CR-Geometry and
PDE’s - VI
June 23-27, 2014
Levico Terme,
View of
CR
Geometry is a relatively young and nowadays intensively studied research area
having interconnections with many other areas of mathematics and its
applications.
It
deals with restrictions and boundary values of holomorphic functions (CR
functions) and of holomorphic mappings (CR mappings) to real submanifolds. A phenomenon arising in dimension higher than
one is the rich intrinsic structure that leads to the existence of real submanifolds of different non-equivalent types.
The
systems of tangential Cauchy-Riemann equations for functions and mappings
present important examples of systems of partial differential equations. A
celebrated example of a system of this kind due to Hans Lewy
played a crucial role in the development of the solvability theory for more
general classes of PDEs.
CR
Geometry and Partial Differential Equations present a field of interaction with
a wide range of mathematical areas such as Real and Complex Symplectic
Geometry, Differential Geometry, Complex Dynamics, Jet Theory, Microlocal Analysis. This makes them to be one of the most
advanced and actual streams in the mathematical research.
The
aim of the conference is to bring together both active senior researchers and
young mathematicians with interest in CR Geometry and Partial Differential
Equations and to foster exchange of ideas and interaction between these fields.