {O}, where O is the origin of A3.

The set of Cartier divisors over a quasi-projective variety X is an abelian
group and will be denoted by Div(X).

Example 1.26. When X is a smooth variety of dimension 1

Div(X) = {∑aipi ∶ pi ∈X} .

In this particular case if D = ∑aipi ∈ Div(X) we define the degree of D to
be the integer

deg(D) = ∑ai.

Definition 1.27. If D ∈ Div(X) is such that D = (F ) for some F ∶ X ⇢ C,
we say that D is a principal divisor.

Remark 1.28. The divisor defined in Example 1.22 is principal, whereas the
divisor Q defined in Example 1.24 is not principal.

Exercise 1.29. Show that Q is not principal. [Hint: ”restrict Q to a line”,
and use the well known fact that principal divisors on smooth varieties of
dimension 1 have degree 0.]

Definition 1.30. Let X be a quasi-projective variety and let D1,D2 ∈ Div(X).
We say that D1 and D2 are equivalent (denoted by D1 ≡ D2) if and only if
D1 −D2 is a principal divisor.

The Picard group of X is

Pic(X) ∶= Div(X)/ ≡ .

Let us see some example of Picard groups.

Example 1.31. Let X = Pn. Let p0, p1 ∈ C[x0, . . . , xn] two homogeneous
polynomials of the same degree, then

p0

p1

∶ Pn → C

is a rational function. Let Di = {pi = 0}, then

D0 −D1 = (p0

p1

) .
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Hence D0 ≡ D1. It can be proved that Pic(Pn) ≅ Z, and the isomorphism is
given by

Pic(Pn) → Z
[∑aiDi] ↦ ∑ai degDi

,

where degDi is the degree of the polynomial that defines the curve Di.

Example 1.32. Let X = P1 × P1. First, let us prove that X is a projective
variety. Let us define the function

ϕ ∶ P1 × P1 ↪ P3

((t0 ∶ t1), (s0 ∶ s1)) ↦ (t0s0 ∶ t0s1 ∶ t1s0 ∶ t1s1)

It’s easy to see that this function is well defined; moreover, denoting with
(x0 ∶ x1 ∶ x2 ∶ x3) the homogeneous coordinates of P3, ϕ gives an isomorphism
between P1 × P1 and Q = {x0x3 − x1x2 = 0} ⊂ P3, hence P1 × P1 is a projective
variety.

It can be proved that Pic(P1 × P1) ≅ Z × Z. If a, b ≥ 0, the isomorphism
maps (a, b) ∈ Z × Z to the class of effective divisors given by bihomogeneous
polynomials with bidegree (a, b) in C[t0, t1][s0, s1], that is polynomials of the
form

p = ∑λαβt
a−α
0 tα1 s

b−β
0 sβ1 .

Exercise 1.33. Prove that Pk1 × ⋅ ⋅ ⋅ × Pkr is a projective variety.

Example 1.34. Let T = C2/Λ be a complex torus, where Λ is a lattice, that
is the subgroup (respect to the sum) generated by two complex numbers which
are linearly independent over R. Being the quotient of a group by a subgroup,
T is a group; we know that T can be embedded in P2 as algebraic variety. It
is possible to prove that Pic(T ) ≅ T ×Z and the isomorphism is given by

Pic(T ) → T ×Z
[∑aipi] ↦ (∑pi,∑ai)

.

1.3 Sheaves

Definition 1.35. Let X be a topological space, a presheaf of rings (groups,
abelian groups, modules,. . . ) F on X is a collection of rings (respectively,
of groups, abelian groups, modules, . . . ) F(U) = Γ(U,F) = H0(U,F), one
for every open set U , and a collection of rings (respectively groups, abelian
groups, modules, . . . ) morphisms ρUV ∶ F(U) → F(V ) whenever V ⊆ U , called
restriction maps, such that

• F(∅) = {0};
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• ρUU = IdF(U)∀U ;

• ∀ W ⊂ V ⊂ U ρUW = ρVW ○ ρUV .

An element s ∈ F(U) is called section of F over U . An element of H0(F) ∶=
H0(X,F) is called a global section of F .

Example 1.36. Fix a ring G and define the presheaf GX as

GX(U) ∶= {f ∶ U → G} ρUV (f) = f ∣V .

Example 1.37. The following are presheaves:

Continuous C-valued functions on a topological space C0
X

Smooth R-valued functions on a real manifold C∞X
Holomorphic C-valued functions on a complex manifold hOX
Regular C-valued functions on a variety OX
Z-valued constant functions on a topological space Z
Q-valued constant functions on a topological space Q
R-valued constant functions on a topological space R
C-valued constant functions on a topological space C

in every case, with the only exception of the fourth one, we use the standard
topology. For OX we use Zariski topology.

Definition 1.38. A presheaf F over X is said to be a sheaf if it satisfies the
so called sheaf axiom:

∀U ⊂ X open set, ∀{Ui} open covering of U , suppose that are given

∀i si ∈ F(Ui) such that ∀i, j ρUi

Ui∩Uj
si = ρ

Uj

Ui∩Uj
sj. Then there exists a unique

s ∈ F(U) such that ρUUi
s = si ∀i.

Basically we are asking that whenever two sections s1 ∈ F(U) and s2 ∈
F(V ) agree on the common domain, there exists a unique section s ∈ F(U ∪
V ) whose restrictions to U and V are exactly s1 and s2.

Remark 1.39. All presheaves in 1.37 but Z, Q, R, C are sheaves, while
constant presheaves are not (take into account - for example - two open dis-
joint sets). We will consider instead the locally constant functions; in this
way we get the locally constant sheaves Z, Q, R, C.

Example 1.40. The following are sheaves of abelian groups on a smooth
variety:

O∗
X = {f ∶X → C∗ regular}

hO∗
X = {f ∶X → C∗ holomorphic},

where the group action is given by the multiplication on C∗.
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Definition 1.41. Let X be a variety and D ∈ Div(X), D = ∑aiDi. For
every Zariski open set U let us define the complex vector space

Γ(U,OX(D)) ∶= {f ∶ U ⇢ C ∶ (f) +D∣U ≥ 0} ∪ {0};

we will also denote it by H0(U,OX(D)). The set H0(X,OX(D)) will be
simply denoted by H0(OX(D)).

Using the same notation of the previous definition, if f ∈ H0(OX(D)),
then

• if ai < 0, f vanishes along Di with order at least −ai;

• if ai > 0, f admits poles over Di of order up to ai.

f is a rational function with a principal divisor (f). Anyway, when consid-
ering it as a section of OX(D) we will usually denote it by the letter s (to
recall that we are not considering it as a function) and attributes to it the
effective divisor (s) ∶= (f) +D.

Using this notation, it is possible to prove that

(s1) = (s2) ⇔ ∃λ ∈ C∗ ∶ s1 = λs2. (1.2)

The dimension of H0(OX(D)) will be denoted by

h0(OX(D)) ∶= dimH0(OX(D)).

Proposition 1.42. If D1,D2 ∈ Div(X) are linearly equivalent, then H0(OX(D1)) ≅
H0(OX(D2)) via an isomorphism that preserves the divisors. In other words,
if s1 ∈H0(OX(D1)) is mapped by this isomorphism to s2 ∈H0(OX(D2)), then
(s1) = (s2).

Proof. D1 ≡ D2 ⇔ D1 −D2 = (F ) with F ∶ X ⇢ C. If f ∈ H0(U,OX(D1)),
then

(fF ∣U) = (f) + (F ) = (f) +D1 −D2 ≥ −D2,

hence fF ∣U ∈H0(U,OX(D2)). The sheaves isomorphism is given by

H0(U,OX(D1)) → H0(U,OX(D2))
f ↦ fF ∣U

g/F ∣U ↤ g

Let us prove the second part of the statement: the divisor of f as a section
of H0(OX(D1)) is (f) +D1, while the divisor of its image is (fF ) +D2 =
(f) + (F ) +D2 = (f) +D1 −D2 +D2 = (f) +D1.
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Example 1.43. Let X = P2, L0 = {x0 = 0}, L1 = {x1 = 0}; by Example
1.31, L0 ≡ L1, hence, by Proposition 1.42, H0(OX(L1)) ≅ H0(OX(L2)); let
f ∈H0(O(L0)), then f = L/x0, where L ∈ C[x0, x1, x2]1.

It is immediate to see that the isomorphism defined in Proposition 1.42
maps f into g = L/x1; the divisor we get is (f) + L0 equal to (g) + L1 equal
to (s) = {L = 0}.

By (1.2) the set

∣D∣ ∶= {(s) ∶ s ∈H0(OX(D)), s ≠ 0}

is a subset of Div(X) formed by effective divisors having a natural structure
of projective space, indeed ∣D∣ ≅ Ph0(OX(D))−1. The set ∣D∣ is called complete
linear system associated with D and gives exactly those effective divisors
which are linearly equivalent to D. A linear system is a linear subspace of a
complete linear system.

Exercise 1.44. All rational functions on Pn can be obtained by taking the
quotient of two homogeneous polynomial of the same degree (we are not asking
you to prove it, take it as true).

Let D be a (non necessarily effective) divisor on Pn and let d ∈ Z its degree
(i.e. its class in Pic(Pn)). Give an explicit isomorphism among H0(O(D))
and the vector space of the homogeneous polynomials of degree d.

Exercise 1.45. State and solve an exercise similar to the previous one, but
considering P1×P1 instead of Pn. Here you will need that every rational func-
tion on P1 × P1 can be obtained by taking the quotient of two bihomogeneous
polynomials of the same bidegree.

1.4 Pull-back and push-forward

Definition 1.46. Let X and S be two varieties and f ∶X → S a morphism;
let D ∈ Div(S), D = ∑aiDi. We define the pull-back of D f∗D ∈ Div(X) as

f∗D ∶= ∑aif
∗Di,

where, if Di is locally defined by fi, f∗Di is locally defined by fi ○ f .

Example 1.47. Let

f ∶ P1 → P1

(x0 ∶ x1) ↦ (x2
0 ∶ x2

1)

and let us consider P1 ∶= (1 ∶ 0), P2 ∶= (1 ∶ 1), P3 ∶= (1 ∶ −1). Then

f∗(P2) = P2 + P3, f∗(P1) = 2P1.
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Remark 1.48. Using the same notation of previous definition, the following
facts hold:

1. D effective ⇒ f∗D is effective;

2. D1 ≡D2 ⇒D1−D2 = (g) for some g ∶ S ⇢ C⇒ f∗D1−f∗D2 = (g○f) ⇒
f∗D1 ≡ f∗D2;

3. f∗ ∶ Div(S) → Div(X) is a homomorphism of abelian groups; since, by
2., the subgroup of principal divisors of S is mapped into the subgroup
of principal divisors of X, f∗ induces a homomorphism

f∗ ∶ Pic(S) → Pic(X)
[D] ↦ [f∗D] .

The definition of pull-back is natural. The next definition, the push-
forward, needs some extra assumptions.

Definition 1.49. Let X be a smooth surface (i.e. a complex variety of
dimension 2). Let f ∶ X → S be a generically finite map of degree d, that is
∃U ⊂ S open set such that ∀p ∈ U #f−1(p) = d.

If D = ∑aiDi ∈ Div(X), then the push-forward of D is f∗D ∶= ∑aif∗Di ∈
Div(S), where

• if f(Di) is constant, then f∗Di ∶= 0 ∈ Div(S);

• otherwise f(Di) is a Cartier divisor in S and Di → f(Di) is generically
finite of degree r ≤ d. In this case we define f∗Di ∶= rf(Di).

Remark 1.50. Using the notation of previous definition, the following facts
hold:

1. D effective ⇒ f∗D is effective;

2. D1 ≡D2 ⇒ f∗D1 ≡ f∗D2;

3. f∗ ∶ Div(X) → Div(S) is a homomorphism of abelian groups, hence, as
in the case of pull-back, f∗ induces a homomorphism f∗ ∶ Pic(X) → Pic(S);

4. f∗f∗D ≡ dD.

Example 1.51. Let

g ∶ P2 → P2

(x0 ∶ x1 ∶ x2) ↦ (x2
0 ∶ x2

1 ∶ x2
2)
.
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This map is generally finite of degree 4.
Let us consider l0 ∶= {x0 = 0} ∈ Div(P2), then it is easy to see that

g∗l0 = 2l0. Moreover, g(l0) = l0 and g∣l0 ∶ l0 → l0 has degree 2, hence g∗l0 = 2l0.
Eventually, it is immediate to see that g∗g∗l0 = 4l0.

Let us now consider l = {x0 + x1 + x2 = 0} ∈ Div(P2); first of all, we
observe that l ≡ l0, hence, by Remark 1.50, we expect g∗l ≡ g∗l0 = 2l0. Indeed
g(l) = {x2

0 + x2
1 + x2

2 − 2x0x1 − 2x0x2 − 2x1x2 = 0} and that g∣l ∶ l → g(l) has
degree 1. Hence g∗l = g(l) ≡ 2l0.

1.5 Intersection multiplicity

From now on by surface we will always mean a smooth variety of dimension
2 and by curve in it an irreducible divisor in it.

Let S be a surface and C,C ′ curves in it with C ≠ C ′. ∀x ∈ S we define
the set

Ox ∶= {germ in x of regular functions f ∶ U → C, x ∈ U};

this set is called local ring of S at x.

Definition 1.52. Let x ∈ C ∩C ′ and f, g ∈ Ox germs of regular functions at
x that define C and C ′ respectively. We define the intersection multiplicity
of C and C ′ at x as

mx(C,C ′) ∶= dimCOx/(f, g)

Remark 1.53. By Hilbert Nullstellensatz mx(C,C ′) < ∞.

Example 1.54. Let S = C2, C = {x = 0}, C ′ = {y = 0}, p = 0. Then the map

Op/(x, y) → C
[f] ↦ f(0)

is an isomorphism. Therefore mp(C,C ′) = 1.

Following propositions are given without proof.

Remark 1.55. Under the hypotheses of Definition 1.52, ∀x ∈ C∩C ′, mx(C,C ′) ≥
1.

The following proposition, which we do not have time to prove, gives a
clear interpretation of the intersection multiplicity.
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Proposition 1.56. Under the hypotheses of Definition 1.52, mx(C,C ′) =
1⇔ both C and C ′ are smooth in x and intersect transversely.

Exercise 1.57. Using the same notation of Example 1.54, prove that

mp({x = 0},{x = yr}) = r;
mp({x = 0},{x2 = y3}) = 3;

mp({y = 0},{x2 = y3}) = 2.

Definition 1.58. Under the hypotheses of Definition 1.52 we define the in-
tersection number of C and C ′ as

C ⋅C ′ ∶= ∑
x∈C∩C′

mx(C,C ′). (1.3)

By Hilbert Nullstellensatz the sum in (1.3) is finite, hence C ⋅C ′ < ∞.

1.6 Morphisms of sheaves

Definition 1.59. Let X be a variety and let F ,G be two sheaves of rings
(groups,. . . ). A function

f ∶ F → G

is said to be a morphism of sheaves if ∀U ⊂X open set fU ∶ F(U) → G(U) is
a ring (group,. . . ) homomorphism, and ∀U,V ⊂X open sets such that V ⊂ U ,
the diagram

F(U) fUÐÐÐ→ G(U)

ρUV

×××Ö
×××Ö
ρUV

F(V ) ÐÐÐ→
fV

G(V )

commutes.

Example 1.60. Let us see some fundamental examples of morphisms of
sheaves.

1. Let D1,D2 ∈ Div(X) such that D1 ≡ D2, then D1 −D2 = (F ) for some
F ∶X ⇢ C; then ∀U open set we define the morphism

Γ(U,OX(D1)) → Γ(U,OX(D2))
f ↦ fF ∣U

;

these maps give a morphism of sheaves among OX(D1) and OX(D2).
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2. Let Y be a variety and X ⊂ Y a subvariety; the restriction

OY → OX

is a morphism; actually, we cannot give a morphism among two sheaves
defined on different varieties, but we can see OX as a sheaf on Y defin-
ing ∀U ⊂ Y Zariski open set Γ(U,OX) ∶= Γ(U ∩X,OX).

3. Let C,D ∈ Div(X), with C irreducible, D = ∑aiDi with C ≠ Di ∀i.

Under these hypotheses, the divisor
D∣C ∈ Div(C) is well defined: if locally
Di = (fi), then Di∣C = (fi∣C).
The restriction

OX(D) → OC(D∣C)

is a morphism of sheaves if we con-
sider the latter as sheaf on X as in
the previous case.

4. C,D ∈ Div(X), D ≥ 0. Let U ⊂ X be an open set; if f ∈ Γ(U,OX(C)),
then (f)+C ≥ 0, thus (f)+C+D ≥D ≥ 0. This means that f ∈ Γ(U,OX(C +D)).
The function

OX(C) → OX(C +D)
f ↦ f

is well defined and is a morphism.

Definition 1.61. Let F ,G be two sheaves on X and let f ∶ F → G be a
morphism of sheaves. ∀U ⊂X open set we define

(kerf)(U) ∶= {u ∈ F(U) ∶ fU(u) = 0} ⊂ F(U).

Exercise 1.62. ker f is a sheaf.

Definition 1.63. A morphism of sheaves f ∶ F → G is said to be injective if
ker f = 0⇔∀U ker fU = 0.

Remark 1.64. The morphisms defined in Examples 1.60.1 and 1.60.4 are
injective.

Definition 1.65. Let F ,G be two sheaves on X and f ∶ F → G a morphism
of sheaves; f is said to be surjective if ∀p ∈ X ∃U ⊂ X open set p ∈ U
such that ∀ξ ∈ G(U) ∃V ⊂ U open set with p ∈ V and ∃η ∈ F(V ) such that
fV (η) = ρUV (ξ).
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Remark 1.66. The morphisms defined in Examples 1.60.1, 1.60.2 and 1.60.3
are surjective.

Exercise 1.67. The function

exp ∶ hOC → hO∗
C

f ↦ e2πif

is a morphism of sheaves of abelian group (where the operation on hOC is
the sum, while the operation on hO∗

C is the multiplication). This morphism
is surjective, but it is not surjective on C∗ since the function z (the identity)
gives a section of Γ(C∗,hOC∗), which is not of the form e2πif : indeed most
courses in complex analysis show that log z cannot be defined on the whole
C∗.

Definition 1.68. An injective and surjective morphism of sheaves is called
isomorphism of sheaves.

By the previous remarks, D1 ≡D2 ⇒OX(D1) ≅ OX(D2).

Definition 1.69. Let A, B, C be three sheaves on X; we say that

0→ A fÐ→ B gÐ→ C → 0

is a short exact sequence of sheaves if

• g is a surjective morphism;

• f is an injective morphism;

• f(A) ⊂ ker(g) and f ∶ A → ker(g) is surjective.

Definition 1.70. A sequence of morphisms of sheaves

. . .Ð→ Ai−1
fiÐ→ Ai

fi+1Ð→ Ai+1 Ð→ . . .

is said to be exact if fi surjects to kerfi+1 ∀i.

Exercise 1.71. Let S be a variety; ∀C irreducible divisor in S and ∀D ∈
Div(S) there are exact sequences.

0→ OS(−C) Ð→ OS Ð→ OC → 0

and
0→ OS(D −C) Ð→ OS(D) Ð→ OC(D) → 0

21



1.7 Čech cohomology

Definition 1.72. Let F be a sheaf on X; ∀U ⊂X open set, ∀q ∈ N ∃ Ȟq(F)
q-th Čech cohomology group such that:

1. Ȟ0(F) = Γ(X,F);

2. ∀0 → A → B → C → 0 short exact sequence of sheaves ∃ a long exact
sequence of cohomology groups

0→ Ȟ0(A) → Ȟ0(B) → Ȟ0(C) → Ȟ1(A) → Ȟ1(B) → Ȟ1(C) → . . .
(1.4)

3. If F is a coherent sheaf of OX−modules and X is projective, then all
Ȟq(F) are C-vector spaces of finite dimension and each map in (1.4)
is linear;

4. Under the hypotheses of previous point, if dimX = n, then Ȟq(F) = 0
∀q > n (if X is not smooth, then there exists a Zariski open set U ⊂ X
smooth; in this case dimX ∶= dimU).

Definition 1.73. Under the hypotheses of the last point of Definition 1.72,
the Euler-Poincaré characteristic of F is

χ(F) ∶= ∑(−1)qhq(F),

where hq(F) ∶= dim Ȟq(F).

Exercise 1.74. If 0 → A → B → C → 0 is a short exact sequence of
OX-modules, then χ(A) + χ(C) = χ(B).

1.8 The Canonical sheaf

Definition 1.75. Let X be a variety of dimension n; by Ωq
X we denote the

sheaf of regular q-form on X, that is

Ωq
X(U) ∶= {ω ∶ locally ω = ∑

1≤i1≤⋅⋅⋅≤iq≤n
fi1...iqdxi1 ∧ ⋅ ⋅ ⋅ ∧ dxiq ,

where xi are regular local coordinates and fi1...iq are regular}

Ωn
X is called canonical sheaf.

Let ω ∈ Ωn
X(U), then locally ω = fdx1∧⋅ ⋅ ⋅∧dxn is defined through a single

rational function f . Hence the locus of zeroes and poles of ω, locally defined
as the locus of zeroes and poles of f , is a Cartier divisor.
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Definition 1.76. Let ω be a rational n−form on X so regular on a Zariski
open subset of X, then (ω) is defined as the divisor of its zeroes and poles.
A divisor of this kind is said to be canonical.

Remark 1.77. Let ω be a rational n−form on X and g a rational function
on X, then gω is another rational n−form and its Cartier divisor is (gω) =
(g) + (ω) ⇒ (ω) ≡ (gω). In other words every divisor linearly equivalent to a
canonical divisor is still a canonical divisor.

Vice versa, suppose that ω′ is another rational n−form, write locally ω =
fdx1 ∧ ⋅ ⋅ ⋅ ∧ dxn and ω′ = f ′dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn, then f ′/f does not depend on the
coordinates and therefore defines a rational function on X. 3 This implies
that (ω) ≡ (ω′), that is the canonical divisors form an equivalence class for
the relation ”linear equivalence”. This equivalence class is then an element
of Pic(X), usually denoted by K (sometimes we will denote - with a slight
abuse of notation - by K any canonical divisor in Div(X)).

Example 1.78. Let X = P1 and consider the usual open sets

U0 ∶= {x0 ≠ 0} with local coordinate x = x1/x0

U1 ∶= {x1 ≠ 0} with local coordinate y = x0/x1.

It is immediate to see that in U0 ∩U1 y = 1/x.
Let us consider ω ∈ Ω1

X(U0) defined as ω = dx. As a rational 1−form on
X it has no zeroes and a double pole in (0 ∶ 1) since in the coordinates of U1:

ω = d(1

y
) = −dy

y2
.

Hence (ω) = −2P . As we saw in a previous section, Pic(P1) ≅ Z, hence
KP1 = −2.

Exercise 1.79. Prove that:

1. KPn = −(n + 1) < 0;

2. KP1×P1 = (−2,−2).

Remark 1.80. By Exercise 1.79 and Exercise 1.44, it is immediate to see
that H0(KPn) = {0}, since there are no homogeneous polynomials of degree
< 0.

3By a slight abuse of notation we could write that ω
ω′

is a rational function.
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Exercise 1.81. Let K = (ω) ∈ Div(X) with ω rational n−form. Prove that

O(K) Ð→ Ωn
X

f z→ fω

is an isomorphism of sheaves.

We do not prove the next two statements.

Theorem 1.82. Let C be a smooth compact curve (that is a Riemann sur-
face) ⇒ h0(Ω1

C) = g, where g is the genus of C.

Theorem 1.83 (Serre duality). Let X be a smooth variety of dimension n,
then ∀q,∀D ∈ Div(X)

Hq(D) ≅Hn−q(K −D)∗.

Remark 1.84. Let C be a smooth compact curve. We have seen that

hq(OC) = 0 if q ≠ 0,1;

h0(OC) = 1;

h1(OC) = h0(KC) = g;

hence χ(OC) = 1 − g.

Definition 1.85. Let X be a variety, p1, . . . , pr ∈ X. A skyscraper sheaf
supported on {p1, . . . , pr} is a sheaf F obtained by associating to each pi a
vector space Vi and then by taking ∀U ⊂X open set

F(U) = ⊕
i∶pi∈U

Vi

with the natural restrictions.

By the definition of Čech cohomology, it is easy to prove the following

Proposition 1.86. Using the same notation of the previous definition, Ȟ0(F) ≅
⊕Vi and ∀q ≠ 0 hq(F) = 0.

Example 1.87. Let X be a variety p ∈ X, then Op ≅ C, seen as a sheaf on
X (as we did in Example 1.60.2), is a skyscraper sheaf supported on p.

More generally, ∀Y ⊂ X, if F is a sheaf on Y , then Hq(F) does not
change if F is considered as a sheaf defined on X.
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1.9 Riemann-Roch theorem

Let C be a smooth compact curve; let us define for all points p ∈ C the
evaluation map at p to be

eval ∶ OC Ð→ Op
f z→ f(p) ;

it is immediate to see that

ker(eval) = {f regular ∶ f(p) = 0}
= {f regular ∶ (f) − p ≥ 0} = OC(−p),

hence
0Ð→ OC(−p) Ð→ OC

evalÐ→ Op Ð→ 0

is an exact sequence.
Analogously, ∀D ∈ Div(C) D = ∑aipi such that ∀i p ≠ pi, the sequence

0Ð→ OC(D − p) Ð→ OC(D) evalÐ→ Op Ð→ 0 (1.5)

is exact. Since D ≡ D′ ⇒OC(D) ≅ OC(D′), and since one can always find a
divisor D′ linearly equivalent to D which does not involve a chosen point p,
we can drop the hypothesis for which p ≠ pi ∀i (1.5).

Corollary 1.88. ∀p ∈ C, ∀D ∈ Div(C) χ(OC(D)) = χ(OC(D − p)) + 1.

Proof. The sequence 0 → OC(D − p) → OC(D) → Op → 0 is exact. Hence
χ(OC(D)) = χ(OC(D − p)) + χ(Op) = χ(OC(D − p)) + 1.

Corollary 1.89. Let C be a smooth compact curve of genus g, then ∀D ∈
Div(C)

χ(OC(D)) = deg(D) − g + 1.

Proof. By Corollary 1.88 if the statement is true for a divisor D, then, for
every p, the statement is true both for D − p and D + p. It is then enough to
prove it for a divisor, and indeed it is true for D = 0 by Remark 1.84.

This corollary, known as Riemann-Roch theorem, is usually written in a
different way; indeed, under our hypotheses

χ(OC(D)) = h0(D) − h1(D) = h0(D) − h0(K −D),

where the last equality holds by Serre duality. Hence

h0(D) − h0(K −D) = deg(D) − g + 1.

However, we prefer the statement of Corollary 1.89 since it does generalize
to higher dimensional varieties.
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1.10 The intersection form

Let S be a smooth projective surface, C,C ′ ∈ Div(S) irreducible and C ≠ C ′;
in a previous section, ∀x ∈ C ∩C ′ we have considered the ring

OC∩C′,x ∶= Ox/(s, s′)

where s and s′ are the local equations of C and C ′ respectively. More pre-
cisely, we defined the intersection multiplicity of C and C ′ at x as the dimen-
sion of it as a complex vector space. We define OC∩C′ to be the skyscraper
sheaf supported on C ∩C ′ that associates to each x ∈ C ∩C ′ the ring OC∩C′,x.

Lemma 1.90. Let S be a smooth surface, C,C ′ ∈ Div(S) irreducible and
C ≠ C ′, then there exists an exact sequence

0Ð→ OS(−C −C ′) αÐ→ OS(−C) ⊕OS(−C ′) βÐ→ OS
γÐ→ OC∩C′ Ð→ 0. (1.6)

Proof. Let us define α, β and γ.
Map γ ∶ OS → OC∩C′ simply maps f ∈ OS(U) in its classes in each

Ox/(s, s′). This map is trivially surjective.
By definition f ∈ kerγ ⇔ ∀x ∈ U [f]Ox ∈ (s, s′), that is if and only if

locally f = as + bs′. Hence, since we want (1.6) to be exact, we define

β(a, b) = as + bs′,

so that β surjects on kerγ. Finally, we define

α(h) = (s′h,−sh).

It is immediate to see that α is injective and that β ○α = 0. The surjectivity
of α onto kerβ follows from standard results of commutative algebra using
that C and C ′ are irreducible and distinct (this means that s and s′ are
relatively prime).

Now that we have a long exact sequence, we can split it into short exact
sequences, and compute χ of the members of such sequences. From (1.6) we
get the exact sequences

0Ð→ OS(−C −C ′) Ð→ OS(−C) ⊕OS(−C ′) Ð→ kerγ Ð→ 0

0Ð→ kerγ Ð→OS Ð→ OC∩C′ Ð→ 0.
(1.7)

We recall that

χ(OC∩C′) = h0(OC∩C′) = ∑mx(C,C ′) = C ⋅C ′.
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From (1.7) and Exercixe 1.74 follows that

C ⋅C ′ = χ(OS) + χ(OS(−C −C ′)) − χ(OS(−C)) − χ(OS(−C ′)). (1.8)

Note that (1.8) gives an expression of C ⋅ C ′ which only depends on the
equivalence class of C and C ′ modulo linear equivalence. In particular C ⋅C ′

does not change if we substitute C by a different curve linearly equivalent
to it, since the right member of (1.8) depends not on C,C ′ ∈ Div(S) but on
their classes in Pic(S). This suggests us to use (1.8) to extend the definition
of intersection to a form on Pic(S).

Definition 1.91. ∀D1,D2 ∈ Pic(S) we define

D1 ⋅D2 ∶= χ(OS) + χ(OS(−D1 −D2)) − χ(OS(−D1)) − χ(OS(−D2)). (1.9)

Theorem 1.92. (1.9) defines a symmetric bilinear form on the abelian group
Pic(S) such that, if C1 ∈ ∣D1∣, C2 ∈ ∣D2∣ are irreducible and C1 ≠ C2, then
D1 ⋅D2 = C1 ⋅C2 = ∑x∈C1∩C2

mx(C1,C2).

We have already remarked that the last part of the theorem holds, and
by definition, it is immediate to see that D1 ⋅D2 = D2 ⋅D1. We need only
to prove bilinearity. Since the function is defined on an abelian group, by
bilinearity we mean

(D +D′) ⋅C = (D ⋅C) + (D′ ⋅C) and D ⋅ (C +C ′) =D ⋅C +D ⋅C ′.

Lemma 1.93. Let C be a smooth curve on S, D ∈ Div(S), then

C ⋅D = degOC(D) = degD∣C .

Proof. The sequences

0Ð→ OS(−C) Ð→ OS Ð→ OC Ð→ 0

0Ð→ OS(−C −D) Ð→ OS(−D) Ð→ OC(−D) Ð→ 0

are exact. Hence using Riemann-Roch on C

C ⋅D = χ(OS) − χ(OS(−C)) − χ(OS(−D)) + χ(OS(−C −D))
= χ(OC) − χ(OC(−D))
= 1 − g − (1 − g + deg(OC(−D)))
= deg(OC(D)).
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∀D1,D2,D3 ∈ Pic(S) let us define the function

s(D1,D2,D3) ∶= (D1 ⋅ (D2 +D3)) − (D1 ⋅D2) − (D1 ⋅D3).

Exercise 1.94. s(D1,D2,D3) = s(Dσ(1),Dσ(2),Dσ(3)) ∀σ ∈ S3.

By Lemma 1.93, if ∃ C ∈ ∣D1∣ smooth, then

s(D1,D2,D3) = degOC(D2 +D3) − degOC(D2) − degOC(D3) = 0,

since, on a curve deg(A + B) = degA + degB. Hence, by Exercise 1.94, if
∃ C ∈ ∣D3∣ smooth, s(D1,D2,D3) = 0.

We can now prove Theorem 1.92.

Proof of Theorem 1.92. Let A,B ∈ Div(S) be smooth and irreducible and
D ∈ Div(S), then, since B is smooth,

0 = s(D,A −B,B) = (D ⋅A) − (D ⋅ (A −B)) − (D ⋅B),

thus D ⋅ (A−B) = (D ⋅A)−(D ⋅B) = degD∣A−degD∣B, which in turn implies
that the map D → D ⋅ (A −B) is linear (and therefore by simmetry also the
map D →D ⋅ (B −A)).

The theorem follows then since every divisor is linearly equivalent to a
difference of smooth effective divisors, by the classical Theorem of Bertini
and Serre which we recall immediately after this proof.

Definition 1.95. Let X be a variety; D ∈ Div(X) is said to be very ample if
∃ an embedding of X in Pn such that D is the Cartier divisor locally defined by
the restriction to X of (x0) (equivalently we will say that ”D is a hyperplane
section” or that D =X ∩ {x0 = 0}).

Exercise 1.96. If D is very ample, then nD is very ample ∀n ∈ N with n ≥ 1.

The two following fundamental theorems will be stated without proof.

Theorem 1.97 (Theorem of Bertini). If X is smooth and D is very ample,
then ∃C ∈ ∣D∣ smooth and irreducible.

The geometric idea lying under the theorem of Bertini is that if we cut
X with a generic hyperplane, we get a smooth subvariety of X.

Theorem 1.98 (Theorem of Serre). Let X be a variety, A,D ∈ Div(X) with
A very ample and D effective; then ∃n0 ∈ N such that ∀n ≥ n0 D+nA is very
ample.
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Let S be a projective variety, ∀C ∈ Div(S) we are interested in computing
the value C2 = C ⋅C. Let us see some examples.

Example 1.99 (Fibered surfaces). Let S be a projective, smooth and irre-
ducible surface and let π ∶ S → C be a surjective morphism, with C smooth
irreducible curve. ∀p ∈ C p ∈ Div(C), hence we shall consider the pull-back
π∗p = Fp ∈ Div(S), where by Fp we denote the fiber over p.

First, let us remark that there exists ∑aipi ∈ Div(C) such that p ≡ ∑aipi
and p ≠ pi ∀i. Since, by Remark 1.48, the pull-back preserve linear equiva-
lence,

Fp = π∗p ≡ π∗ (∑aipi) = ∑aiπ
∗pi = ∑aiFpi ,

thus
F 2
p = Fp ⋅ (∑aiFpi) = ∑ai(Fp ⋅ Fpi)

(#)= ∑ai0 = 0,

where equality (#) holds because Fp ∩ Fpi = ∅ ∀i.
Example 1.100. Let S = P2, C1 = {fd1 = 0}, C2 = {fd2 = 0}, where fdi =
C[x0, x1, x2]di (possibly equal). Then C1 ≡ d1l0 and C2 ≡ d2l1; hence

C1 ⋅C2 = (d1l0) ⋅ (d2l1) = d1d2(l0 ⋅ l1) = d1d2,

where last inequality holds because of Proposition 1.56, since l0 ⋔ l1 = {(0 ∶ 0 ∶ 1)}.

Exercise 1.101. Let C1,C2 ∈ Pic(P1 × P1) ≅ Z × Z, with C1 = (a1, b1) and
C2 = (a2, b2); compute C1 ⋅C2.

(To check if the solution is right, (2,7)(3,6) = 33)

Theorem 1.102 (Riemann-Roch theorem for surfaces). Let S be a projective
surface, D ∈ Div(S), then

χ(OS(D)) = χ(OS) +
1

2
(D2 −DK). (1.10)

Proof. By (1.9)

(−D) ⋅ (D −K) = χ(OS) + χ(OS(K)) − χ(OS(D)) − χ(OS(K −D));

by Serre duality hq(OS(D)) = h2−q(OS(K −D)), hence, since 2 − q is even
whenever q is, we conclude that χ(OS(D)) = χ(OS(K −D)). Therefore

(−D) ⋅ (D −K) = 2(χ(OS) − χ(OS(D)),

hence

χ(OS(D)) = χ(OS) −
1

2
(−D)(D −K)

= χ(OS) +
1

2
D(D −K).
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Corollary 1.103. Under the hypotheses of Theorem 1.102, if χ(OD) > 0
then at least one among ∣D∣ and ∣K −D∣ is non empty.

Proof. h0(D) + h0(K − D) = h0(D) + h2(D) ≥ χ(OS(D)) > 0, where the
first equality holds by Serre duality. Hence at least one among h0(D) and
h0(K −D) is strictly greater than zero.

Corollary 1.104 (Genus formula). Let C be a smooth curve in S, then the
genus of C is

g = 1 + 1

2
(C2 +CK).

Proof. Let us consider the exact sequence

0Ð→ OS(−C) Ð→ OS Ð→ OC Ð→ 0.

Hence
g = 1 − χ(OC) by Corollary 1.89

= 1 − χ(OS) + χ(OS(−C))
= 1 + 1/2((−C)2 − (−C)K) by Theorem 1.102
= 1 + 1/2(C2 +CK).

Exercise 1.105. Compute the genus of a smooth plane curve of degree d.

Exercise 1.106. Compute the genus of a curve in P1 ×P1 of bidegree (a, b).

Definition 1.107. If D ∈ Div(S) the arithmetic genus of D is

pa(D) ∶= 1 + 1

2
(D2 +DK).

We state the following result without proof.

Theorem 1.108 (Theorem of Noether).

χ(OS) =
1

12
(K2 + e), (1.11)

where e is the Euler topological characteristic of S (in this particular case
e = ∑4

q=0 (−1)qhqDR(S), where H∗
DR denotes the De Rham cohomology).
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Chapter 2

Birational maps

Before beginning a classification, we have to decide when we are going to
consider two of the objects we are classifying to be equivalent. In algebraic
geometry, we classify varieties up to isomorphism or, more coarsely, up to
birational equivalence. The problem does not arise for curves, since a rational
map from one smooth complete curve to another is in fact a morphism. For
surfaces, we shall see that the structure of birational maps is very simple;
they are composites of elementary birational maps, the blow ups.

2.1 Blow ups

In this section we study a classical example of morphism wich is birational
but not biregular, called blow up.

Definition 2.1. Let S be a smooth surface and p ∈ S, then there exists a
smooth surface Ŝ1, called blow up of S in p, and a birational morphism
ε ∶ Ŝ → S such that

1. E ∶= ε−1(p) ≅ P1 (this set is called exceptional divisor);

2. ε∣Ŝ∖E ∶ Ŝ ∖E Ð→ S ∖ {p} is biregular.

Example 2.2. To describe explicitly the behaviour of the blow up in a neigh-
bourhood of p, it is enough to describe the case of S = C2 in p = (0,0): indeed
all blow ups can be obtained by this example writing everything in suitable

1To be precise Ŝ exists always as a complex manifold, or as ”algebraic variety” (a
complex manifold with an atlas whose transition functions are regular maps) but not
always as a quasi-projective variety.
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local coordinates. Let us denote the coordinate on C2 by (x, y) and those on
P1 by (t0 ∶ t1). We define

Ĉ2 ∶= {xt1 = yt0} ⊂ C2 × P1

and
ε ∶ Ĉ2 Ð→ C2

((x, y), (t0 ∶ t1)) z→ (x, y)
First of all, it is immediate to see that

ε−1(0) = {0} × P1 ⊂ C2 × P1.

Now let us prove that Ĉ2 is smooth.
Let p ∈ Ĉ2; if t1(p) ≠ 0, then U1 ∶= Ĉ2 ∩ {t1 ≠ 0} ⊂ C3 with coordinates

x, y, t = t0/t1 and its equation is f = x − yt = 0. Since ∂f/∂x ≠ 0, by the local
diffeomorphism theorem y, t are local coordinates (indeed x = yt). Hence Ĉ2

is smooth in p. Note that in this open set E is the divisor of the function
y. If t0 ≠ 0, then in U0 ∶= Ĉ2 ∩ {t0 ≠ 0} we shall use as local coordinates
x, y, u = t1/t0; analogously to the previous case, the local equation of Ĉ2 is
g = y − xu, thus x,u are local coordinates and y = xu. Moreover, we shall
remark that in the first open set E is the divisor of the function x.

The last thing we have to prove is the second point of Definition 2.1.
Basically, it means that ε∣Ĉ2∖E is invertible. Indeed

ε∣−1

Ĉ2∖E ∶ (x, y) z→ ((x, y), (x ∶ y)).

Definition 2.3. Let C be an effective divisor on S with p ∈ C; locally C =
(f), with f(x, y) regular function, where x, y are local coordinates such that
p = (0,0). Then we shall consider the Taylor series of f in a neighbourhood
of p;

f = fm(x, y) + fm+1(x, y) + . . . , where fk ∈ C[x, y]k∀k and fm /≡ 0 ∶

in this case we define the multiplicity of C in p to be equal to m.

Definition 2.4. If C = ∑aiCi ∈ Div(S), the strict transform of C is Ĉ =

∑aiĈi, where Ĉi ∶= (ε∣−1
Ŝ∖E)∗(C − p)

Ŝ
is a Cartier divisor in Ŝ.
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Example 2.5. In the situation of Ex-
ample 2.2, let us consider

l = (ax + by = 0) ∈ Div(C2),

then

l̂ = (ax + by = at0 + bt1 = 0),

thus l̂ ⋔ E = ((0,0), (−b ∶ a)), thus the
intersection point l̂ ∩ E determines a
bijection among E and the set of the
lines through p.
More generally the same computation
shows that the strict transform Ĉ of
every curve smooth at p is a curve
isomorphic to C (through the projec-
tion) intersecting E transversally at
the point given by the tangent direction
of C at p.

From now on we will assume S and Ŝ projective, in order to be able to
consider their intersection forms.

Lemma 2.6. Let C ∈ Div(S) effective and irreducible and suppose that its
multiplicity in p is m, then

ε∗C = Ĉ +mE.

Proof. Clearly ε∗C = αĈ + βE with α,β ∈ Z (since if locally C = (f), then
ε∗C = (ε∗f) = (f ○ ε) and ε−1C = Ĉ ∪E). Since ε is biregular out of p, then
α = 1 (multiplicity cannot change because of biregularity).

Now, let us assume that locally C = (f) for some f(x, y) rational function,
where x, y are local coordinates such that p = (0,0). Then

f = fm(x, y) + fm+1(x, y) + . . . , where fk ∈ C[x, y]k∀k and fm /≡ 0.

In an open neighbourhood of q ∈ E with t1(q) ≠ 0 we have local coordinates
y, t and x = yt, so

ε∗f = fm(yt, y) + fm+1(yt, y) + . . .
= ymfm(t,1) + ym+1fm+1(t,1) + . . .
= ym[fm(t,1) + yfm+1(t,1) + . . . ]

Hence ε∗f vanishes with multiplicity m in E = (y), thus β =m.
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Proposition 2.7. The following properties hold:

1. The map
Pic(S) ⊕Z Ð→ Pic(Ŝ)

(C,n) z→ ε∗C + nE
is a group isomorphism.

2. ∀D,D′ ∈ Pic(S)

ε∗D ⋅ ε∗D′ =D ⋅D′;
E ⋅ ε∗D = 0;

E2 = −1.

3. KŜ = ε∗KS +E.

Proof. 2. Since ε is biregular out of p, it is generically finite of degree 1
and therefore ε∗D ⋅ ε∗D′ =D ⋅D′. By the Theorem of Serre and Bertini
every divisor is linearly equivalent to a divisor involving only curves
not containing p, then Supp(ε∗D) ∩E = ∅, hence E ⋅ ε∗D = 0.

Let C smooth in p with multiplicity 1 in p. Then ε∗C = Ĉ + E by
Lemma 2.6; moreover, using local coordinate, we get Ĉ ⋅E = 1. Then

0 = E ⋅ ε∗C = E ⋅ (Ĉ +E) = E ⋅ Ĉ +E2 = 1 +E2.

Hence E2 = −1.

1. Injectivity: Suppose ε∗D + nE = 0⇒ 0 = E(ε∗D + nE) = 0 − n⇒ n = 0.
Hence ε∗D ≡ 0, thus, D = ε∗ε∗D = ε∗0 = 0, where the first equality
holds because ε is generically finite of degree 1.

Surjectivity: First, we remark that E is the image of (0,1). Since
Pic(Ŝ) is generated by irreducible curves, it is sufficient to show that the
image contains every irreducible curve C, C ≠ E; if ε∗C has multiplicity
m in p, it is immediate to see that

ε∗(ε∗C) = ˆ(ε∗C) +mE = C +mE,

thus (ε∗C,−m) z→ C +mE −mE = C.

3. Let ω be a rational form on S. Applying the pull back of forms (watch
out: not the pull back of divisors) we get ε∗ω, that is a 2−form on Ŝ:
KŜ = (ε∗ω) = ε∗(ω) + λE = ε∗KS + λE. We want to prove that λ = 1.
Since ε is biregular out of E, if a curve C is in the locus of the zeroes
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(or of the poles) of ω, its strict transform appears in (ε∗ω) with the
same multeplicity. Therefore, since E ≅ P1, by Corollary 1.104

0 = g(E) = 1 + E
2 +KE

2

= 1 + −1 +KE
2

,

hence KE = −1. Thus

−1 = E ⋅KŜ = (ε∗KS + λE) ⋅E = 0 − λ⇒ λ = 1.

Remark 2.8. An alternative way to prove the last point of Proposition 2.7
is the following: let us consider the 2−form ω = dx ∧ dy, where x, y are local
coordinates on S such that p = (0,0), then

ε∗ω = d(yt) ∧ dy = tdy ∧ dy + ydt ∧ dy = ydt ∧ dy

on the open set of Ŝ with local coordinates y, t. Hence ε∗ω vanishes with
multiplicity 1 along E = (y).

Corollary 2.9. If D ∈Div(S) is irreducible with multiplicity m in p, then

0 = E ⋅ ε∗D = E ⋅ (D̂ +mE) = E ⋅ D̂ +mE2 ⇒ ED̂ =m.

Exercise 2.10. Prove that D̂2 =D2 −m2.

The exceptional divisor E is said to be rigid, since there are no other effec-
tive divisors linearly equivalent to E. Indeed, let us suppose that ∑aiDi ≡ E
with ai > 0∀i; then

0 > −1 = E2 = E ⋅ (∑aiDi) = ∑aiE ⋅Di,

thus ∃i such that Di = E (since if Di ≠ E, then Di ⋅E ≥ 0). Thus ∑aiDi −E
is effective and principal, and since we are working on a compact variety
E = ∑aiDi.

Remark 2.11. It is possible to prove by Meyer-Vietoris Theorem that e(Ŝ) =
e(S) + 1 and that b1(Ŝ) = b1(S), b3(Ŝ) = b3(S) 2, while b2(Ŝ) = b2(S) + 1.
In order to prove this, one exploits the fact that the Poincaré dual of the
exceptional curve restricts on the curve itself to a form which is not exact
(since its integral is −1 ≠ 0).

2Recall that the i−th Betti number is defined as bi(S) ∶= dimRH
i
DR(S,R)
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2.2 Rational maps

Let S be a smooth projective surface and Φ ∶ S ⇢ Y rational.
Let U ⊂ S be an open set such that U is maximal among the open sets on
which Φ is defined.

Proposition 2.12. F ∶= S ∖U is finite.

Proof. Since S is compact, we just need to prove that F is discrete. Without
loss of generality we shall suppose that S is affine (that is S ⊂ Ck) and Y = Pr;

Φ = (n0

d0

∶ ⋅ ⋅ ⋅ ∶ nr
dr

) with ni, di ∈ C[x1, . . . , xk]

= (p0 ∶ ⋅ ⋅ ⋅ ∶ pr)

We got the last expression of Φ multiplying every factor by d0⋯dr; the ex-
pression we have obtained for Φ is regular on the open set complement of the
common zeroes of the polynomial pi. Note that, if ∃p ∈ C[x1, . . . , xk] such
that p∣pi∀i

Φ = (p0 ∶ ⋅ ⋅ ⋅ ∶ pr)

= (p0

p
∶ ⋅ ⋅ ⋅ ∶ pr

p
) ,

gives an expression for Φ which is well defined on a bigger open set, hence we
shall suppose that gcd({pi}) = 1. Standard commutative algebra gives then
the result, since a set of regular functions on a surface with infinitely many
common zeroes have a common factor.

This proposition has some important consequences. First of all, ∀C ⊂
S the set Φ(C) = Φ(C − F ) is well defined. Analogously, we can define

Φ(S) ∶= Φ(S − F ).
This allows us to define a pull back map

Φ∗ ∶ Div(Y ) Ð→ Div(S) (2.1)

even for rational maps. Indeed the map

Div(S) Ð→ Div(S − F )
C z→ C − F

is an isomorphism that preserves linear equivalence, thus we get an isomor-
phism Pic(S) Ð→ Pic(S − F ); hence, we get

Φ∗ ∶ Div(Y ) Ð→ Div(S − F ) ∼Ð→ Div(S).
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These maps preserve linear equivalence, thus the map

Φ∗ ∶ Pic(Y ) Ð→ Pic(S)

is well defined.

2.3 Linear systems

As we saw in a previous section, if S is a projective variety and D ∈ Div(S),
the complete linear system associated to D is the set

∣D∣ ∶= {D′ ≡D ∶D′ ≥ 0}
= {(s) ∶ s ∈H0(O(D)) ∖ {0}} ≅ Ph0(D)−1,

where the latter isomorphism holds since

(s1) = (s2) ⇐⇒ ∃λ ∈ C∗ ∶ s1 = λs2.

If P is a projective subspace of ∣D∣ it is called linear system, thus P = (V ∖
{0})/C∗, with V ⊂H0(O(D)) is a vector space. We will sometimes write P 2

for D2.

Definition 2.13. Let P be a linear system; if ∃C ∈ Div(S) with C ≥ 0 such
that ∀D ∈ P , C ≤ D, then C is said to be in the fixed part of P . If such C
does not exist, we say that P has no fixed part.

Obviously, ∀P linear system ∃!Φ ∈ Div(S) with Φ ≥ 0 such that Φ is in
the fixed part of P and

P (−Φ) ∶= {D −Φ ∶D ∈ P} ⊂ ∣D −Φ∣

has no fixed part. Such Φ is called the fixed part of P .
Though P has no fixed part, it may still have some points which belongs

to all of its elements. If ∃x ∈ S such that ∀D = ∑aiDi ∈ P ∃i such that x ∈Di

we say that x is a base point for P .

Example 2.14. The point (0 ∶ 0 ∶ 1) ∈ P2 is a base point for the linear system
P ∶= {lines through (0 ∶ 0 ∶ 1) in P2}.

Remark 2.15. By the Theorem of Bertini, if there exists D1,D2 ∈ P with
no common components, then

{base points of P} ⊂D1 ∩D2 ⇒#{base points of P} ≤ #D1 ∩D2 ≤D2.
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If P 2 < 0, P has a fixed part. If P has no fixed part and P 2 = 0, then P
has no base points.

There exists a 1-to-1 correspondence

⎧⎪⎪⎨⎪⎪⎩

Linear system on S
with no fixed parts
and dimension r

⎫⎪⎪⎬⎪⎪⎭
←→

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rational maps Φ ∶ S ⇢ Pr
non degenerate
(that is Φ(S) /⊂ hyperplane)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/Aut(Pr),

where by dimension of P we mean the dimension of P as projective subspace.
But how this bijection works?

For a fixed H hyperplane in Pr

Φ∗∣H ∣ ←Ð [ Φ;

vice versa

P = P(span(s0, . . . , sr)) z→ (p↦ (s0(p) ∶ ⋅ ⋅ ⋅ ∶ sr(p))).

a different choice of a basis for P on the left would define the same map on
the right modulo isomorphisms of Pr.

Theorem 2.16 (Elimination of indeterminacy locus). Let Φ ∶ S ⇢ Y be a
rational map from a projective surface to a projective variety. Then there
exists a surface S′, a morphism η ∶ S′ → S which is the composition of a
finite number of blow ups such that the composition

S

S′ Y
................................................................................................... ........

....η

................................................................................................................................................................... ............

......
......
......
......
......
......
......
.............
............

Φ

is a morphism.

Proof. We may assume Y = Pn; moreover we may suppose that Φ(S) lies in
no hyperplane of Pn. By the 1-to-1 correspondence we have seen before, Φ
corresponds to a linear system P ⊂ ∣D∣ with no fixed part in S.

Since P ⊂ ∣D∣, #{base points of P} ≤D2.
If P has no base points, then s0(x), . . . , sn(x) do not have common zeroes,

hence (s0 ∶ ⋅ ⋅ ⋅ ∶ sn) is defined on the whole S, thus Φ is a morphism (and the
statement is true since η ∶= IdS is the composition of zero blow ups).

Otherwise, let x ∈ S a base point for P and let us consider the blow up
S1 of S in x with the corresponding map ε ∶ S1 → S. We get a map

Φ1 ∶ S1 S Pn...................................... ............
ε

........................................... ............
Φ
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∀D ∈ Div(S), since x ∈ D, ε∗D ≥ E and the rational map Φ1 is given by
(s0 ○ε, . . . , sn ○ε); more precisely the fixed part of ε∗P ∶= {ε∗D ∶D ∈ P} is λE
for some λ ≥ 1 and the linear system without fixed part ε∗P (−λE) induces
exactly the map Φ ○ ε.

If ε∗P − λE has no fixed points, then we are done. Otherwise, we repeat
the process.

We need now to prove that this process stops in a finite number of steps.
How many base points does ε∗P − λE have?

≤ (ε∗D − λE)2 =D2 − 2λEε∗D + λ2E2 =D2 − λ2 <D2,

hence the maximum number of base points is decreased. This means that
the recursive construction of S′ stops within P 2 steps.

Note that this proof gives an explicit construction of S′.
Let us apply this theorem to the following example.

Example 2.17. Let us consider the rational function

Φ ∶ P1 × P1 ⇢ P2

((x0 ∶ x1), (y0 ∶ y1)) ↦ (x0y0 ∶ x0y1 ∶ x1y0)

The linear system associated to Φ is P ⊂ ∣(1,1)∣ (the complete linear system of
all bihomogeneous polynomials of bidegree (1,1)). By Exercise 1.101, P 2 = 2,
hence by Theorem 2.16, the resolution of Φ will take up to two blow ups.

First of all, notice that P has a unique base point, that is the only common
zero of x0y0, x0y1 and x1y0: x̄ = ((0 ∶ 1), (0 ∶ 1)). Thus, by the Theorem 2.16,
we have to blow up S = P1 × P1 at x̄. Let then

ε ∶ S1 → S

be the blow up of S in x̄ and let us study Φ ○ ε. ε∗P has fixed part λE, where
λ = minD∈P mx̄D ≥ 1. Since, for example, x0y1 vanishes with multiplicity 1
along E, we get that λ = 1, hence ε∗P has fixed part E.

Therefore Φ ○ ε is induced by ε∗P (−E). Let us compute it in local co-
ordinates. In a neighbourhood of x̄ the local coordinates are x = x0/x1 and
y = y0/y1 and Φ = (xy ∶ x ∶ y).

Using the same notation of Example 2.2, we have an open set U1 on S1

with local coordinates y, t such that x = yt, hence ε∗Φ(y, t) = (y2t ∶ yt ∶ y).
Removing E (that, in terms of the map ε∗Φ, means that we divide by the
equation of E = (y)) we get

(y
2t

y
∶ yt
y
∶ y
y
) = (yt ∶ y ∶ 1).
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It is immediate to see that this map is defined on the whole E ∩ U1. The
other open set on E we consider is U0, the one with local coordinates x,u
and y = xu. A computation similar to the previous one leads to

ε∗Φ(x,u) = (x2u ∶ x ∶ xu)

ε∗P (−E) = (x
2u

x
∶ x
x
∶ xu
x

) = (xu ∶ 1 ∶ u).

This implies that this map is well defined on U0 too. Hence ε∗P (−E) has no
base points on E; moreover, there are no base points out of E too, since the
map ε is biregular out of the exceptional divisor.

Finally we observe that we resolved the map Φ with just one blow up,
according to Theorem 2.16.

Exercise 2.18. Resolve the following rational maps.

1. Φ−1, where Φ is the map in the previous example.

2. The Cremona transformation

P2 ⇢ P2

(x0 ∶ x1 ∶ x2) ↦ ( 1

x0

∶ 1

x1

∶ 1

x2

) = (x1x2;x0x2 ∶ x0x1)

and its inverse.

3.
P2 ⇢ P2

(x0 ∶ x1 ∶ x2) ↦ (x0x1 ∶ x0x2 ∶ x2
2)

Watch out! In one of these examples some base points will crop up on E
(these kind of points are called infinitely near base points), hence you have
to blow up those points too.

Lemma 2.19. Let S be a projective irreducible surface (possibly not smooth)
and S′ a projective smooth surface. Let f ∶ S → S′ be a birational morphism
and p ∈ S′ such that f−1 is not defined in p. Hence ∃C ⊂ S curve such that
f(C) = p.

Proof. Since S is projective, f(S) = S′, therefore ∃q ∈ S such that f(q) = p.
Let us choose an affine open set on S containing q (with a slight abuse of
notation we will say that S ⊂ Ar) and an affine open set on S′ containing p
(let us say that S′ ⊂ An). Now that we are working in an affine space, we
can write the rational map f as ratio of polynomials:

f−1(y1, . . . , yn) = (g1, . . . , gr), with gi =
ui
vi

and ui, vi ∈ K[y1, . . . , yn].
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We shall suppose that ∀i ui and vi have no common factors. Since f−1 is not
defined in p, vi(p) = 0 for some i = 1, . . . , n. Let us suppose, without loss of
generality, that v1(p) = 0 and consider

D = f∗(v1) ∈ Div(S),

which is an effective divisor. Then

g1 = (f−1)∗x1 ⇒ x1 = f∗ (
u1

v1

) ⇒ (f∗u1) ≥ (f∗v1),

where the latter implication holds because x1 is a regular function without
poles. Hence, as a set,

D = f−1({u1 = v1 = 0}) = f−1(Z),

where Z is a discrete set (since by hypotheses u1 and v1 have no common
factors) with p ∈ Z. Up to shrinking S′, Z = {p}, then we can take an
irreducible component of D as the curve C of the statement.

Lemma 2.20. Let Φ ∶ S ⇢ S′ be a birational map among two smooth projec-
tive surfaces. Let p ∈ S′ be such that Φ−1 is not defined in p, then ∃ a curve
C ⊂ S such that every point of C for which Φ is defined, is mapped into p
(by a slight abuse of notation we say that Φ(C) = p).

Proof. Let us consider the following commutative diagram

Γ(Φ)

S S′

........................................................................................
....
............

π
............................................................................................ ........

....

π′

....................................................................................................... ............

Φ

where Γ(Φ) = {(s,Φ(s)) ∈ S × S′}
Zariski

is the closure of the graph of Φ, which
is a projective surface. π is the projection on the first coordinate and it is a
birational map; π′ is the projection on the second coordinate and, since it is
a composition of two birational maps, is birational.

Φ−1 = π○(π′)−1, therefore (π′)−1 is not defined in p. The map (π′) satisfies
the hypotheses of Lemma 2.19, hence ∃ a curve Ĉ ⊂ Γ(Φ) such that π′(Ĉ) = p.
We define C ∶= π(Ĉ). The only thing we need to prove is that C is a curve.
Since Ĉ is a curve, C should be either a point or a curve. If π(Ĉ) = q ∈ S,
then Ĉ = {(p, q)}, but by Lemma 2.19 Ĉ is a curve. This is a contradiction,
hence C is a curve.
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Theorem 2.21 (Universal property of blow up). Let f ∶ X → S be a bira-
tional morphism of smooth projective surfaces, and suppose that f−1 is not
defined in p ∈ S. Let ε ∶ Ŝ → S be the blow up of S in p. Then there exists
g ∶ X → Ŝ birational morphism such that f = ε ○ g, that is such that the
diagram

X

Ŝ

S

..............
..............

..............
.................
............g

........................................................... .........
...

f

..........................................................
.....
.......
.....
ε

commutes.

Sketch of the proof. We have to prove that g ∶= ε−1○f is defined on the whole
X. Arguing by contradiction, let us suppose that ∃q ∈ X such that g is not
defined; we can apply Lemma 2.20 to s = g−1, then ∃ a curve C ⊂ Ŝ such
that s(C) = q. Hence ε(C) = f(s(C)) = f(q). Since E is the only curve of Ŝ
that is contracted to a point by ε, we shall conclude that C = E; hence g is
not defined in a single point q = s(E). The proof now ends proving that f−1

would be defined in p by f−1(p) = q, that would lead to a contradiction.

Theorem 2.22. Let f ∶ S → S0 a birational morphism among two smooth
surfaces. Then there exists a sequence of blow ups

Sn
εnÐ→ Sn−1

εn−1Ð→ ⋅ ⋅ ⋅ ε2Ð→ S1
ε1Ð→ S0

such that f = ε1 ○ ⋅ ⋅ ⋅ ○ εn ○ u with u ∶ S → Sn biregular.

Proof. If f is biregular, the theorem is trivially true with n = 0. Otherwise,
we use Theorem 2.21 to get f = ε1○f1; if f1 is biregular we are done, otherwise
we proceed recursively.

We have to prove that this recursive construction stops.
For each point p ∈ S0 such that f−1 is not defined in p, let us consider the

curves in the preimage of p: by compactness of S, we get a finite number of
curves. Hence, the set of curves in S that are contracted by f to a point is
finite. After each blow up, the cardinality of this set decreases (at least by
one), hence the recursive procedure stops.

Corollary 2.23. If S ⇢ S′ is birational among two projective smooth sur-
faces, then ∃Ŝ smooth surface, q ∶ Ŝ → S and q′ ∶ Ŝ → S′ sequence of blow ups
such that the diagram

Ŝ

S S′

...............................................................................................
....
............

q
................................................................................................... ........

....

q′

....................................................................................................... ............

Φ
commutes.
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Proof. We construct q with Theorem 2.16, and then we apply Theorem 2.22
to q′ = Φ ○ q.

The thing we are asking now is: when a surface can be seen as blow up
of another surface?

Definition 2.24. A surface S is said to be minimal if /∃ S′ projective smooth
surface with p ∈ S′ such that S is the blow up of S′ in p. Equivalently S is
said to be minimal if every birational morphism S → S′′ is biregular.

Let us prove the equivalence of the two definition.

⇐ It is immediate using Theorem 2.22.

⇒ Let us suppose there exists f ∶ S → S′′ non biregular. Hence by
Theorem 2.22 there exists a sequence ε1, . . . , εn with n ≥ 1 such that
f = ε1 ○ ⋅ ⋅ ⋅ ○ εn ○ u with u ∶ S → Sn biregular. Hence S would be
isomorphic to the blow up of Sn−1. Contradiction.

Definition 2.25. Let S be a projective smooth surface. A curve E ⊂ S is
said o be exceptional if it is the exceptional divisor of a blow up S → S′.

The following theorem provides us with a powerful tool to understand
whether a surface is minimal or not.

Theorem 2.26 (Castelnuovo contractibility criterion). E ⊂ S is an excep-
tional curve⇔ E ≅ P1 and E2 = −1.

First part of the proof. (⇒) is immediate.

Let us see some consequence of the trivial part of Castelnuovo criterion.

• ∀C ⊂ P2 curve, C2 = (degC)2 > 0, hence P2 is minimal.

• ∀C ⊂ P1 ×P1 curve, C2 ≥ 0 by Exercise 1.101, hence P1 ×P1 is minimal.

Castelnuovo criterion implies the following

Corollary 2.27. S is minimal⇔/∃ E ⊂ S smooth such that E ≅ P1 and
E2 = −1.

Lemma 2.28 (Serre vanishing Theorem). If H ∈ Div(S) is very ample, then
∃n0 ∈ N such that ∀n ≥ n0 h1(nH) = 0.
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Second part of the proof of Castelnuovo criterion. Let us suppose that ∃ a
curve E ⊂ S such that E ≅ P1 and E2 = −1. By Exercise 1.96, Lemma
2.28 implies that ∃H very ample such that h1(O(H)) = 0. Let us say that
H ⋅E = k > 0. We want to prove that the map induced by the linear system
∣H + kE∣ is a blow up whose exceptional divisor is E.

∀1 ≤ i ≤ k let us consider the exact sequence

0Ð→ OS(H + (i − 1)E) Ð→ OS(H + iE) Ð→ OE(H + iE) Ð→ 0.

Since E ≅ P1 and (H+iE)⋅E = k−i, OE(H+iE) ≅ OP1(k−i). Moreover, since
k − i ≥ 0, by Serre duality h1(OE(H + iE)) = 0. Therefore we can consider
the long exact sequence

. . .Ð→H0(OS(H + iE)) Ð→H0(OP1(k − i)) Ð→
Ð→H1(OS(H + (i − 1)E)) Ð→H1(OS(H + iE)) Ð→ 0,

where the last 0 stands for H1(OE(H + iE)).
For i = 1 the right part of the previous sequence is

H1(OS(H)) Ð→H1(OS(H +E)) Ð→ 0;

since the left term of the exact sequence is 0 by hypothesis, H1(OS(H+E)) =
0. By the same argument, we get that H1(OS(H+iE)) = 0 ∀1 ≤ i ≤ k. Hence
we get a short exact sequence

0Ð→H0(H + (i − 1)E) Ð→H0(H + iE) Ð→H0(OP1(k − i)) Ð→ 0. (2.2)

Choose a basis s0, . . . , sn of H0(H), pick a generator s of H0(E) and for 1 ≤
i ≤ k elements ai,0, . . . , ai,k−i ∈H0(OS(H + iE)) that are mapped onto a basis
of H0(OP1(k− i)) (they exist because the map H0(H + iE) →H0(OP1(k− i))
is surjective). Then

{sks0, . . . , s
ksn, s

k−1a1,0, . . . , s
k−1a1,k−1, . . . , sak−1,1, ak,0}

is a basis of H0(H ′), where H ′ = H + kE. Let Φ ∶ S ⇢ PN be the rational
map induced by the linear system ∣H ′∣. s vanishes on E, while ak,0 induces
a non zero constant function on E, therefore Φ(E) is a point, and precisely
the point (0 ∶ 0 ∶ ⋅ ⋅ ⋅ ∶ 1); the map

η ∶ S −E Ð→ Pn
p z→ (sks0(p) ∶ ⋅ ⋅ ⋅ ∶ sksn(p))
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is the embedding in Pn associated to ∣H ∣, since s ≠ 0 and η = (s0 ∶ ⋅ ⋅ ⋅ ∶ sn).
This means that the composition

S −E PN

Pn

................................................................... ............
Φ

...................................................................................................................................... ........
....

η

.......................................................
.....
.......
.....

is an embedding, hence Φ∣S−E is an embedding too.
The only thing we left to prove is that the image of Φ is smooth. For this

part of the proof, that we skip, we need to exploit the hypothesis for which
E2 = −1.

Figure 2.1: In P1 × P1 let us consider the k + 1 lines Γ = P1 × (0 ∶ 1), and
Fi = (i ∶ 1) × P1, i ∈ N, 1 ≤ i ≤ k, that intersect as sketched in the figure to
the left. Blowing up the surface in the k points of intersection we get the

situation outlined in the second figure. By Exercise 2.10 F̂i
2
= −1, hence, by

Castelnuovo criterion, we can contract these curves to a point. The surface
we get is called Hirzebruch surface Fk.

Exercise 2.29. Let C ⊂ S a curve in a surface, let ε ∶ Ŝ → S be the blow up
of S in p ∈ S and let Ĉ be the strict transform of C.

1. If p /∈ C, then pa(C) = pa(Ĉ);

2. If p ∈ C is smooth for C, then pa(C) = pa(Ĉ);
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3. Otherwise pa(C) > pa(Ĉ).

Fact 2.30. ∀C irreducible pa(C) ≥ 0.

4. ∀C ⊂ S irreducible curve in a smooth projective surface ∃ a sequence of
blow ups ε ∶ S′ → S such that the strict transform of C is smooth.

5. C ⊂ S as above, pa(C) = 0Ô⇒ C ≅ P1 (hence it is smooth).

Castelnuovo criterion suggests a way to construct new surfaces from old
ones: if blowing up some points the strict transform E of a curve has KE =
E2 = −1, then by the last exercise is a smooth P1 and therefore we can
contract it to a smooth new surface.

The first application of this idea is the construction of the Hirzebruch
surfaces in Figure 2.1 and 2.2 below, which produces the first examples of
ruled surfaces, which are the objects of the next chapter.

Figure 2.2: Construction of some Hirzebruch surfaces.
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Chapter 3

Ruled surfaces

Definition 3.1. S is said to be rational if it is birational to P2 (or to P1×P1).

Definition 3.2. S is said to be ruled if it is birational to C × P1 with C
smooth curve.

Definition 3.3. S is said to be geometrically ruled if ∃π ∶ S → C surjec-
tive morphism on a smooth curve C such that every fibre is a smooth curve
isomorphic to P1.

For example, Hirzebruch surfaces are geometrically ruled.

Remark 3.4. Let S be a smooth projective surface and C a smooth projective
curve. Let p ∶ S → C be a surjective morphism and p1, p2 ∈ C; let us define
Fpi = Fi ∶= p∗pi. Then ∀D ∈ Div(S) D ⋅ F1 =D ⋅ F2. This is obvious if C ≅ P1

since in this case F1 and F2 are linearly equivalent; in the general case we
can write (as shown in the first chapter by Theorem 1.97 and Theorem 1.98)
D ≡ A−B for some smooth A,B ∈ Div(S), hence by linearity we may assume
D smooth. Then we can conclude by noticing that p∣D ∶ D → C is a finite
morphism and D ⋅ Fi = deg(Fi∣D) = deg(p∣D) does not depend on i.

Theorem 3.5 (Noether-Enriques). Let S be a smooth projective surface and
let π ∶ S → C be a morphism onto a smooth curve with one fiber Fx smooth
and isomorphic to P1. Then ∃U ⊂ C Zariski open set and a biregular map
ψ ∶ π−1(U) → U × P1 such that the diagram

π−1(U) U × P1

U

................................................................................................................................................................. ............
ψ

............................................................................................................................... ........
....

π

..................................................................................................................................
....
............

π1

commutes. Moreover h2(OS) = 0.
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In order to prove Theorem 3.5 we need the following lemma that we state
without proof.

Lemma 3.6. Under the assumptions of Theorem 3.5 ∃H ∈ Div(S) such that
HF = 1, where F is a fiber of π.

Proof of Theorem 3.5. First of all F 2 = 0 and F ≅ P1, hence, by the genus
formula,

0 = 1 + KF + F 2

2
Ô⇒KF = −2.

Arguing by contradiction, let us suppose that h2(OS) > 0; by Serre duality,
this means that ∃K effective canonical divisor. Writing K = ∑aiDi with Di

irreducible curve and ai > 0 ∀i; therefore

KF = (∑aiDi) ⋅ F = ∑ai(Di ⋅ F ).

If F ≠ Di then F ⋅Di ≥ 0, if F = Di then F ⋅Di = F 2 = 0; hence KF ≥ 0.
Contradiction! Thus h2(OS) = 0.

Let H ∈ Div(S) be the divisor whose existence is guaranteed by Lemma
3.6, fix a fiber Fx, and consider the short exact sequence

0Ð→ OS(H + (r − 1)Fx) Ð→ OS(H + rFx) Ð→ OF (H + rFx) Ð→ 0

Since OFx(H+rFx) ≅ OP1(1), by Serre duality we get that h1(OFx(H+rFx)) =
0. Hence we get the long exact sequence

H0(H + rFx)
αrÐ→H0(OP1(1)) Ð→H1(H + (r − 1)Fx)

βrÐ→H1(H + rFx) Ð→ 0.

The maps βr are all surjective, hence {h1(H + rFx)}r is a non increasing
sequence of natural numbers. Thus ∃r0 such that ∀r ≥ r0 βr is an isomor-
phism. Hence βr is injective and then αr is surjective for r sufficiently large.
Therefore for a fixed r sufficiently large we can consider the exact sequence

H0(H + rFx)
αrÐ→H0(OP1(1)) Ð→ 0.

Let V ⊂ H0(H + rFx) be a vector space of dimension 2 such that αr(V ) =
H0(OP1(1)) ≅ C2; let P ⊂ ∣H ′∣ be the corresponding linear system of dimen-
sion 1, where H ′ ∶=H + rFx. ∣OP1(1)∣ is base point free, and therefore P has
neither base points on Fx nor Fx is in the fixed part of P .

Let D be a curve, then (as before, since Fx is irreducible with F 2
x ≥ 0), for

every fiber F (by Remark 3.4) D ⋅F ≥ 0. If D is in the fixed part of P , then
DFx = 0; indeed, if DF > 0, then D ∩ F ≠ ∅ and a point of this intersection
would be a base point for P restricted to Fx, a contradiction. Let p ∈D, then
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p ∈ Fy for some y ∈ P1; if D /⊂ Fy, then D ⋅ Fy > 0. Contradiction. Hence each
fixed component of P is contained in a fiber.

Let Φ ∶ S ⇢ P1 be the rational map induced by P ; we want to construct
an open set U ⊂ C such that Φ∣π−1(U) ∶ π−1(U) → P1 is well defined. To get U
we remove from C the images of the base points, those of the fixed part of P ,
and the images of the reducible fibers (that is those fibers that can be written
in the form ∑ki=1 aiDi with ∑ai ≥ 2). Let us remark that the remaining are
irreducible, F 2 = 0 and FK = −2, hence by the genus formula they all are
smooth and isomorphic to P1.

Finally we get the maps

π−1(U) P1

U

......................................................................................................................................................................................... ............
Φ∣π−1(U)

...................................................................................
.....
.......
.....

π

let then ψ ∶= (π,Φ) ∶ π−1(U) Ð→ U × P1. By definition ψ makes the diagram
in the statement commute. In order to prove that ψ is an isomorphism, let
us construct its inverse.

Let (x′, t) ∈ U × P1; for a point s ∈ π−1(U), then Ψ(s) = (x′, t) ⇔ s ∈
Fx′ ∩ Φ∗t; ϕ∗t ∈ P ⊂ ∣H ′∣. Since Fx′ is smooth by the choice of U , and
H ′ ⋅ F = 1, then either Fx′ ⊂ Φ∗t, or Φ∗t and Fx′ intersect transversely in a
single point. Therefore we need to prove that ∀D ∈ P , ∀x′ ∈ U D /≥ Fx′ .
Arguing by contradiction, if ∃D ∈ P such that D ≥ Fx′ , then the map

V Ð→H0(OF ′x(H
′)) ≅ C2

would have a non trivial kernel. Hence its image would be of dimension ≤ 1
which implies that P would have a base point on Fx′ . We get a contradiction.

Theorem 3.5 implies that a geometrically ruled surface is ruled. The
inverse is not true.

Lemma 3.7 (Zariski). Let p ∶ S → C be a surjective morphism among a
smooth projective surface S and a smooth projective curve C with connected
fibers (i.e. ∀x ∈ C, Fx is connected). Assume F = ∑ki=1 niCi with k ≥ 2 and
ni ≥ 0∀i. Then C2

i < 0 ∀i.

Proof.

0 = Ci ⋅ F =
k

∑
j=1

njCi ⋅Cj = niC2
i +∑

j≠i
njCj ⋅Ci.
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Since by hypotheses the fibers are connected, ∀i∃j ≠ i such that Ci ⋅Cj > 0.
Thus

∑
j≠i
njCi ⋅Cj > 0⇒ niC

2
i +∑

j≠i
njCi ⋅Cj > niC2

i ⇒ 0 > niC2
i .

Remark 3.8. Assuming the hypotheses of Lemma 3.7, if k = 1, then F = nC
for n ≥ 2, hence

0 = F 2 = n2C2 ⇒ C2 = 0.

Proposition 3.9. Let p ∶ S → C as in Lemma 3.7, with a fiber Fx ≅ P1. S
minimal ⇒ S is geometrically ruled, that is ∀x ∈ C Fx is a smooth irreducible
divisor and Fx ≅ P1.

Proof. F 2
x = 0 and Fx ≅ P1 hence, by the genus formula, KF = −2. By

Exercise 2.29, every irreducible fiber is smooth and ≅ P1. Let us suppose
that there exists a fiber F = ∑ki=1 niCi with ∑ki=1 ni ≥ 2.

k ≥ 2 . By Lemma 3.7 C2
i < 0, thus, by Exercise 2.29, KCi ≥ −1. If KCi = −1,

then C2
i = −1 ⇒ Ci ≅ P1. This contradicts the minimality of S. Hence

KCi ≥ 0 ∀i; hence

−2 =KF =K∑niCi = ∑niKCi ≥ 0.

Contradiction.

k = 1 ⇔ F = nC: we want to prove that n = 1. Let us suppose that n ≥ 2,
then

−2 =KF = nKC ⇒ n = 2,KC = −1,

but C2 = 0, therefore pa(S) /∈ Z. Contradiction.

Theorem 3.10. Let C be an irrational (that is g(C) > 0) smooth curve.
Then S is a minimal surface ruled on C (that is birational to P1 ×C) ⇐⇒ S
is geometrically ruled on C.

Lemma 3.11. Let C1,C2 be two smooth curves, p ∶ C1 → C2 non constant.
Then g(C1) ≥ g(C2).

Proof. Let us consider the pull back of regular 1−form as a linear map

p∗ ∶H0(ΩC2) Ð→ H0(ΩC1)
ω z→ p∗ω

;

this map is injective, since it is easy to see that if ω /≡ 0 then p∗ω /≡ 0.
Therefore, since H0(ΩC2) ≅ Cg(C2) and H0(ΩC1) ≅ Cg(C1), we get the thesis.
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Proof of Theorem 3.10. ⇒ Let us consider the following commutative di-
agram

S C × P1

S′ C

............................................................ ............
bir.

............................................................................................................ ........
....

............................................................................................................
.....
.......
.....

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.................

............

................................................................................................................. ............

where the map S′ → S is a sequence εn○⋅ ⋅ ⋅○ε1 of n blow ups that resolve
the map S ⇢ C. Let us suppose n minimal. If n > 0, then ∃E ∈ Div(S′)
irreducible such that E2 =KE = −1 (⇒ E ≅ P1) the exceptional divisor
of the εn. By Lemma 3.11, E is mapped onto a point of C, this means
that εn−1 ○ ⋅ ⋅ ⋅ ○ ε1 also resolves S ⇢ C, contradicting the minimality of
n. Hence n = 0 and S → C is a morphism and therefore by Proposition
3.9, we get the thesis.

⇐ Arguing by contradiction, let us suppose S is not minimal. Then there
exists E ∈ Div(S) with E2 = KE = −1, E ≅ P1. Let p ∶ S → C be the
ruling morphism. By Lemma 3.11 p(E) = x ∈ C, thus E ⊂ Fx⇒ E = Fx,
but E2 = −1 while F 2 = 0.

By Noether-Enriques Theorem the geometrically ruled surfaces on C are
bundles on C with fiber P1 = (C2 ∖ {0})/C∗. If E → C is a complex vector
bundle of rank 2 and s0 is he zero section of the bundle, then

P(E) ∶= (E ∖ {s0(C)})/C∗ Ð→ C

is indeed a geometrically ruled surface and one can prove that they all can
be constructed in this way.

Hence the classification of complex vector bundle of rank 2 on a Riemann
surface leads to a classification of geometrically ruled surfaces.

Example 3.12. Theorem 3.10 does not hold for a rational curve (that is
g(C) = 0). Let us see some counterexamples.

• P2 is minimal, it is not geometrically ruled, but it is ruled on P1.

• The Hirzebruch surface F1 is geometrically ruled, but it is not minimal.

The following formula, that we give without proof, will be useful for the
next results.
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Proposition 3.13 (Adjunction formula). Let X be smooth and Y ⊂ X a
(smooth) divisor, then

KY = (KX + Y )∣Y ∈ Pic(Y ) (3.1)

What we are really doing in this operation is taking a divisor linearly
equivalent to Y , adding it to the canonical divisor of X and restricting the
result to Y .

Theorem 3.14. Let p ∶ S → C be geometrically ruled, let H ∈ Div(S) be such
that H ⋅ F = 1 (it exists by Lemma 3.6). Moreover, we can pick H such that
H > 0 and H0(H − Fx) = 0 ∀x).

1. The map
Pic(C) ×Z Ð→ Pic(S)

(δ, n) z→ p∗δ + nH
is an isomorphism.

2. b2(S) ∶= h2
DR(S) = 2.

3. KS = −2H + p∗δ with deg δ =H2 + 2g(C) − 2

Proof. 1. The non trivial part is surjectivity of the map. Let D ∈ Pic(S);
then D is in the image of the map ⇔ D − (D ⋅ F )H is in the image of
the map. Since (D − (D ⋅ F )H) ⋅ F = 0, we can suppose D ⋅ F = 0. Let
us fix a fiber Fx and define Dn ∶= D + nFx = D + p∗(nx) ∀n. We want
to prove that Dn is effective for some n. By Riemann Roch Theorem
for surfaces 1.102

χ(OS(C)) = χ(OS) +
C2 −KC

2
.

By the definition of Dn, D2
n−KDn =D2−KD−nKFx =D2−KD+2n,

hence χ(Dn) = χ(D) + n. Thus h0(Dn) + h2(Dn) ≥ χ(Dn) = χ(D) + n;
but h0(Dn) + h2(Dn) = h0(Dn) + h0(K −Dn), therefore, since h0(K −
Dn) decreases or remains constant as n increases, for n sufficiently big
h0(Dn) > 0. Thus ∃n0 such that ∀n ≥ n0 h0(Dn) > 0.

Replacing D with Dn, it is enough to prove that ∀D > 0 such that
D ⋅F = 0, then D is in the image of the map. Let then D = ∑aiCi with
ai > 0 ∀i. Then

0 =D ⋅ F = ∑aiCi ⋅ F ,
and, since Ci ⋅F ≥ 0 ∀i, we conclude that Ci ⋅F = 0 ∀i. Hence ∀i ∃x ∈ C
such that Ci ⊂ Fx. But ∀x Fx ≅ P1 is irreducible, hence Ci = Fx = p∗x,
thus D = p∗(∑aixi).
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2. To prove this statement, we use Leray-Hirsch Theorem, that states that
if S is ruled over C with fiber P1 (which is topologically homeomorphic
to the sphere S2) then

b2(S) = b2(C)b0(P1) + b1(C)b1(P1) + b0(C)b2(P1). (3.2)

Recalling that each compact connected orientable manifold of real di-
mension 2 has b0 = b2 = 1 and that b1(S2) = 0, equation (3.2) implies
that b2(S) = 2.

3. By the first point of the Theorem, KS = aH + p∗δ for some a ∈ Z and
δ ∈ Pic(C). By the genus formula KS ⋅ F = −2; thus

−2 = F ⋅ (aH + p∗δ) = a + 0,

that is a = −2. Now let us compute deg δ. H intersects each fiber in a
single point, hence the map

p∣H ∶H → C

is an isomorphism. Therefore

(p∣H)∗KC =KH = (K +H)∣H = (−H + p∗δ)∣H ,

where the second equality holds for (3.1). Hence

2g(C)−2 = degKC = degKH =H(−H+p∗δ) = −H2+(p∗δ)⋅H = −H2+deg δ.

3.1 Numerical invariants

To every projective surface S we can associate several integers.

• The Betti numbers bi(S) ∶= hiDR(S). bi = 0 ∀i ≥ 0, i > 4, moreover, by
Poincaré duality, b1 = b3 and b0 = b4. Hence Euler-Poincaré characteris-
tic of S is

e = b0 − b1 + b2 − b3 + b4

= 2b0 − 2b1 + b2.

• h0(OS) = 1, since S is projective and therefore compact. Being equal
for all surfaces, this number is not very interesting.
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• The Irregularity q(S) ∶= h1(OS)

• The geometric genus pg(S) ∶= h2(OS) = h0(KS)

• The n−th plurigenus Pn ∶= h0(OS(nK))

It follows
χ(OS) = 1 − q + pg.

The following equation comes from Hodge theory and we state it without
proof.

Fact 3.15. q(S) = h1(OS) = h0(Ω1
S) = b1/2.

Recall also the Noether’s formula (1.11):

χ(OS) =
1

12
(K2

S + e(S)).

Proposition 3.16. The integers pg, q, Pn are birational invariants.

Sketch of the proof. The proof follows the same idea of the proof of Lemma
3.11. We prove Proposition 3.16 only for pg (the birational invariance of q
and Pn is proved in the same way). Let Φ ∶ S ⇢ S′ be a birational map. If
ω ∈H0(Ω2

S′) and ω /≡ 0, then Φ∗ω (the pull back of ω as a form) is a non zero
regular 2−form on U ⊂ S, where U is the open set where Φ is well defined.
By Proposition 2.12 S ∖U is finite. By results of complex analysis in several
variables, a holomorphic form in two variables cannot have isolated poles,
hence, by Hartogs’ theorem, Φ∗ω can be extended to a form in H0(Ω2

S),
therefore we have a linear injective map

Φ∗ ∶H0(Ω2
S′) ↪H0(Ω2

S).

Hence pg(S) ≤ pg(S′). Arguing in the same way, using Φ−1 instead of Φ we
prove the opposite inequality. Thus pg(S) = pg(S′).

Proposition 3.17. Let S be a ruled surface over C; then

q(S) = g(C); pg(S) = 0; Pn(S) = 0 ∀n ≥ 2; b1 = b3 = 2q.

If S is geometrically ruled, then

K2
S = 8(1 − g(C)) = 8(1 − q); b2 = 2.
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Proof. First of all, we may suppose S geometrically ruled, since, by Propo-
sition 3.16, irregularity, geometrical genus and plurigenera are birational in-
variants, and by Remark 2.11 the first and the third Betti numbers are bira-
tional invariants. Hence by Noether-Enriques theorem 3.5 pg = 0 and b2 = 2
by Theorem 3.14. Now suppose Pn > 0; then ∃nK > 0, but nK ⋅F = −2n < 0.
This is a contradiction since F is irreducible and F 2 ≥ 0.

By Theorem 3.14

K2 = (−2H + p∗δ)2 with deg δ =H2 + 2g − 2

= 4H2 − 4Hp∗δ + (p∗δ)2

= 4(H2 − deg δ) = 4(2 − 2g) = 8(1 − g).

Remark 3.18. Let us consider ω ∈H0(Ω1
C), then p∗ω ∈H0(Ω1

S) (that is, p∗ω
has no poles on S). Hence we have an injective map p∗ ∶H0(Ω1

C) ↪H0(Ω1
S),

therefore g(C) ≤ q(S).

By Fact 3.15 we get

b1

2
= q(S) = pg + 1 − χ(OS) = 1 − 1

12
(K2 + e)

= 1 − 1

12
(8(1 − g) + e)

= 1 − 1

12
(8(1 − g) + 2b0 − 2b1 + b2)

= 1 − 1

12
(12 − 8g − 2b1),

hence 6b1 = 8g + 2b1, that is g(C) = b1/2 = q(S).

Proposition 3.17 has many consequences; for example, a surface cannot
be ruled over two curves with different genera.
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Chapter 4

Rational surfaces

If S is a ruled surface, then there exists a birational map S ⇢ C × P1 for
some curve C. If S is irregular (that is q(S) > 0), then S is minimal⇔ it
is geometrically ruled. If S is regular, then S is birational to P1 × P1 (or
equivalently to P2), that is S is rational.

Let us then focus our attention on rational surfaces. We have already seen
in Figure 2.1 how to construct the Hirzebruch surfaces Fn. The following
proposition underlines the importance of such surfaces.

Proposition 4.1. Let S a rational surface geometrically ruled. Then ∃n
such that S

∼Ð→ Fn.

Proof. Since S is rational and geometrically ruled, there exists p ∶ S → P1,
and, by Lemma 3.6, there exists H ∈Div(S) with H > 0 and H ⋅F = 1. Then

h0(H) = h0(H) + h2(H) ≥ χ(H),

where the first equality holds because h2(H) = h0(K − H) ≤ h0(K) = 0.
Hence, by Theorem 3.14

h0(H) ≥ χ(H) = χ(O) + 1

2
(H2 −HK)

= χ(O) + 1

2
(h2 + 2h2 − deg δ)

= χ(O) +H2 + 1

=H2 + 2.

Let then consider the natural map

ϕ ∶H0(H) Ð→H0(H ∣F ) ≅H0(OP1(1)) ≅ C2
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If H2 > 0, then h0(H) > dimC2 = 2, then kerϕ ≠ {0}. Hence Fx < H, that
is H − Fx is effective. Replacing H by H − F and iterating the procedure if
necessary we may assume h0(H−Fx) = 0 ∀x; therefore H2 ≤ 0. On the surface
S we choose −H2 fibers, the fibers over the points (1 ∶ i), i ∈ {1, . . . ,−H2},
we pick a point on each of these fibers, we blow it up, and then contract
the strict transforms of the fibers (see Figure 4). We denote by Ĥ the strict
transform of H.

h0(Ĥ) = 2. Therefore ∣Ĥ ∣ defines a map on P1.

S′

P1

P1............................................................... ............
ϕĤ

..........................................................
.....
.......
.....

p̂

The map ϕĤ is defined on the whole S′ because Ĥ is irreducible (hence ∣Ĥ ∣
has no fixed part) and Ĥ2 = 0 (hence ∣Ĥ ∣ has no base points). Then ϕĤ is a
morphism S′ → P1 × P1.

So S′ is biregular to P1 × P1 and therefore, S is obtained by P1 × P1

by blowing up n points on −H2 different fibers, and then contracting the
strict transforms of these fibers: this shows that S is the Hirzebruch surface
F−H2 .

Theorem 4.2. 1. Pic(Fn) ≅ Zh ⊕ Zf with h2 = n, hf = 1, f 2 = 0, where
f is the equivalence class of a fiber;

2. If n > 0 ∃! curve B in Fn with B2 < 0 and its class b in Pic(Fn) is such
that b2 = −n, bf = 1, b = h − nf ;

3. Fn ≅ Fm⇔ n =m;

4. Fn is minimal⇔ n ≠ 1;

5. F1 is the blow up of P2 in a point.
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Proof. 1. By Theorem 3.14 Pic(Fn) ≅ Zf⊕Zb, since Zf = p∗ Pic(P1), with
b2 = −n, bf = 1, f 2 = 0. If we take h = b + nf we get the thesis.

2. Note that if n = 0 there are no curves with negative autointersection.
The only non trivial part of the statement is the uniqueness of B. Let
us suppose there exists a curve C such that C ≠ B and C2 < 0. In
Pic(Fn) C = αh + βf for some α,β ∈ Z. Then

0 ≤ CF = (αh + βf)f = α
0 ≤ CB = (αh + βf)(h − nf) = αn + (β − nα) = β.

Hence C2 = (αh + βf)2 = αn + 2αβ ≥ 0. Contradiction.

3. ⇐ Immediate.

⇒ If n ≠ m the only curves with negative autointersection have dif-
ferent autointersection values. Hence Fn /≅ Fm.

4. Fn is not minimal⇔∃E ≅ P1 with E2 = −1. Hence, by the second point
of Theorem 4.2 if n ≠ 1 Fn is minimal. Of course, if n = 1, B is an
exceptional curve and therefore F1 is not minimal.

5. We have to prove that contracting the curve E in F1 with E2 = −1 we
get P2. Let us then consider the map

P2 ⇢ P1

(x0 ∶ x1 ∶ x2) ↦ (x0;x1)
;

this map is the projection with center (0 ∶ 0 ∶ 1). The linear system
induced by the map is P = {lines through (0 ∶ 0 ∶ 1)}. Let us resolve
the map.

S

P2 P1

............................................................
....
............

ε ................................................................ ........
....

......................................................................... ............

The result of the resolution is outlined in Figure 4.1. Since the surface
is geometrically ruled and there exists a curve E with E2 = −1, by the
second point of the proof, what we get is F1.

4.1 Examples of rational surfaces

A rational map Φ ∶ P2 ⇢ PN is given by a linear system P = Φ∗∣H ∣ on P2

without fixed part and (possibly) with some base points. Taken a resolution
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Figure 4.1: Resolution of the projection map

of Φ

S

P2 PN

............................................................
....
............

ε ................................................................ ........
....

........................................................................ ............

Φ

we want to study when Φ ○ ε is an embedding. We shall restrict ourselves
to simple blow ups and birational Φ. In particular, we will study example
where

ε∗Φ∗∣H ∣ ⊆ ∣dl −∑miEi∣, (4.1)

where d,mi ∈ N and l ∈ Pic(P2) is the class of a line (actually in (4.1) we
used a little abuse of notation, in fact by l we mean ε∗l). The cases we are
interested in are d = 2 and d = 3.

Fact 4.3. h0(OPr(k)) = (r + k
r

) (it is a simple combinatorial fact; we only

have to count the number of monomials in r + 1 variables of degree k).

When is the map induced by ∣dl −∑miEi∣ an embedding?

• Injective⇔ separates points. That is ∀x, y ∈ S ∃C ∈ ∣dl −∑miEi∣ such
that x ∈ C, y /∈ C (if x ∈ E1, this determines a tangent direction on
Tε(x)P2, hence we have to check that there exists e curve in P2 passing
through ε(x) with that particular tangent direction).

• Injective differential⇔ separates tangents. That is ∀x ∈ S the curves
of P passing through x have not all the same tangent direction.
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Remark 4.4. Let S ⊂ PN smooth surface and N > 5. Then ∃ a projection
π ∶ PN ⇢ PN−1 such that π∣S ∶ S → π(S) is biregular.

Proof. When the projection map with center p ∈ PN does not work? If either
p ∈ S (in this case the restriction π∣S would not be a morphism), or a line
through p contains two points of S (in this case π∣S would not be injective),
or a line through p is tangent to S (in this case π∣S would not separates
tangents). Hence we can prove that the set of points that do not work is
the image of a variety X of dimension 5. In order to prove this, let us
consider the Zariski closure of the set {(x, y, t) ∈ S × S × PN ∶ x ≠ y, t ∈ xy};
basically, this subvariety of S × S × PN is the locus of the triples (x, y, t),
where either t lies on the line passing through x and y when these are two
distinct points, or t belongs the tangent plane at x if x = y. This variety
surjects on S × S with a general fiber isomorphic to P1, hence its dimension
is (dimS × S) + dimP1 = 4 + 1 = 5.

Remark 4.4 gives the following result.

Proposition 4.5. Every projective surface is isomorphic, via generic pro-
jection, to a smooth surface in P5.

4.1.1 Linear systems of conics

Since the number of conics in 2 variables is 6, the linear system P = ∣2l∣
induces a map Φ ∶ P2 → P5 which is an embedding. The image of Φ is the
Veronese surface V .

Remark 4.6. V contains no lines of P5.

Proof. Let C ⊂ V , then

degOC(H) = Φ−1(C) ⋅Φ∗H
= Φ−1(C) ⋅ 2l = 2 deg Φ−1(C),

that is an even number. For a line this number is 1, so C cannot be a line.

On the other hand, let us consider l ⊂ P2 a line. 2l ⋅l = 2, hence Φ(l)⋅H = 2.
This means that the lines of P2 are mapped onto conics in V .

Proposition 4.7. Let p ∈ P5 be a generic point. Then projecting away for p
πp ∶ P5 ⇢ P4 induces an isomorphism of V onto its image V ′ ⊂ P4.

We mention the following important characterization of the Veronese sur-
face, which unfortunately we have no time to prove.
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Theorem 4.8. ∀S ⊂ P5 non degenerate1, if ∃p ∈ P5 such that πp∣S is an
embedding, then, up to a coordinate change, S is the Veronese surface.

Proof of Proposition 4.7. The lines of P2 are parametrized by (P2)∨ (the dual
space of P2). Each line l in P2 determines a plane containing the conic Φ(l).
This defines a P2-bundle over (P2)∨ Y 4 ⊂ (P2)∨ × P5. The secant variety is

X5 ⊂ S × S × PN ∶= {(p, q, t) ∶ t ∈ pq and p ≠ q};

in our case N = 5, S = V ⊂ P5. Let p, q ∈ S, then Φ−1(p)Φ−1(q) is a line in P2;
this line is mapped into a conic C ⊂ P5, and pq is contained into the plane
containing C. Hence the image of X → S × S is contained in the image of
Y → P5. Any six point p out of the image of Y will then do the job.

What if we project once more?

V ⊂ P5

smooth V ′ ⊂ P4

singular Steiner ⊂ P3

..........................................................
.....
.......
.....

general projection

..........................................................
.....
.......
.....

general projection

If we project P5 ⇢ P4 away from p ∈ V the restriction π∣V is no longer
defined on the whole V . Resolving the map we get

P2 P4

F1

......................................................................... ............

.........
.........

.........
...............................

.........
.........
.........
...................
............

and the composition, induced by the linear system ∣2l −E∣, embeds F1 in P4.

f = l −E
B = E

1X ⊂ PN is said to be non degenerate if /∃ PN−1
⊂ PN a linear subspace X ⊂ PN−1.
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In the description of Pic(F1), the system ∣2l −E∣ is given by ∣2f + b∣ = ∣h+ f ∣.
Where is a fiber mapped?

f ⋅H = f ⋅ (2f + b) = 1,

hence each fiber is mapped into a line of P4. And where is B mapped?

b ⋅H = b ⋅ (2f + b) = 2 ⋅ 1 − 1 = 1,

hence B too is mapped into a line. Moreover, we can compute the degree of
these surfaces.

degV = (2l)2 = 4;

degV ′ = (2l)2 = 4;

degF1 = (2f + b)2 = 4bf + b2 = 4 − 1 = 3.

With a little abuse of notation we wrote degF1; in fact, this computation
would be meaningless for the abstract Hirzebruch surface F1, it is possible
only because in this case F1 is embedded into the projective space P4.

Exercise 4.9. Projecting a smooth surface S ⊂ PN away form a general
point, if the map we get is birational, then the degree of the image is the
same of the degree of the original surface. If the center of the projection
lies on the surface, still assuming the map to be birational, the degree of the
image decreases by one.

Projecting twice from points internal to the Veronese surface we get the
situation represented in the following:

P2 V4 ⊂ P5

F1 S3 ⊂ P4

further
blow up

Q2 ⊂ P3

............................................................................................................................................................................................................................................................................................................... ......................
......

∣2l∣

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

...................................................................................................................................................................................................................................................................................................................... ............
∣2l −E∣


∣2l −E1 −E2∣

....................................................................
.....
.......
.....

projection

....................................................................
.....
.......
.....

projection
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..............
............

where, for a fixed p ∈ P2 (and, with a slight abuse of notation, p ∈ V4 is the
image of p), E is the exceptional divisor of the blow up F1 → P2 in p; the
map V4 ⇢ S3 is the projection with center p; p2 ∈ F1 (and, as before, p2 ∈ S3
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will denote its image as well); E2 is the exceptional divisor of the blow up of
F1 in p2 and E1 the pull back of E; finally, S3 ⇢ Q2 is the projection with
center p2.

Let us begin from the top of the diagram and let us study the map
P2 ↪ V4 ⊂ P5. We denote the coordinates on P2 by (x0 ∶ x1 ∶ x2) and those on
P5 by (y0 ∶ ⋅ ⋅ ⋅ ∶ y5). Let q0, . . . , q5 be a base for C[x0, x1, x2]2 (its dimension
is 6 by Fact 4.3).

The linear system ∣2l∣ induces a ring morphism

ϕ ∶ C[yi] Ð→ C[xj]
yi z→ qi

more precisely
ϕd ∶ C[yi]d Ð→ C[xj]2d.

What is the kernel of this map?

kerϕ = {polynomials in yi variables whose pull back vanishes in P2}
= {polymomials in yi variables that vanishes on V4}
= ideal that defines V4 in P5

It is immediate to see that kerϕ0 = {0} because ϕ0 = IdC is an isomorphism
by definition (regardless the linear system we are considering). Moreover,
since {qi} is a basis and V4 is non degenerate, kerϕ1 = {0}.

Let us study kerϕ2. By 4.3, C[yi]2 ≅ C21 and C[xj]4 ≅ C15, hence

ϕ2 ∶ C21 → C15

and dim kerϕ2 ≥ 6. Let us choose the the qi in the simplest possible way.

q0 = x2
0 q1 = x0x1 q2 = x0x2

q3 = x2
1 q4 = x1x2 q5 = x2

2

∀(x0, x1, x2) ∈ C3 ∖ {0} the matrix

⎛
⎜
⎝

x2
0 x0x1 x0x2

x0x1 x2
1 x1x2

x0x2 x1x2 x2
2

⎞
⎟
⎠

has rank 1, hence ∀(y0 ∶ ⋅ ⋅ ⋅ ∶ y5) ∈ V4,

rk
⎛
⎜
⎝

y0 y1 y2

y1 y3 y4

y2 y4 y5

⎞
⎟
⎠
= 1;
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this means that each 2×2-minor of that matrix is equal to zero on V4. Hence
we get six quadrics

y0y3 − y2
1, y0y4 − y1y2, y1y4 − y2y3, y0y5 − y2

2, y1y5 − y2y4, y3y5 − y2
4 (4.2)

that vanishes in V4.

Exercise 4.10. What we have seen so far proves that

V4 ⊂ V
⎛
⎜
⎝

rk
⎛
⎜
⎝

y0 y1 y2

y1 y3 y4

y2 y4 y5

⎞
⎟
⎠
= 1

⎞
⎟
⎠
,

Show that V4 is exactly the zero locus of the quadrics in (4.2).

Now let us study S3, the surface we obtain projecting V4 out of a point
p ∈ V4. By Exercise 4.9, S3 will have degree 3. The linear system ∣2l − E∣
is the system of the conics passing trough the fixed point p. Let us denote
the coordinates in P4 by (z0 ∶ ⋅ ⋅ ⋅ ∶ z4), and fix Q0, . . . ,Q4 a basis for the set
{f ∈ C[x0, x1, x2]2 ∶ f(p) = 0}. We have a ring morphism

ψ ∶ C[zi] Ð→ C[xj]
zi z→ Qi

,

more precisely
ψd ∶ C[zi]d Ð→ C[xj]2d.

Let us study the kernel of this map. As before, kerψ0 = kerψ1 = {0}.

ψ2 ∶ C[zi]2 Ð→ C[xj]4,

and C[zi]2 ≅ C[xj]4 ≅ C15. Anyway ψ2 is not surjective, since all Qi vanish
in p. Hence every quadric in zi will be mapped in a linear combination of
QiQj, that vanish in p twice. Therefore

Imψ2 ⊂ {f ∈ C[xj]4 ∶ f vanishes at least twice in p}.

How many conditions these assumptions determine?

Example 4.11. Let us suppose p = (1 ∶ 0 ∶ 0) and let

f4 = ax4
0 + bx3

0x1 + cx3
0x2 + x2

0A2(x1, x2) + x0B3(x1, x2) +C4(x1, x2)

be a generic quartic. Then

• f4(p) = 0⇔ a = 0;
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• f4 singular in p⇔ b = c = 0.

• f vanishes in pÔ⇒ one linear condition on the coefficients of f ;

• f singular in pÔ⇒ two linear condition on the coefficients of f .

Hence dim Imψ2 ≤ 12 ⇒ dim kerψ2 ≥ 3. Therefore ∃Q0,Q1,Q2 ∈ C[zi]2

independent such that
S3 ⊂ V (Qi).

Remark 4.12. The quadrics Qi are irreducible; indeed, suppose that Qi =
Π1 ∪Π2, then, since S is irreducible, either S = S ∩Π1 or S = S ∩Π2. Hence
S ⊂ Πi is degenerate.

Q0 ∩Q1 =∶ Σ is a surface of degree

#Σ ∩H1 ∩H2
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

P2

= 2 ⋅ 2 = 4.

S is a surface of degree #S ∩H1 ∩H2 = 3. Hence, defining Π ∶= Σ ∖ S,

#Π ∩H1 ∩H2 = 4 − 3 = 1,

thus Π is a plane. This means that the two quadrics Q0 and Q1 cut the
surface S and a plane in P4, the third quartic will get rid of this extra plane.

Π = {l0 = l1 = 0} with li ∈ C[zj]1. Q0 and Q1 vanishes on Π⇔ Qi ∈ (l0, l1)
(the ideal generated by l0 and l1). Hence

Q0 = l0A1 − l1A0, Q1 = l0B1 − l1B0 with Ai,Bj ∈ C[zj]1.

We shall rewrite the last equations as

Q0 = det(l0 A0

l1 A1
) Q1 = det(l0 B0

l1 B1
) .

Let us define

M = (l0 A0 B0

l1 A1 B1
)

and Z = {rkM = 1}. Let P ∈ Σ. Let us suppose that l0(P ) ≠ 0, then in P

A1 =
A0l1
l0

, B1 =
B0l1
l0

;

A0B1 −A1B0 =
A0B0l1
l0

− A0B0l1
l0

= 0,
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hence P ∈ Z. Analogously we prove that l1(P ) ≠ 0 ⇒ P ∈ Z. Hence P ∈
Σ ∖ Π ⇒ P ∈ Z. This means that S ⊂ Z and therefore A0B1 − A1B0 is in
kerψ2. One could indeed prove that the 2× 2 minors of M generate kerψ by
proving S = Z.

Let C ∶= S ∩Π; it is defined by l0 = l1 = A0B1 −A1B0, hence it is a conic
in Π ≅ P2. Suppose to have a plane conic in S that is C2 ⊂ Π ≅ P2 such that
C2 ⊂ S. Let Σ ∶= S ∪Π; we want to compute the dimension of the space W
of the quadrics in C[zj]2 vanishing on Σ. Clearly W ⊂ span(Q0,Q1,Q2) ⊂
C[zj]2.

Choose a point P ∈ Π∖C, hence P /∈ S, let

W ∶= {f ∈ C[zj]2 ∶ f vanishes onS ∪ {P}}

W ⊂ W ⊂ span(Q0,Q1,Q2) and since P /∈
S dimW = 3 − 1 = 2.
If Q ∈W , then Q ∩Π is a conic that con-
tains C and P . Contradiction!
Hence Q∩Π = Π, thus W =W , so dimW =
2.

So we have proved the following proposition.

Proposition 4.13. The cubic ruled surface S ⊂ P4 is contained in a 2−dimensional
linear system of quadrics in P4, of which it is the intersection. For every pen-
cil of quadrics {λQ1+µQ2} containing S, Q1∩Q2 = S∪P , where P is a plane
and S∩P a conic. Conversely, for every conic on S lying in a plane P , S∪P
is the intersection of two quadrics.

If we project once more, we get the bottom part of the diagram seen
above:

blow up↠ Q2 ⊂ P3.

Fact 4.14. If p2 /∈ B Q2 is smooth and ≅ P1 × P1.
If p2 ∈ B, then B is contracted into a singular point of Q2.

4.1.2 Linear system of cubics

Let p1, . . . , pr ∈ P2 in general position (that is, that no triple of pis lies on a
line, and none 6−tuples of pis lies on a conic). Let d = 9 − r and Sd the blow
up of P2 in p1, . . . , pr with exceptional curves E1, . . . ,Er.

Theorem 4.15. If r ≤ 6 (that is d ≥ 3)∣ −KSd
∣ = ∣3l − ∑Ei∣ is very ample;

this means that such linear system embeds Sd in P10−r−1 = Pd.
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Proof. Exercise. Hint: first study r = 6.

Fact 4.16. A surface S with ∣ −KS ∣ very ample is said to be a Del Pezzo
surface. It is possible to prove that the only del Pezzo surfaces are Sd ⊂ Pd
with 3 ≤ d ≤ 9 and P1 × P1 ⊂ P8.

Let then study Sd ↪ Pd; first, let us compute the degree of such surface

degSd = #Sd ∩H1 ∩H2 = (3l −∑Ei)2

= 9l2 +
r

∑
i=1

E2
i − 6∑ lEi − 2∑

i≠j
EiEj

= 9 − r = d.

Hence del Pezzo surface of degree d is embedded in Pd.
Let us study S3 ⊂ P3. As before, we have ring morphisms

ψd ∶ C[yi]d Ð→ C[xj]3d.

kerψ0 = kerψ1 = {0}. Let us study the map

ψ2 ∶ C[y0, . . . , y3]2 Ð→ C[x0, x1, x2]6

C[yi]2 ≅ C10 and C[xj]6 ≅ C28, but we are interested only in those sextics
passing trough p1, . . . , p6 and singular in such points, hence we have 6×3 = 18
linear condition. Thus the map

ψ2 ∶ C10 Ð→ C10 (4.3)

might be injective. The map ψ3 is

ψ3 ∶ C20 → C55−36 = C19, (4.4)

since the triple nonic passing trough p1, . . . , p6 determines 6 × 6 = 36 condi-
tions. Hence dim kerψ3 ≥ 1.

It is possible to prove that the ideal of S3 is principal and generated
by a cubic; in particular dim kerψ2 = 0 and dim kerψ3 = 1 as the above
computation suggested.

Let us study now S4 ⊂ P4; for this surface we need at least two equations.
Indeed

ψ2 ∶ C15 Ð→ C28−15 ≅ C13, (4.5)

since we have 3 linear conditions for each of the 5 points pi. Actually S4 is a
complete intersection surface of two quadrics in P4.
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In fact, the computations in (4.3), (4.4) and (4.5) are a bit sloppy because
we never checked that the conditions imposed by the points are independent.
In particular, the target spaces could have dimension bigger than the one
we wrote. This is not the case. Let us prove, for example, that in (4.5)
the target space actually is C13, that is we want to prove that h0(OS4(6l −
2∑5

i Ei)) = 13 (∣6l − 2∑5
i Ei∣ represents the linear system of sextics passing

with multiplicity two trough our five points). What we have proved so far is
that h0(OS4(6l − 2∑5

i Ei)) ≥ 13.
Let H ⊂ P4 be an hyperplane. If H is generic, H ∩S4 ≅ C ⊂ P2 is a smooth

cubic passing trough p1, . . . , p5, hence an elliptic (hence of genus 1) curve.
OS4(6l − 2∑5

i Ei) = OS4(2H), hence

0Ð→ OS4(2H −H) Ð→ OS4(2H) Ð→ OC(2H) Ð→ 0,

thus

h0(OS4(2H)) ≤ h0(OS4(H)) + h0(OC(2H))
= h0(OS4(3l −∑Ei)) + h0(OC(2H))
≤ 5 + χ(OC(2H))
= 5 + deg(OC(2H)) = 5 + 2H ⋅C = 5 + 2 degS4 = 13.

Fact 4.17. Del Pezzo surfaces of degree 3 and 4 are complete intersections;

• S3 Ð→ one cubic equation in P3;

• S4 Ð→ two quadric equations in P4.

S5, . . . , S9 are not complete intersection; actually they need more than d − 2
equations.

Let us study S3, in particular we want to see whether S3 contains some
lines. As we have seen above, we have

Ei ∈ S3 P3

pi ∈ P2

......................................................................................................................................................................................................................................................................................................................................... ......................
......

∣3l −∑Ei∣ = ∣ −KS ∣
..............................................................................................................................................................
.....
.......
.....

with p1, . . . , p6 points in general position. Let C ⊂ S3 be a line in P3. Then
C ≅ P1, and C ⋅ (3l −∑Ei) = 1 ⇔ KS ⋅C = −1, hence, by the genus formula,
C2 = −1. Thus a line in S3 is an exceptional curve.
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We know six of them, E1, . . . ,E6. Let us define ∀i < j

lij ∈ ∣l −Ei −Ej ∣;

these 15 curves are the strict transforms of the lines in P2 passing through
pi and pj. Moreover

(3l −
6

∑
k=1

Ek)(l −Ei −Ej) = 3l2 − 1 − 1 = 1,

hence each lij is a line. Let us define

qi ∈ ∣2l −
6

∑
k=1

Ek +Ei∣;

this is the strict transform of the conic in P2 passing through every pj except
for pi. Then each one of the six qi is such that

q2
i = (2l −∑Ek +Ei)2 = 4l2 − 6 − 1 + 2 = −1.

Therefore what we have proved so far is that S3 contains at least 6+15+6 = 27
lines of P3. We want to prove that no other line is contained in S3.

Firs of all, we shall remark that if we take two lines, they either have
intersection 0 (if they are disjoint) or 1 (if they intersect). One can easily
check that the lines, among these 27, intersecting E1, are

l12 l13 l14 l15 l16

q2 q3 q4 q5 q6

Exercise 4.18. Verify that each of the above 27 lines intersects exactly 10
of the other 26.

By 2.7, Pic(S) = Zl ⊕ ZE1 ⊕ ⋅ ⋅ ⋅ ⊕ ZE6 ≅ Z7, hence each C ∈ Pic(S) shall
be written in the following way:

C ≡ al −
6

∑
i=1

miEi.

Let us suppose that C is a line and C ≠ Ei, hence either C ⋅Ei = 0 or C ⋅Ei = 1.
But C ⋅Ei =mi, hence mi ∈ {0,1}. Furthermore, we know that C2 = −1, then

−1 = C2 = a2 −∑m2
i ≥ a2 − 6,

hence a2 ≤ 5⇒ a ∈ {0,1,2} (a ≥ 0 otherwise C would not be effective). Hence

a = 0⇒ ∑m2
i = 1⇒ C = Ei

a = 1⇒ ∑m2
i = 2⇒ C = lij

a = 2⇒ ∑m2
i = 5⇒ C = qi
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Theorem 4.19. Let S be a smooth cubic in P3, then S is the blow up of P2

in 6 points in general position embedded by ∣3l −∑Ei∣.
Proof. First of all, we study the Klein quadric; this is a set that parametrizes
the lines in P3 and has a natural structure of variety.

Let L ⊂ P3 be a line, and a, b ∈ L; then

a = (a0 ∶ a1 ∶ a2 ∶ a3)
b = (b0 ∶ b1 ∶ b2 ∶ b3).

Let us define the map

⎛
⎜⎜⎜
⎝

a0 b0

a1 b1

a2 b2

a3 b3

⎞
⎟⎟⎟
⎠
z→ (a0b1−b0a1 ∶ a0b2−a2b0 ∶ a0b3−a3b0 ∶ a1b2−a2b1 ∶ a1b3−a3b1 ∶ a2b3−a3b2)

This function, seen as a map {lines in P3} → P5 is well defined, since if
we change the two points and/or their homogeneous coordinates without
changing the line, it changes the matrix on the left, but the values at the
right change only by a multiplicative constant. This map is not surjective:
indeed

{lines in P3} ∼Ð→ G ∶= {y0y5 − y1y4 + y2y3 = 0} ⊂ P5.

Fact 4.20. The map {lines in P3} → G is bijective.

One can easily prove that two different lines are mapped to two different
points of G, which is called the Klein quadric and therefore gives a good
parameter space for the set of lines in P3. Computing the derivative, one
can easily check that G is a smooth variety of dimension 4. Let us consider
P = ∣OP3(3H)∣ (that is the linear system of the cubics in P3) and the set
I ∶= {(L,S) ∶ L ⊂ S} ⊂ G × P .

I ∶= {(L,S) ∶ L ⊂ S}

G P

........................................................................................
....
............

π1
............................................................................................ ........

....

π2

Let us denote by (x ∶ y ∶ z ∶ t) the coordinates in P3. Let L ∈ G; up to a change
of coordinates, we shall suppose that L = {z = t = 0}, thus (L,S) ∈ π−1

1 (L) ⇔
S = {f3 = 0,where f3 does not contain the monomials x3, x2y, xy2, y3} ≅ PdimP−4.
Therefore, I is a smooth variety of (complex) dimension

dimI = dimG + dimP − 4 = 4 + dimP − 4,

that is dimI = dimP . Now let us consider π2: this is a map among two
complex varieties of the same dimension. Then:
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• either π2 has degree strictly positive and π2 is onto;

• or π2 has degree zero: in this case ∀p ∈ π2(I), p is not a regular value
and π−1

2 (p) is not a finite set.

We know that S3, the del Pezzo surface of degree 3, is a cubic and contains
exactly 27 lines. This means that S3 ∈ π2(I) and π−1

2 (S3) is finite. Hence π2

cannot have degree 0 and it is onto. This means that each cubic contains a
line of P3: ∀S ∈ ∣OP3(3)∣ ∃L ⊂ S with L line of P3.

Let S be a smooth cubic in P3, L a line contained in S. We want to find
all the lines in S intersecting L. Since two lines intersecting in a point are
contained in the same plane, let us study the pencil of planes L ⊂ H. Up to
a change of coordinates, we may suppose that L = {z = t = 0}, hence we get a
natural explicit parametrization of the pencil of planes by associating to each
point (a ∶ b) ∈ P1 the plane {az + bt = 0}. It is easy to see that H ∩S = L∪C,
where C is a conic; if H is a general plane, C will be smooth, otherwise, C
could be the union of two lines (possibly a double line). We want to study
in which case the conic we get is non smooth. Let us write the equation of
S in the following way:

Ax2 + 2Bxy +Cy2 + 2Dx + 2Ey + F, (4.6)

where A,B,C,D,E,F ∈ C[z, t] with degA = degB = degC = 1, degD =
degE = 2 and degF = 3. Written as (4.6), the equation looks like the
equation of a conic, whose rank depends on the matrix

M ∶=
⎛
⎜
⎝

A B D
B C E
D E F

⎞
⎟
⎠

;

detM ∈ C[z, t]5, hence its zero locus is the union of H1, . . . ,H5, 5 planes
through L. Since S is smooth, it is possible to prove that

• H1, . . . ,H5 are distinct (that is detM is square free);

• ∀Hi, Hi∩S = L∪Li∪L′i are three distinct lines. Moreover, for each plane
H in the pencil different from these 5, since the rank of M becomes 3,
the intersection H ∩ S is the union of a line and a smooth conic.

Hence we have found 11 lines contained in S, and we know that every other
line in S would be disjoint form L. If 3 distinct lines in S meet at a point
p ∈ S, then, since S is smooth, they lie in the tangent plane to S at p, and so
they are coplanar. Now consider L1 and L2, they are not coplanar (because
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H1 ≠H2), so L∩L1 and L∩L2 are distinct. It easily follows that (again since
they are not coplanar) L1 ∩L2 = ∅. Let us define then two birational maps

Φ ∶ L1 ×L2 ≅ P1 × P1 ⇢ S

Ψ ∶ S ⇢ L1 ×L2 ≅ P1 × P1

• For p, p′ general point in L1 and L2 respectively, then Φ(p, p′) = p′′,
where p′′ is the only intersection different from p and p′ of pp′ and S.
This function is not defined if pp′ ⊂ S;

• ∀s ∈ S ∖ (L1 ∪ L2) let Π1 be the plane passing through s and L1, let
Π2 be the plane passing through s and L2 and L′ ∶= Π1 ∩Π2, then we
define Ψ(s) = (L′ ∩L1, L′ ∩L2).

It is easy to see that Φ is the inverse of Ψ and vice versa. Hence S is rational.
Moreover, Ψ can be extended to a morphism: if s ∈ L1 we take Π1 ∶= TsS, if
s ∈ L2 we take Π2 ∶= TsS. Therefore we have a map

Ψ ∶ S → P1 × P1,

that is a birational morphism, and so a sequence of blow ups, as many as are
the curves contracted by Ψ. Let us count these curves.

Let s1, s2 ∈ S ∖ (L1 ∪ L2) and suppose Ψ(s1) = Ψ(s2) = (p, p′), then
s1, s2 ∈ pp′ ⇒ #{pp′ ∩ S} ≥ 4 > 3 ⇒ pp′ ⊂ S. This means that the curves
contracted by Ψ are exactly the lines that intersect both L1 and L2. We
proceed to calculate the number of these lines. We know that the lines
meeting L fall into 5 pair (Li, L′i) with 1 ≤ i ≤ 5. such that Li, L′i and L lie in
a plane Hi. Hi meets L2 in one point, which lies on Li or L′i (but not both,
for else, Li, L′i and L2 would be coplanar). Thus one line in each pair meets
L2 as well, and so Ψ contracts 5 lines.

S

SIV

SIII

SII

SI

P1 × P1 F1

P2

..........................................
....
............

..........................................
....
............

..........................................
....
............

..........................................
....
............

..........................................
....
............

......................................... ........
....

......................................... ........
....

Hence (see the diagram on the
left) S is a blow up of P2 in six
points. Moreover, it is not difficult
to prove that H = 3l∖(E1∪⋅ ⋅ ⋅∪E6),
that is that S is embedded by the
system of cubics through the six
points; in other words, S is a del
Pezzo surface S3.
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Chapter 5

Castelnuovo’s Theorem and its
applications

5.1 Castelnuovo’s Theorem

At the end of 19th century, it was a well known fact that if C is a projective
smooth curve such that h0(Ω1

C) = 0, then C ≅ P1. What happens in dimension
2? In the previous chapter we have seen that for a surface S q(S) ∶= h0(Ω1

S)
and pg(S) ∶= h0(Ω2

S) are birational invariants, moreover q(P2) = pg(P2) = 0,
hence it is immediate to conclude that if S is a smooth projective rational
surface, then q(S) = pg(S) = 0. Does the opposite implication hold, as in the
case of the curves?

Conjecture 5.1 (Max Noether’s conjecture). If S is a smooth projective
surface, with q = pg = 0, then S is rational.

Enriques built a counterexample to Noether’s conjecture; in particular,
he defined a non rational surface S with q = pg = 0 and P2 = 1.

The construction of Enriques gave the motivation to Castelnuovo to prove
its important criterion.

Theorem 5.2 (Castelnuovo’s rationality Criterion). Let S be a projective
surface with q = P2 = 0, then S is rational.

Let us recall that

pg ∶= h0(OS(KS)) P2 ∶= h0(OS(2KS)).

Remark 5.3. If pg ≠ 0, then P2 ≠ 0; indeed, if σ ∈ H0(OS(KS)), then
σ2 ∈ H0(OS(2KS)). The opposite implication does not hold by, e.g., the
above mentioned Enriques’ construction.
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In order to prove Theorem 5.2, we need the following proposition.

Proposition 5.4. Let S be a minimal projective surface with q = P2 = 0,
then ∃C ⊂ S smooth curve such that C ≅ P1 and C2 ≥ 0.

We do not give the full proof of Proposition 5.4, but only a short sketch,
to give an idea on how the hypotheses are used.

Proof of Theorem 5.2. We shall assume, without loss of generality that S is
minimal, then, by Proposition 5.4, there exists C ⊂ S smooth curve such that
C ≅ P1 and C2 ≥ 0. Let us consider the exact sequence

0Ð→ OS Ð→ OS(C) Ð→ OC(C) Ð→ 0.

OC(C) ≅ OP1(C2), hence we get the exact sequence

0Ð→H0(OS) Ð→H0(OS(C)) Ð→H0(OP1(C2)) Ð→H1(OS) Ð→ . . . ,

but H1(OS) =H0(Ω1
S) = 0 by q = 0, hence the sequence becomes

0Ð→H0(OS) Ð→H0(OS(C)) Ð→H0(OP1(C2)) Ð→ 0;

moreover H0(OS) ≅ C (because S is compact) and H0(OP1(C2)) ≅ CC2+1.
Hence h0(OS(C)) = C2+2 ≥ 2 (that is the curve C is not rigid) and dim ∣C ∣ =
h0(OS(C))−1 ≥ 1. This implies that there exists an effective divisor different
from C and linearly equivalent to it. Moreover, since C is irreducible, ∣C ∣
has no fixed part.

Taking a pencil D contained in ∣C ∣ without fixed part, it defines a map
on P1

Ŝ

S P1

............................................................
....
............

................................................................ ........
....

ϕ

......................................................................... ............

Resolving the map, we get a surjective morphism ϕ with basis P1 and a fiber
isomorphic to C ≅ P1 (the strict transform of C). Hence by Theorem 3.5 Ŝ
is ruled on P1 and we get the thesis.

Sketch of the proof of Proposition 5.4. By Serre duality

0 = h0(2K) = h2(−K)

hence 1 +K2 = χ(−K) = h0(−K) − h1(−K) + h2(−K) ≤ h0(−K). In the proof
one distinguishes three cases: K2 < 0, K2 = 0, K2 > 0. We consider only the
case K2 = 0. For K2 = 0, we have h0(−K) ≥ 1, hence −K ≥ 0. Let us fix
H ∈ Pic(S) very ample, and let us study ∣H + nK ∣: since −K ≥ 0, ∃n such
that ∣H + nK ∣ ≠ ∅ and ∣H + (n + 1)K ∣ = ∅: fix D ∈ ∣H + nK ∣. D is effective
and the following properties hold:
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• ∣K +D∣ = ∅;

• K ⋅ D < 0 indeed K ⋅ D = K ⋅ H + nK2 = −H ⋅ (−K) < 0, where last
inequality holds because H is ample and −K is effective.

D = ∑niCi with Ci is curve and ni > 0 ∀i. Since ∀i D −Ci ≥ 0, h0(K +Ci) ≤
h0(K +D) = 0⇒ ∀i ∣K +Ci∣ = ∅. Moreover, ∃i such that K ⋅Ci < 0, otherwise
the second property seen above would not hold. Hence there exists C < D
irreducible such that ∣K + C ∣ = ∅ and K ⋅ C < 0. Since C is irreducible, we
can exploit 1.104 to compute the arithmetical genus

0 ≤ pa(C) = 1 + K ⋅C +C2

2
⇒K ⋅C +C2 ≥ −2

Since K ⋅C < 0, C2 ≥ −1.
If C2 = −1, then

0 ≤ 1 + KC − 1

2
< 1⇒KC = −1, pa(C) = 0⇒ C ≅ P1

by Exercise 2.29. But this gives a contradiction, since S by hypothesis is
minimal. Thus C2 ≥ 0.

Now we prove that C ≅ P1. Since ∣K +C ∣ = ∅

0 = h0(K +C) ≥ χ(K +C) (1.10)= χ(O) + (K +C)(K +C −K)
2

= (1 − q + pg) +
KC +C2

2

by assumption q = 0 and by Remark 5.3 P2 = 0⇒ pg = 0, hence 1 − q + pg = 1,
thus

0 ≥ 1 + KC +C2

2
= pa(C) ⇒ 0 ≥ pa(C),

thus we conclude that pa(C) = 0 and C ≅ P1.

Remark 5.5. Let f ∶ S′ ↠ S a surjective morphism among two surfaces; it
induces an injective pull-back map

f∗ ∶H0(Ω2
S) ↪H0(Ω2

S′),

and more generally injective maps

f∗ ∶H0(Ωi
S) ↪H0(Ωi

S′).

Thus
pg(S′) ≥ pg(S), q(S′) ≥ q(S),

and analogously one can prove

P2(S′) ≥ P2(S), Pn(S′) ≥ Pn(S).
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Definition 5.6. A variety X of dimension n is said to be unirational if there
exists a map from Pn to X that is dominant, that means that its image is
dense.

Corollary 5.7. If S is an unirational surface, than it is rational.

Proof. Since pg(P2) = P2(P2) = 0, by Remark 5.5, pg(S) = P2(S) and by
Theorem 5.2 S is rational.

The Corollary holds even for unirational varieties with n = 1, but does
not hold for n ≥ 3.

Theorem 5.8. Let S be a minimal rational surface, then either S ≅ Fn with
n ≠ 1 or S ≅ P2.

Proof. We fix a very ample divisor H. Let us define

A ∶= {C smooth ,C ≅ P1,C2 ≥ 0} ≠ ∅.

Let m ∶= minC∈AC2 ≥ 0 and let us choose C ∈ A with C2 = m and H ⋅ C
minimal. In other words, for every smooth rational curve C1 with C2

1 = m,
H ⋅C1 ≥ H ⋅C > 0 (the second inequality follows as usual since C is effective
and H is ample).

1. We first prove that ∀D ∈ ∣C ∣ , D ≅ P1 smooth. Let D = ∑niCi ∈ ∣C ∣.

(K +D) ⋅C = (K +C) ⋅C = −2 < 0

by genus formula. Since C2 ≥ 0, it follows ∣K+D∣ = ∅ and then ∣K+Ci∣ =
∅ ∀i. Thus 0 = h0(K + Ci) ≥ χ(K + Ci) = pa(Ci) ∀i, where the last
equality holds by the Riemann-Roch Theorem. Hence by Exercise 2.29
∀i Ci ≅ P1 smooth. K ⋅ C ≤ −2 < 0 ⇒ ∃i such that K ⋅ Ci < 0 and, by
minimality of S (arguing as in the proof of Proposition 5.4), C2

i ≥ 0.
Thus Ci ∈ A.

C2 = C ⋅D = C ⋅Ci+C ⋅(D−Ci) = C2
i +(D−Ci)⋅Ci+C(D−Ci) ≥ C2

i , (5.1)

where last inequality holds since D−Ci, C, Ci are effective, and both C
and Ci are irreducible with non negative selfintersection. By the min-
imality of m, (5.1) implies that C2

i = m. Moreover, by the minimality
of H ⋅C,

Ci ⋅H ≥ C ⋅H =H ⋅D =H ⋅Ci +H(D −Ci);

since H ⋅ (effective divisor) > 0, D − Ci = 0, thus D = Ci and we are
done.
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2. We deduce that h0(OS(C)) ≤ 3. Let us fix p ∈ S general enough (p /∈ C)
and, for each element of H0(OS(C)) let us consider the first term of
its Taylor expansion in a neighbourhood of p; we get a map

eval ∶H0(OS(C)) → Op/m2 ≅ C[x, y]/(x, y)2 ≅ C3,

where x, y are coordinates defined in a neighbourhood of p; basically if
f ∈H0(OS(C))

eval(f) = f(0) + ∂f
∂x

(0)x + ∂f
∂y

(0)y.

If h0(OS(C)) ≥ 4, then dim ker eval > 0, thus ∃f ∈ H0(OS(C)) singular
in p ⇒ (f) ∈ ∣C ∣ is singular in p. But this contradicts the first step of
the proof.

3. Finally we prove is that m ∈ {0,1}. Let us consider the exact sequence

0Ð→ OS Ð→ OS(C) Ð→ OC(C) Ð→ 0;

since q = 0 = h1(OS), then 3 ≥ h0(OS(C)) = h0(OS) + h0(OC(C)) =
1 +m + 1 =m + 2, thus 0 ≤m ≤ 1.

• m = 0⇒ h0(OS(C)) = 2; we have a morphism S → P1 (the number
of base points is bounded from above by C2 = 0, hence there are no
base points) whose fibers are P1 (since ∀D ∈ ∣C ∣, D ≅ P1); therefore
S is geometrically ruled so by Proposition 4.1 and Theorem 4.2
S ≅ Fn with n ≠ 1.

• m = 1 ⇒ h0(OS(C))) = 3; we have a morphism S → P2 and it is
easy to prove that is a biregular morphism (one first prove that:
the linear system has no fixed part, then that it has also no base
points and finally construct an inverse of the map).

5.2 Complex tori

Let V be a complex vector space of finite dimension m; let Γ ⊂ V be a lattice,
that is Γ ⊂ B is a subgroup respect to the sum, Γ ≅ Z2m and generates V as
a real vector space. T = V /Γ is a compact variety (with a natural structure
of group) said complex torus. If T is projective, T is said to be an abelian
variety.
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The projection on the quotient π ∶ V → T is a covering map and

dπp ∶ TpV ≅ V → Tπ(p)T

is an isomorphism ∀p ∈ V and gives a canonical identification between V
and TqT ∀q ∈ T . Let ui be a coordinate of V ; then dui ∈ H0(Ω1

V ) and
dui ∈ V ∗ ≅ Cm, and it defines a section dui ∈ H0(Ω1

T ) (by a slight abuse of
notation we will also denote by dui the pull back π∗dui). This implies that
h0(Ω1

T ) ≥m.
Moreover, if ω ∈ H0(Ω1

T ) then π∗ω ∈ H0(Ω1
V ); π∗ω = ∑ fidui where fi are

holomorphic and Γ−periodic functions, thus fi is constant ∀i.

Corollary 5.9. π∗ ∶H0(Ω1
T )

∼Ð→H0(Ω1
V ) = V ∗.

This implies that if dimT = 2, then q = 2.

Theorem 5.10. Let T1 ∶= V1/Γ1, T2 ∶= V2/Γ2 be two complex tori and u ∶
T1 → T2 holomorphic. Then u = t ○ a, where t is a translation and a a group
homomorphism.

Proof. We exploit the properties of the universal covering: ∃! u ∶ V1 → V2

such that the diagram

V1 V2

T1 T2

.................................................................................................... ............
u

...............................................................................................
.....
.......
.....

π1

...............................................................................................
.....
.......
.....

π2

.................................................................................................... ............
u

commutes. It is immediate to prove that u is holomorphic because π1 and
π2 are local diffeomorphisms. ∀x ∈ T1, ∀γ ∈ Γ1 u(x + γ) − u(x) ∈ Γ2, that is a
discrete set. Hence for every fixed γ, u(x + γ) − u(x) is constant as function
of x ∈ V1. Hence ∂u/∂zj are Γ−periodic and therefore (by the maximum
principle) constant functions. This means that u is affine, that is u(x) = Ax+b
and clearly AΓ1 ⊂ Γ2; the map x↦ Ax goes down to a group homomorphism,
and Ax↦ Ax + b descends to a translation.

5.3 Albanese variety

We give the following Theorem, called universal property of Albanese variety,
without proof.

Theorem 5.11. Let X be a smooth projective variety. Then ∃! A ∶= Alb(X)
abelian variety and a morphism

α ∶X → Alb(X)
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with connected fibers such that ∀f ∶X → T with T complex torus ∃! f̃ ∶ A→ T
such that the diagram

X

A T

..........................................................
.....
.......
.....

α
................................................................................................... ........

....

............................................................... ............

commutes. The abelian variety A = Alb(X) is called the Albanese variety
of X and α is called Albanese map. Moreover the morphism α induces an
isomorphism

α∗ ∶H0(Ω1
A) →H0(Ω1

X)

Let us see some consequences of Theorem 5.11.

1. If H0(Ω1
X) = 0 (for example X = Pn, rational surfaces or with q = 0)

then each map X → T is constant.

2. ∀F ∶ X → Y morphism of smooth projective varieties, there exists a
unique morphism Alb(F ) ∶ Alb(X) → Alb(Y ) such that the diagram

X Y

Alb(X) Alb(Y )

....................................................................................................................................................................................................................................................................... ............
F

..........................................................
.....
.......
.....

αX
..........................................................
.....
.......
.....
αY

........................................................................................................................................................................................................ ............
Alb(F )

commutes.

3. α(X) is not contained in any sub-torus T ′ ⊂ Alb(X), indeed, consider-
ing X → T ′ the uniqueness is contradicted. In particular, if H0(Ω1

X) ≠ 0
α(X) is not reduced to a point, that is α is not constant. This implies
that α is constant⇔ H0(Ω1

X) = 0, hence α is constant ⇔ q = 0.

4. If X is a curve, then α is the Abel-Jacobi map, Alb(X) is equal to the
Jacobian JX and

α ∶X → JX

is embedded as a smooth curve.

Proposition 5.12. Let S be a projective smooth surface, α ∶ S → Alb(S) the
Albanese map. Suppose that α(S) = C is a curve. Then C is a smooth curve
of genus q.

The following lemma is given without proof.
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Lemma 5.13. Let S be a smooth projective surface and C an irreducible
curve; let η ∶ C̃ → C the normalization of C (that is C̃ is a smooth curve and
the map η is generically injective) then ∃S → C̃ such that

S C̃

C

................................................................................................... ........
....

............................................................... ............

..........................................................
.....
.......
.....

commutes.

Proof of Proposition 5.12. We have a commutative diagram

S

C ⊂Alb(S)

C̃

Alb(C̃) = JC̃

........................................................................... ............

............................................................................................................
.....
.......
.....

...........

α

........................................................................................................................ ............
u

.................................................................................................................................... v

.......................................................................................................................................................................................................................... .........
...

......................................................................................................................................
.....
............

where both u and v exist by the universal property. Moreover, by uniqueness,
u = v−1. Hence α(S) = C̃ ⊂ JC = Alb(C) = Alb(S), hence it is smooth of
genus dimJC = dim Alb(S) = q.

Hence for all S projective we have three possibilities:

• q = 0;

• dimα(S) = 1 and α(S) = C ↪ JC smooth curve of genus q;

• dimα(S) = 2.

Lemma 5.14. If pg = 0 and q ≥ 1, then dimα(S) = 1.

Proof. Since q ≠ 0 dimα(S) ≠ 0. If dimα(S) = 2, let then p ∈ Alb(S) be a
smooth point, then there exists Tpα(S) ⊂ Tp Alb(S); we shall remark that

p ∈ α(S) ⊂ Alb(S) = V /Γ
Tpα(S) ⊂ Tp Alb(S) ≅ V.

Let u1, u2 ∈ V independent directions in Tpα(S). Let

ω ∶= du1 ∧ du2 ∈H0(Ω2(Alb(S)))

that does not vanish identically on Tpα(S) ⊂ V . Then α∗ω ∈H0(Ω2(S)) does
not identically vanish in α−1(p). Hence pg(S) ≠ 0: a contradiction.
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Theorem 5.15. Let Φ ∶ S ⇢ S′ be a birational map among two non ruled
projective surfaces. If S and S′ are minimal, then Φ is biregular.

Another way to state Theorem 5.15 is that non ruled surfaces have a
unique minimal model.

Proof. The only thing to prove is that Φ is a morphism. Let us resolve Φ in
the way outlined in the following diagram:

Ŝ

S S′

...........................
....
............

εn
............................................

....
............

. . .
............................................

....
............

ε1

.............................................................................................................................................. ........
....

f

........................................................................................................................................... ............

let n be the minimum number of blow ups necessary to resolve Φ. Arguing
by contradiction, let us suppose that n > 1; let E be the exceptional curve
of εn: E ≅ P1, E2 = −1 and K ⋅E = −1. f ∣E is not constant, since otherwise
ε1 ○⋅ ⋅ ⋅○εn−1 would have resolved Φ as well. C = f(E) is an irreducible divisor
in S′, hence E is the strict transform of C. Recall that f is also a composition
of blow ups. Then one of the following occurs:

• None of the blow ups composing f involves points of C;

• Some of those blow ups involves points of C.

In the first case f ∣E ∶ E → C is an isomorphism, C ≅ P1, C2 = E2 = −1 and
KŜ ⋅E = KS′ ⋅C = −1, contradicting the minimality of S′. Hence the second
case holds; then E is the strict transform of C and by the formulas of the blow
ups (see Exercise 2.10) we deduce that C2 > E2 andKS′ ⋅C <KŜ ⋅E = −1. Since
pa(C) ≥ 0, by the genus formula, C2 ≥ 0. Note that these two inequalities
imply

(nK ′
S) ⋅C ≤ −2n < 0 ∀n ≥ 1,

hence ∣nKS′ ∣ = ∅; indeed, if ∣nKS′ ∣ contains a divisor D, then D ⋅ C ≥ 0,
since every curve with positive autointersection number intersects any effec-
tive divisor nonnegatively. This means that Pn = 0 ∀n ≥ 1. We must now
distinguish two cases:

• If q = 0, then, taking into account that P2 = 0, Castelnuovo’s Theorem
implies that S′ is rational, which is excluded by hypotheses.

• If q ≥ 1, pg = 0 Pn = 0 ∀n. Then by Theorem 5.11 and Proposition 5.12,
there exists

α ∶ S′ → B ⊂ Alb(S′)
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with B smooth curve of genus q and Alb(S′) abelian variety of dimen-
sion q. By Lemma 3.11 every map from E to B is constant; considering
the composition

E
f ∣EÐ→ C

α∣CÐ→ B

it follows that α∣C is constant. Therefore C is contained in a fiber of
α. By Lemma 3.7 C2 ≥ 0, then C2 = 0 and rC with r ≥ 1 is a fiber of
α. Moreover K ⋅C ≤ −2, thus the genus formula implies

0 ≤ pa(C) = 1 + C
2 +K ⋅C

2
≤ 0,

hence pa(C) = 0, C ≅ P1 and K ⋅ C = −2. Albanese map has a regular
value, hence for p ∈ Reg(α) Fp = α∗p is a smooth fiber. Since it is
connected, it is irreducible. By the genus formula

0 ≤ pa(Fp) = 1 + K ⋅ F + F 2

2

(#)= 1 + K(rC) + (rC)2

2
= 1 − r,

where equality (#) holds for Remark 3.4. Hence r ≤ 1, thus r = 1. The
Noether-Enriques Theorem implies that S′ is ruled over B, a contra-
diction.

5.4 Surfaces with pg = 0 and q ≥ 1

Studying the Albanese map of these surfaces one can prove that they are
quotients of the product of two curves by the action of a finite group. We
give the precise statement of their classification without proof.

Theorem 5.16. S is a minimal projective surface with pg = 0 and q ≥ 1 if
and only if S = (B × F )/G where B,F are Riemann surfaces, G is a finite
group, with

G↪ Aut(B) G↪ Aut(F ),

that acts over B × F in the natural way (that is g(b, f) = (gb, gf) for g ∈ G,
(b, f) ∈ B × F ) and

• B/G is an elliptic curve;

• F /G ≅ P1;

• one of the following holds:
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1. B is elliptic and G is a translation group;

2. F is elliptic and G acts freely on B × F .

This implies that q = 1 and K2 = 0.
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