
The innovations algorithm. Basis

Another recursive algorithm (‘innovations algorithm’) works better in some
cases. It will be important in the estimation of ARMA processes.

Let X̂n+1 = PL(X1,...,Xn)Xn+1 ∈ L(X1, . . . ,Xn). We wish to write

X̂n+1 =
n∑

j=1

ϑn,j(Xn+1−j − X̂n+1−j).

{Xn+1−j − X̂n+1−j}j=1...n is an orthogonal basis of L(X1, . . . ,Xn).

In fact Xk+1 − X̂k+1 by definition is orthogonal to L(X1, . . . ,Xk),
hence to Xj − X̂j for all j = 1 . . . k.

( Xk+1 − X̂k+1 is named innovation, as it could not be predicted before)
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The innovations algorithm. Steps

The orthogonality condition reads: for j = 1 . . . n

〈Xn+1,Xn+1−j − X̂n+1−j〉 = 〈X̂n+1,Xn+1−j − X̂n+1−j〉
= ϑn,j‖Xn+1−j − X̂n+1−j‖2 = ϑn,jvn−j . (1)

Take j = n. Then

ϑn,nv0 = 〈Xn+1,X1 − X̂1〉 = 〈Xn+1,X1〉 = γ(n).

For j < n, ϑn,jvn−j = 〈Xn+1,Xn+1−j − X̂n+1−j〉

= γ(j)−
n−j∑
k=1

ϑn−j ,k〈Xn+1,Xn+1−j−k − X̂n+1−j−k〉.

Now insert (1) in the rightmost term.
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The innovations algorithm. Steps (cont.)

〈Xn+1,Xn+1−j − X̂n+1−j〉 = ϑn,jvn−j . (1)

Hence ϑn,jvn−j = γ(j)−
n−j∑
k=1

ϑn−j ,k〈Xn+1,Xn+1−j−k − X̂n+1−j−k〉

= γ(j)−
n−j∑
k=1

ϑn−j ,kϑn,j+kvn−j−k .

In order to compute ϑn,j we need ϑn−j ,k (as j ≥ 1 this value has already
been obtained) and ϑn,j+k , i.e. ϑn,l with l > j . At step n, one can then
compute ϑn,n (first formula), then ϑn,n−1 down to ϑn,1.

One needs still a recursive formula for vn.
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The innovations algorithm. Summary

vn = ‖Xn+1 − X̂n+1‖2 = ‖Xn+1‖2 + ‖X̂n+1‖2 − 2〈Xn+1, X̂n+1〉
= ‖Xn+1‖2 + ‖X̂n+1‖2 − 2〈Xn+1 − X̂n+1, X̂n+1〉 − 2〈X̂n+1, X̂n+1〉

= ‖Xn+1‖2 − ‖X̂n+1‖2

as Xn+1 − X̂n+1 is orthogonal to L(X1, . . . ,Xk), hence to X̂n+1.

‖Xn+1‖2 = γ(0), ‖X̂n+1‖2 =
n∑

j=1
ϑ2n,jvn−j .

The algorithm starts with v0 = γ(0).
Then for each n, ϑn,n = γ(n)/v0,

ϑn,j = [γ(j)−
n−j∑
k=1

ϑn−j ,kϑn,j+kvn−j−k ]/vn−j , j = n − 1, . . . , 1.

vn = γ(0)−
n∑

j=1

ϑ2n,jvn−j .
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Innovations algorithm applied to MA(1)

It is easy to see that ϑn,j = 0 for n > 1 and j > 1. In fact

ϑn,j = [γ(j)−
n−j∑
k=1

ϑn−j ,kϑn,j+kvn−j−k ]/vn−j .

Then

ϑn,1 =
γ(1)

vn−1
and vn = γ(0)− ϑ2n,1vn−1 = γ(0)− γ2(1)

vn−1
.
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Projection on infinite past

We can consider projections based on knowledge of all the past:

Mt = sp(Xs)s≤t

i.e. the smallest closed subset containing all the finite linear combinations
of Xs , s ≤ t, i.e. the limits (in L2) of finite linear combinations of Xs .

An example. MA(1): Xt = Zt − ϑZt−1. Show that, if |ϑ| < 1,

−
∞∑
j=1

ϑjXt+1−j = PMtXt+1.

1 the series converges.

2 Xt+1 +
∑∞

j=1 ϑ
jXt+1−j is orthogonal to Xt−i , i ≥ 0.

What could be PMtXt+1 if |ϑ| > 1?
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Wold’s theorem. General statement

Let σ2 = E
(
|Xt+1 − PMtXt+1|2

)
(does not depend on t because of

stationarity of Xt).

Definition Xt is said to be deterministic if σ2 = 0. Example:
Xt = A cos(ωt) + B sin(ωt).

Wold’s theorem Every stationary process can be written as the sum of an
MA(∞) process and of a deterministic process.
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Wold’s theorem. Precise statement

Theorem

Let Xt be a non–deterministic stationary process, i.e. σ2 > 0. Then there
exist unique

1 {ψj}j≥0 with ψ0 = 1 and
∞∑
j=0

ψ2
j <∞;

2 {Zt} ∼WN(0, σ2)

such that

Xt =
∞∑
j=0

ψjZt−j + Vt

and

1 Cov(Zs ,Vt) = 0 ∀ s, t ∈ Z;
2 {Vt} is deterministic.
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Wold’s theorem. Sketch of proof

Let Mt = sp(Xs)s≤t and M−∞ = ∩t∈ZMt .

Define Zt = Xt − PMt−1Xt and ψj =
〈Xt ,Zt−j〉

σ2
.

Zt ∈Mt and orthogonal to Mt−1 hence to Zs for s < t, proving
{Zt} ∼WN(0, σ2).
As {Zt−j}j≥0 is an orthogonal sequence,

Psp{Zs , s≤t}Xt =
∞∑
j=0

〈Xt ,Zt−j〉
‖Zt−j‖2

Zt−j =
∞∑
j=0

ψjZt−j

with
∑

j ψ
2
j <∞.

Define Vt = Xt − Psp{Zs , s≤t}Xt . By definition 〈Vt ,Zs〉 = 0 for t ≥ s.
On the other hand Vt ∈Mt ; for s > t, Zs is orthogonal to Ms−1, hence
to Vt .
Need only to prove that {Vt} is deterministic (a bit involved).
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Need only to prove that {Vt} is deterministic (a bit involved).
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Processes with ACF of finite length

We saw: if {Xt} ∼ MA(q), i.e. Xt = Zt + ϑ1Zt−1 + · · ·+ ϑqZt−q

{Zt} ∼WN(0, σ2), then γ(h) = 0 for |h| > q, while γ(q) = ϑqσ
2.

Vice versa

Theorem

If {Xt} is a (0 mean) stationary process s.t. γ(h) = 0 for |h| > q, while
γ(q) 6= 0, then there exist unique {Zt} ∼WN(0, σ2), ϑ1, . . . , ϑq
s.t. Xt = Zt + ϑ1Zt−1 + · · ·+ ϑqZt−q.
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Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold’s, Zt = Xt − PMt−1Xt .

From Xt−1 = Zt−1 − PMt−2Xt−1, one sees Mt−1 = sp(Mt−2,Zt−1).
Iterating, one arrives at

Mt−1 = sp(Mt−q−1,Zt−q, . . . ,Zt−1).

Hence PMt−1Xt = PMt−q−1Xt + PL(Zt−q ,...,Zt−1)Xt .

For h > q, by assumption γ(h) = 0, hence

〈Xt ,Xt−h〉 = 0 =⇒ PMt−q−1Xt = 0.

Then PMt−1Xt =
q∑

j=1

〈Xt ,Zt−j〉
‖Zt−j‖2

Zt−j .

This is the thesis with ϑj =
E(XtZt−j)

σ2
.

13 ottobre 2014 11 / 14



Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold’s, Zt = Xt − PMt−1Xt .
From Xt−1 = Zt−1 − PMt−2Xt−1, one sees Mt−1 = sp(Mt−2,Zt−1).
Iterating, one arrives at

Mt−1 = sp(Mt−q−1,Zt−q, . . . ,Zt−1).

Hence PMt−1Xt = PMt−q−1Xt + PL(Zt−q ,...,Zt−1)Xt .

For h > q, by assumption γ(h) = 0, hence

〈Xt ,Xt−h〉 = 0 =⇒ PMt−q−1Xt = 0.

Then PMt−1Xt =
q∑

j=1

〈Xt ,Zt−j〉
‖Zt−j‖2

Zt−j .

This is the thesis with ϑj =
E(XtZt−j)

σ2
.

13 ottobre 2014 11 / 14



Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold’s, Zt = Xt − PMt−1Xt .
From Xt−1 = Zt−1 − PMt−2Xt−1, one sees Mt−1 = sp(Mt−2,Zt−1).
Iterating, one arrives at

Mt−1 = sp(Mt−q−1,Zt−q, . . . ,Zt−1).

Hence PMt−1Xt = PMt−q−1Xt + PL(Zt−q ,...,Zt−1)Xt .

For h > q, by assumption γ(h) = 0, hence

〈Xt ,Xt−h〉 = 0 =⇒ PMt−q−1Xt = 0.

Then PMt−1Xt =
q∑

j=1

〈Xt ,Zt−j〉
‖Zt−j‖2

Zt−j .

This is the thesis with ϑj =
E(XtZt−j)

σ2
.

13 ottobre 2014 11 / 14



Processes with ACF of finite length are MA(q).Proof

Proof (sketch): As in Wold’s, Zt = Xt − PMt−1Xt .
From Xt−1 = Zt−1 − PMt−2Xt−1, one sees Mt−1 = sp(Mt−2,Zt−1).
Iterating, one arrives at

Mt−1 = sp(Mt−q−1,Zt−q, . . . ,Zt−1).

Hence PMt−1Xt = PMt−q−1Xt + PL(Zt−q ,...,Zt−1)Xt .

For h > q, by assumption γ(h) = 0, hence

〈Xt ,Xt−h〉 = 0 =⇒ PMt−q−1Xt = 0.

Then PMt−1Xt =
q∑

j=1

〈Xt ,Zt−j〉
‖Zt−j‖2

Zt−j .

This is the thesis with ϑj =
E(XtZt−j)

σ2
.

13 ottobre 2014 11 / 14



Periodogram of data. Quick reminder

Let ωk = 2π k
n and ek = 1√

n

 e iωk

...
e inωk

.

{ek}k∈Fn is an orthonormal basis of Cn where Fn = {−
[
n−1
2

]
, . . . ,

[
n
2

]
}.

Note: Fn has n elements. Alternatively, one can use {ek}k=1,...,n

Given data x1, . . . , xn, we write x = (x1, . . . , xn) =
∑
k∈Fn

akek .

The periodogram (ess. a discrete Fourier transform) of the data is given by

In(ωk) = |ak |2 = |〈x , ek〉|2 =
1

n

∣∣∣∣∣
n∑

t=1

xte
−itωk

∣∣∣∣∣
2

k ∈ Fn.

If xt = A cos(ωk(t + ϕ)), In(ωk) = nA2, In(ωj) = 0 for j 6= k .
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From the periodogram to the spectral density. Motivation

If xt =

q∑
k=1

Ak cos(ωk(t + ϕk)), then In(ωk) = nA2
k

The height of the periodogram at ωk represents the strength of the
component.

Need a tool analogous to periodogram for a stationary process, assuming
that it can decomposed similarly. If

Xt =

q∑
k=1

[Bk cos(ωkt) + Ck sin(ωkt)]

with E(Bk) = E(Ck) = E(BkCj) = 0 V(Bk) = V(Ck) = σ2k

γ(h) =
q∑

k=1

σ2k cos(ωkh). More generally, we will obtain

γ(h) =

∫ π

−π
e ihλdF (λ).
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The spectral density

Assume γ(h), h ∈ Z is the ACVF of a process, with
∞∑

h=−∞
|γ(h)| <∞.

The spectral density: f (λ) = 1
2π

∞∑
h=−∞

γ(h)e−ihλ, λ ∈ (−π, π].

The series converges because of the assumption on γ(·).

Three properties of f :

1 f is even: f (λ) = f (−λ);

2 f (λ) ≥ 0;

3 γ(h) =
∫ π
−π e

ihλf (λ) dλ.

The third is the property we looked for. Note that using 1.,
π∫
−π

e ihλf (λ) dλ =
π∫
0

e ihλf (λ) dλ+
π∫
0

e−ihλf (λ) dλ = 2
π∫
0

cos(hλ)f (λ) dλ.
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