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Another recursive algorithm (‘innovations algorithm’) works better in some
cases. It will be important in the estimation of ARMA processes.
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The innovations algorithm. Basis

Another recursive algorithm (‘innovations algorithm’) works better in some
cases. It will be important in the estimation of ARMA processes.
Let X1 = Prix,,..x,)Xn+r1 € L(X1, ..., Xn). We wish to write

n
)A<n+1 = Z"gn,j(Xn+1—j - )A<n+1—j)-
j=1

A

{Xnt1—j — Xat1—j}j=1..n is an orthogonal basis of L£(Xi,...,Xy).
In fact Xxi1 — )A(k+1 by definition is orthogonal to £(Xi, ..., Xk),
hence to X; — Xj for all j =1...k.

( Xks1 — )A(k+1 is named innovation, as it could not be predicted before)
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The innovations algorithm. Steps

The orthogonality condition reads: for j=1...n

A A ~

<Xn+1a Xn+1—j - Xn+1—j> — <Xn+1a Xn+1—j - Xn+1—j>

=00 Xot1—j — Xos1-j]12 = Onjvoj- (1)
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The orthogonality condition reads: for j=1...n

A S ~

<Xn+1a Xn+1—j - Xn+1—j> — <Xn+1a Xn+1—j - Xn+1—j>

= Dnjl Xnt1-j — Xns1-jlI> = Onjva. (1)
Take j = n. Then

Dnavo = (Xns1, X1 — X1) = (Xps1, X1) = v(n).
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The innovations algorithm. Steps

The orthogonality condition reads: for j=1...n

A S ~

<Xn+1a Xn+1—j - Xn+1—j> — <Xn+1a Xn+1—j - Xn+1—j>

= Dnjl Xnt1-j — Xns1-jlI> = Onjva. (1)
Take j = n. Then

Dnavo = (Xns1, X1 — X1) = (Xps1, X1) = v(n).

Forj < n, Unjva—j= (Xnt1, Xpt1-j — Xnt1-j)

n—j
=90) - Z O n—j ik (Xnt1, Xnp1—j—k — Xnt1—j—k)-
=1

Now insert (1) in the rightmost term.
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The innovations algorithm. Steps (cont.)

A

(Xn+1, Xnt1-j — Xn+1—j> = UnjVn—j- (1)
n—j
Hence ¥ vp—j = () — Z Vn—j ik (Xng1s Xnp1—j—k — Xnt1—j—k)
k=1
n—j
=7()) - Z ﬁn—j,kﬁnJ+kVn—j—k-
k=1
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The innovations algorithm. Steps (cont.)

A

(Xn+1, Xnt1-j — Xn+1—j> = UnjVn—j- (1)
n—j
Hence ¥ vp—j = () — Z Vn—j ik (Xng1s Xnp1—j—k — Xnt1—j—k)
k=1
n—j
=7()) - Z ﬁn—j,kﬁng+kvn—j—k-
k=1

In order to compute ¥, j we need ¥,_; x (as j > 1 this value has already
been obtained) and Unjtk, 1.e. Op with [ > j. At step n, one can then
compute ¥p, , (first formula), then ¥, ,—1 down to ¥, 1.
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The innovations algorithm. Steps (cont.)

A

(Xn+1, Xnt1-j — Xn+1—j> = UnjVn—j- (1)
n—j
Hence ¥ vp—j = () — Z Vn—j ik (Xng1s Xnp1—j—k — Xnt1—j—k)
k=1
n—j
=7()) - Z ﬁn—j,kﬁng+kvn—j—k-
k=1

In order to compute ¥, j we need ¥,_; x (as j > 1 this value has already
been obtained) and Unjtk, 1.e. Op with [ > j. At step n, one can then
compute ¥p, , (first formula), then ¥, ,—1 down to ¥, 1.

One needs still a recursive formula for v,.
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The innovations algorithm. Summary

Vo = [ Xns1 — Kogal? = [ Xnsa |2 + [ Xos11? = 2(Xnt1, Xng1)
= HXnHH2 + H)A<n4-1“2 - 2<Xn+1 - Xn+la)A<n+1> - 2<)A<n+17f<n+1>

= [ Xnr1l® = 1 Xnsa |12

A

as Xpt+1 — Xpy1 is orthogonal to £(Xi, ..., Xk), hence to )A<,,+1.
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The innovations algorithm. Summary

Vo = [ Xat1 = Xasa [P = [ Xag1l® + [1Xnral* = 2(Xas1, Knt)
= HXnHH2 + H)A<n4-1“2 - 2<Xn+1 - Xn+la)A<n+1> - 2<)A<n+17f<n+1>
= [ Xnr1l® = 1 Xnsa |12
as Xpi1 — )A(,,H is orthogonal to L(X1,...,Xk), hence to )A<,,+1.
IXns1]1? = 2(0), [ Xns1? = Z 5 Vi
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= HXnHH2 + H)A<n4-1“2 - 2<Xn+1 - Xn+la)A<n+1> - 2<)A<n+17f<n+1>
= [ Xnr1l® = 1 Xnsa |12
as Xpi1 — )A(,,H is orthogonal to L(X1,...,Xk), hence to )A<,,+1.

HXn+1H2 =(0), HXn+1||2 Z 79,1,/‘/"—1

The algorithm starts with vp = 7(0)
Then for each n, 9, , =~(n)/w,
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= HXnHH2 + H)A<n4-1“2 - 2<Xn+1 - Xn+la)A<n+1> - 2<)A<n+17f<n+1>
= [ Xnr1l® = 1 Xnsa |12
as Xpi1 — )A(,,H is orthogonal to L(X1,...,Xk), hence to )A<,,+1.

HXn+1H2 =(0), HXn+1||2 Z 79,1,/‘/"—1

The algorithm starts with vo = 7(0)

Then for each n, 9, , =~(n)/w,
n—j
Inj = [00) = D OnjkOnjikVajil/vajs j=n—1,...,1.
k=1
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The innovations algorithm. Summary

Vo = [ Xat1 = Xasa [P = [ Xag1l® + [1Xnral* = 2(Xas1, Knt)
= HXnHH2 + H)A<n4-1H2 - 2(Xn—H - Xn+la)A<n+1> - 2<)A<n+17f<n+1>
= [ Xnr1l® = 1 Xnsa |12
as Xpi1 — )A(,,H is orthogonal to L(X1,...,Xk), hence to )A<,,+1.

HXn+1H2 =(0), ||Xn+l||2 Z 19,1,/‘/"—1

The algorithm starts with vp = 7(0)
Then for each n, 9, , =~(n)/w,

n—j
19,771' = [’)/(_[) — Z19n—j,k'l9n,j+kvn—j—k]/vn—ja _j =n-—- 1, ey 1.

k=1
g 79,,,1 Vn—j.
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Innovations algorithm applied to MA(1)

It is easy to see that ¥/, ; =0 for n> 1 and j > 1. In fact
n—j

Unj=[0) — Zﬁn_j,kﬁn,ﬁk Va—j—k]/ Vn—j-
k=1
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Innovations algorithm applied to MA(1)

It is easy to see that ¥/, ; =0 for n> 1 and j > 1. In fact

n—j
Unj = [v(U) - Zﬁn—j,kﬁn,jJrkVn_j_k]/v,,,j.
k=1
Then
1 2 1
Vn—1 ' Vn—1

13 ottobre 2014 5/ 14



Projection on infinite past

We can consider projections based on knowledge of all the past:
Mt - ﬁ(xs)sgt

i.e. the smallest closed subset containing all the finite linear combinations
of Xs, s < t, i.e. the limits (in L2) of finite linear combinations of X;.
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We can consider projections based on knowledge of all the past:
Mt - ﬁ(xs)sgt

i.e. the smallest closed subset containing all the finite linear combinations
of Xs, s < t, i.e. the limits (in L2) of finite linear combinations of X;.

An example. MA(1): X; = Zy — 9Z;_1. Show that, if || < 1,

m .
- Z WXei1-j = P Xey1.
=1
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i.e. the smallest closed subset containing all the finite linear combinations
of Xs, s < t, i.e. the limits (in L2) of finite linear combinations of X;.

An example. MA(1): X; = Zy — 9Z;_1. Show that, if || < 1,

m .
- Z WXei1-j = P Xey1.

j=1
© the series converges.

13 ottobre 2014 6 /14



Projection on infinite past

We can consider projections based on knowledge of all the past:
Mt - ﬁ(xs)sgt

i.e. the smallest closed subset containing all the finite linear combinations
of Xs, s < t, i.e. the limits (in L2) of finite linear combinations of X;.

An example. MA(1): X; = Zy — 9Z;_1. Show that, if || < 1,

m .
- Z WXei1-j = P Xey1.

j=1
© the series converges.

Q@ Xii1+ Zj’il 19th+1_1- is orthogonal to X;_;, i > 0.
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Projection on infinite past

We can consider projections based on knowledge of all the past:

Mt = ﬁ(xs)sgt
i.e. the smallest closed subset containing all the finite linear combinations
of Xs, s < t, i.e. the limits (in L2) of finite linear combinations of X;.

An example. MA(1): X; = Zy — 9Z;_1. Show that, if || < 1,

m .
- Z WXei1-j = P Xey1.
=1

© the series converges.
Q@ Xii1+ Zj’il 19th+1_1- is orthogonal to X;_;, i > 0.
What could be P, Xetq if [9] > 17
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Wold's theorem. General statement

Let 02 = E (| Xe41 — Pt Xe41|?) (does not depend on t because of
stationarity of Xi).

Definition X; is said to be deterministic if 0> = 0. Example:
X = Acos(wt) + Bsin(wt).
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Wold's theorem. General statement

Let 02 = E (| Xe41 — Pt Xe41|?) (does not depend on t because of
stationarity of Xi).

Definition X; is said to be deterministic if 0> = 0. Example:
X = Acos(wt) + Bsin(wt).

Wold’s theorem Every stationary process can be written as the sum of an
MA(o0) process and of a deterministic process.
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Wold's theorem. Precise statement

Let X; be a non—deterministic stationary process, i.e. o> > 0. Then there
exist unique

Q {V}jz0 with o =1 and Y 7 < oo,
j=0

Q {Z:}~ WN(O,oz)
such that

(o.0]
X = Z%‘Zt—j + Vi
j=0

and
Q@ Cov(Z,V})=0 Vs, teZ;
@ {V4:} is deterministic.

v
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Wold's theorem. Sketch of proof

Let Mt = ﬁ(XS)SSt and M—OO = thZMt .

(Xe, Ze—j)

Define Zt = Xt - PMt71Xt and QJZ)J = 2 :

g
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Wold's theorem. Sketch of proof

Let Mt = ﬁ(XS)SSt and M—OO = thZMt .
(Xe, Ze—j)

Define Zt = Xt - PMt71Xt and QJZ)J = 2 :

o
Zy € M;¢ and orthogonal to M;_; hence to Zs for s < t, proving
{Z,} ~ WN(0,02).
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Wold's theorem. Sketch of proof

Let Mt = ﬁ(XS)SSt and M—OO = thZMt .
(Xe, Ze—j)

Define Zt = Xt - PMt71Xt and QJZ)J = 2

g

Zy € M;¢ and orthogonal to M;_; hence to Zs for s < t, proving
{Z,} ~ WN(0,02).
As {Z;_;};>0 is an orthogonal sequence,

> <XtaZt—
Po(z., s<tt Xe =) wzt - = Z%Zt -
j=0

with 3 1/)J-2 < 00.
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o
Zy € M;¢ and orthogonal to M;_; hence to Zs for s < t, proving
{Z,} ~ WN(0,02).
As {Z;_;};>0 is an orthogonal sequence,

> <XtaZt—
Po(z., s<yXe = ZWL - = Z%Zt -
j=0

with 3 1/)J-2 < 00.

Define Vi = X; — Psg(z,, s<¢}Xe. By definition (V;, Z5) =0 for t > s.
On the other hand V; € My, for s > t, Zs is orthogonal to M;_1, hence
to Vt.
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Let Mt = ﬁ(XS)SSt and M—OO = thZMt .
(Xe, Ze—j)

Define Zt = Xt - PMt71Xt and QJZ)J = 2

o
Zy € M;¢ and orthogonal to M;_; hence to Zs for s < t, proving
{Z,} ~ WN(0,02).
As {Z;_;};>0 is an orthogonal sequence,

> <XtaZt—
Po(z., s<yXe = ZWL - = Z%Zt -
j=0

with 3 1/)J-2 < 00.

Define Vi = X; — Psg(z,, s<¢}Xe. By definition (V;, Z5) =0 for t > s.
On the other hand V; € My, for s > t, Zs is orthogonal to M;_1, hence
to Vt.

Need only to prove that {V;} is deterministic (a bit involved).
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Processes with ACF of finite length

We Saw: |f {Xt} ~ MA(q), |e Xt = Zt + 19]_21_-_]_ —+ -+ ﬁth_q
{Z:} ~ WN(0,0?), then v(h) = 0 for |h| > g, while v(q) = 940>
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Processes with ACF of finite length

We Saw: If {Xt} ~ MA(q), |e Xt = Zt + 19]_21_-_]_ —+ -+ ﬁth_q

{Z:} ~ WN(0,0?), then v(h) = 0 for |h| > g, while v(q) = 940>
Vice versa

If {Xt} is a (0 mean) stationary process s.t. y(h) =0 for |h| > q, while
v(q) # 0, then there exist unique {Z;} ~ WN(0,0?), ¥1,...,79,
s.t. Xt = Zt -+ 19121-_1 + -+ ﬁth_q.
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Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold's, Z; = X¢ — P g, , Xt
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Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold's, Z; = X¢ — P g, , Xt

From X;—1 = Zt—1 — Paq,_,X¢t—1, one sees M;_1 =35p(M¢_2, Zt_1)
Iterating, one arrives at

Mt—l = %(Mt—q—la Zt—q7 ceey Zt—l)-

Hence P, Xe = Pat, o 1 Xt + Priz,_,... 2o ) Xe-
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Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold's, Z; = X¢ — P g, , Xt

From X;—1 = Zt—1 — Paq,_,X¢t—1, one sees M;_1 =35p(M¢_2, Zt_1)
Iterating, one arrives at

Mt—l = %(Mt—q—la Zt—q7 ceey Zt—l)-

Hence P, Xe = Pat, o 1 Xt + Priz,_,... 2o ) Xe-
For h > q, by assumption ~(h) = 0, hence

<Xt7Xt—h> == 0 — PMtiqAXt == 0

9 (X, Zs
Then Pug, X = > X, Zej)

- 27 .
= Zeglr 7
E(X:Zi—;
This is the thesis with ¥; = w
o
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Periodogram of data. Quick reminder

eiwk
Let wy = 27r% and e, = \}E
einwk
k S ke [ i " n=1" s 2]
{ex}«er, is an orthonormal basis of C" where F, = {— [2] (5]}

Note: F, has n elements. Alternatively, one can use {ek}k:L n
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Periodogram of data. Quick reminder

eiwk

— o -k - 1
Let wy =27 and e, = NG
einwk

{ex}«er, is an orthonormal basis of C" where F, = {— [%],..., [3]}.
Note: F, has n elements. Alternatively, one can use {€x}k=1. .n

Given data xi,...,X,, we write X = (X1,...,%X,) = Y. ak€.
keFn

The periodogram (ess. a discrete Fourier transform) of the data is given by

n
§ : Xtefltwk
t=1

2
k € F,.

1
In(wi) = axl” = [(x ex)[* = =
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Periodogram of data. Quick reminder

eiwk

— ok — 1
Let wy = 27 andek—ﬁ

einwi

{ex}«er, is an orthonormal basis of C" where F, = {— [%],..., [3]}.
Note: F, has n elements. Alternatively, one can use {€x}k=1. .n
Given data xi,...,X,, we write X = (X1,...,%X,) = Y. ak€.
keFn
The periodogram (ess. a discrete Fourier transform) of the data is given by

2

I,,(wk) = ]ak|2 | X, ek = —itwk k € F,.

If x¢ = Acos(wk(t + ¢)), In(wk) = nA2, I5(w;) = 0 for j # k.

13 ottobre 2014 12 / 14



From the periodogram to the spectral density. Motivation

q
If x; = ZAk cos(wi(t + k), then I(wy) = nA?
k=1

The height of the periodogram at wy represents the strength of the
component.
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From the periodogram to the spectral density. Motivation

q
If x¢ = ZAk cos(wi(t + ¢x)), then I,(wk) = nAZ
k=1
The height of the periodogram at wy represents the strength of the
component.

Need a tool analogous to periodogram for a stationary process, assuming
that it can decomposed similarly.
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From the periodogram to the spectral density. Motivation

q
If x¢ = ZAk cos(wi(t + ¢x)), then I,(wk) = nAZ
k=1
The height of the periodogram at wy represents the strength of the
component.
Need a tool analogous to periodogram for a stationary process, assuming
that it can decomposed similarly. If

q

Xi = Z [B cos(wit) + Cy sin(wit)]
k=1

with E(By) = E(Ck) =E(BkC)) =0 V(By) = V(Ci) = o}

~(h) = ké o2 cos(wih).
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From the periodogram to the spectral density. Motivation

q
If x; = ZA,( cos(wi(t + k), then I(wy) = nA?
k=1

The height of the periodogram at wy represents the strength of the
component.

Need a tool analogous to periodogram for a stationary process, assuming
that it can decomposed similarly. If

q

Xi = Z [B cos(wit) + Cy sin(wit)]
k=1

with E(By) = E(Ck) = E(BkC)) =0  V(Bk) = V(Ck) = o
q
v(h) = 3 02 cos(wkh). More generally, we will obtain

= v(h) = / i e dF()).
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The spectral density

Assume y(h), h € Z is the ACVF of a process, with >~ |v(h)| < co.

h=—o00
The spectral density: f(A) =& > y(h)e ™, Xe (—m,7].
h=—o00

The series converges because of the assumption on ~(-).
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Assume y(h), h € Z is the ACVF of a process, with >~ |v(h)| < co.

h=—oc0

O .
The spectral density: f(A) =& > y(h)e ™, Xe (—m,7].
h=—o00
The series converges because of the assumption on ~(-).

Three properties of f:

Q fiseven: f(A)="f(=\);
Q@ f(\)>0;
Q (h) = ffﬂ e F(N) d.
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The spectral density

Assume y(h), h € Z is the ACVF of a process, with >~ |v(h)| < co.

h=—o0
O .
The spectral density: f(A) =& > y(h)e ™, Xe (—m,7].
h=—o00
The series converges because of the assumption on ~(-).

Three properties of f:
Q fiseven: f(A)="f(=\);
Q@ f(\)>0;
Q@ ~(h) = ffﬂ e F(N) d.
The third is the property we looked for. Note that using 1.,

[ e F(X) dX = [P () dA+ [e P F(N) dA =2 [ cos(hA)f(X) dA.
- 0 0 0
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