next up previous contents
Next: Pure estimators and extrapolation Up: Measured quantities Previous: One body density matrix   Contents

Pair distribution

The pair distribution function (TBDM) in a homogeneous system is given by the formula (1.19)

$\displaystyle g_2(\vert{\vec r_2}-{\vec r_1}\vert) = \frac{N(N-1)}{n^2}\frac{\i...
...R})\vert^2{d\vec r}_3...{d\vec r}_N}{\int\vert\psi^*({\bf R})\vert^2\,{\bf dR}}$     (2.152)

Let us explain now how this formula is implemented in Monte Carlo calculation. We make summation over all pairs of particles:

$\displaystyle g_2(r)
=\frac{N(N-1)}{n^2 L}
\frac{\int\delta({\vec r_1}-{\vec r_...
...\vert\psi({\bf R})\vert^2\,{\bf dR}}{\int\vert\psi^*({\bf R})\vert^2\,{\bf dR}}$     (2.153)

If we do a discretization of the coordinate with spacing $h$ and introduce function $\vartheta_h(z)$ which is one if $z<h$ and zero otherwise, do summation over absolute value (the distribution is obviously symmetric) we obtain following expressions:

1)
In one dimensional system:
$\displaystyle g^{1D}_2(r)=\left\langle \frac{2}{2hnN}\sum\limits_{i<j}\vartheta_h(\vert r_{ij}-r\vert)\vert
\right\rangle$     (2.154)

In a uncorrelated system $\vartheta_h(\vert z\vert) = 2h/L$ is constant and $g_2(z)=1-1/N$.

2)
In two-dimensional system distance $z$ enters explicitly in the expression of the pair distribution function leading to larger numerical variance at small distances
$\displaystyle g^{2D}_2(z)=
\left\langle \frac{2}{2\pi z hnN}\sum\limits_{i<j}\vartheta_h(\vert z_{ij}-z\vert)\vert\right\rangle$     (2.155)

3)
In a three-dimensional system the corresponding expression is
$\displaystyle g^{3D}_2(z)=
\left\langle \frac{2}{4\pi z^2 hnN}\sum\limits_{i<j}\vartheta_h(\vert z_{ij}-z\vert)\vert\right\rangle$     (2.156)


next up previous contents
Next: Pure estimators and extrapolation Up: Measured quantities Previous: One body density matrix   Contents
G.E. Astrakharchik 15-th of December 2004