

Center for Information Technology - IRST

Autenticazione e Autorizzazione nelle Piattaforme Cloud

Security & Trust Research Unit @ FBK

- Fondazione Bruno Kessler
- S&T Research Unit (born in 2010)
 - 3 researchers
 - 1 visiting researcher
 - 1 junior researcher
 - 2 PhD students
- Involved in local, national, and international research projects
 - some of which I am going to present in the following...
- Coordinators of an educational project in the security of an industrial cloud computing platform...

European Industrial Doctorate

Goal: Train new generation of security experts capable to tackle scientific and technical challenges raised by combination of new technologies (cloud computing, mobile applications, and the SaaS paradigm)

Consortium:

- Fondazione Bruno Kessler (coordinator), ENUNO KESSLER
- Security & Trust Practice, SAP Research
- University of Trento, and TrentoRISE

Recruitment: Currently seeking 5 young researchers willing to undertake a PhD in an international, collaborative environment.

Cloud IAM (Identity and Access Management)

In 2012, Gartner said

- "Cloud IAM will grow 500% by 2015"
- IDaaS will account for 25% of all IAM sales by 2014 (in 2012, only 5%)
- Why? 4 converging forces

- social platforms for both customers and employees
- 2. mobile devices used by employees to access corporate data
 - Bring-Your-Own-Device (BYOD)
- 3. information spread over several systems
- cloud SaaS is being widely accessed and adopted

An abstract view on IAM systems

Trento – May, 10th 2013 – Silvio Ranise

An abstract view on IAM systems

An abstract view on IAM systems

Trento – May, 10th 2013 – Silvio Ranise

Some scenarios

Overview

- Social platform
- **Several devices**: laptops, tablets, smart-phones, ...
- Mobile apps: Android
- Authentication: Single-Sign-On

(FBK, UNITN, ...)

Community Manager

Build your own social network!

Communicator

Organise your campus messages!

Discover Trento

Experience Trento as you never did!

- Authorization based on single user profile
- Apps accessing data handled by other apps/ services with user consent
 - OAuth: next slides

OAuth overview (1st part)

User Stewie

OAuth overview (2nd part)

6. I want to access Stewie's data + auth token for Stewie's data

7. Stewie's data

my_cv: an app to display CVs

8. Use my_cv with personal data

User Stewie

OAuth... less abstract: MSC

Algorithmic analysis of

- Model: state machine M = < I, T >
 - I = initial states = "user is not authenticated, auth token is invalid, ..."
 - T = possible transitions = arrows in MSC
- Security property: P = "app can access user data only after user consent"
- Model checking: M satisfies P? M |= P
 - Negation of P is satisfied by execution trace?
 - If so, report "security problem"
 - Enumerate all traces (1 trace = OAuth MSC!)

Some observations on algorithmic analysis

Security w.r.t. what: which threat model?

- Dolev—Yao like intruder
- Perfect cryptography
- Techniques supporting exhaustive state space exploration of systems
 - even incomplete techniques may give better coverage than testing
- To make it practical
 - heuristics to control large/infinite state spaces

Some scenarios

Cartella Clinica del Cittadino

e-Personal Health Record (PAT, APSS, FBK)

- Strong Authentication
 - OTP, Smart cards

- Italian legislation, Trento province legislation
- Secure information sharing: citizen, doctors, ...
- Geo-localisation via mobile device

Our results

Strong Authentication

 Found flaw in two factors authentication protocol by model checking (SATMC)

Access Control

- design of AC mechanism and prototype implementation for enforcement
- issues in modeling with Italian legislation about
 - delegation
 - parental handling of certain data (e.g., pregnancy tests)
- Law Dep. UniTn -> Garante della privacy

Observations on Access Control

- Finding the "right" model is non trivial
 - several models in the literature:
 - DAC, MAC, RBAC, ABAC, GTRBAC, STRBAC, ...
 - small "quid" always lacking
 - Difficulties in incorporating regulations and legislations

Some scenarios

NATO Communications and Information Agency Agence OTAN d'information et de communication

Access Control for NATO

- Security model for the High Assurance Automated Guard (HAAG)
- Information sharing in NATO operations
- Not only NATO members but also other governmental and humanitarian organizations
- Selective release of information to
 - maximize effectiveness of operations and
 - minimize disclosure with negative impact
- Access decision based on more than user clearance and resource sensitivity

Overview of NATO Access Control model

Variety of documents: an example

- Passive Missile Defense System (PMD)
 - simulates intercepting missile and consequences
 - generates richly annotated KML maps

- Policy
 - colonel (head of mission) can see all around his position for 10 miles
 - Red Cross doctor can see wounded soldiers around his position for 2 miles
- Result of access control more than grant/deny: it is a view of the document according to policies

Expressive policies

- colonel (head of mission) can see all around his position for 10 miles
 - User.rank = colonel /\ User.id = Map.mission_head /\
 Obj in Map /\ | Obj.loc User.loc | < 10
- Red Cross doctor can see wounded soldiers around his position for 2 miles
 - User.org = RedCross /\ User.role = doctor /\
 Obj in Map /\ Obj.type = soldier /\ Obj.wounded = true /\
 Obj.loc User.loc | < 2
- Understand consequences of policies is difficult because of
 - hierarchic nesting of resources
 - number of attributes: hundreds to thousands
 - large/infinite attribute domains (e.g., the real numbers)

Deductive analysis of NATO policies

- First-order logic to represent
 - P = policies (previous slide)
 - Q = query = "can user with the following attributes access the resource with these attributes?"
- Reduce query answering to logical problem (sat)
 - Use state-of-the-art deductive tools
 - Satisfiability Modulo Theories (SMT) solvers
 - capable of reasoning in several domains (e.g., Reals)
- Note: Q can contain symbolic values for attributes
 - not only User.loc = (10,10) but also | User.loc (10,10) | <3
- Policy designers can check their intuitions (i.e. given queries should/should not be granted) on sets of queries

Enforcement of CPR policies [run-time]

Further observations on Access Control

- Access control may
 - depend on several factors: users, resources,
 context (e.g., location, time, ...), even devices!

- Separation of concerns
 - Policies: rules to grant/deny access
 - Model: semantics to policies
 - Enforcement of policies according to semantics

Trust in NATO access control

- Coalitions are dynamic
- As a result: granting/denying access may change
 - Head of mission appoints "field lieutenants" with some permissions
 - If head changes, then role "field lieutenants" from soldiers previously appointed so they cannot use associated permissions
- Use first-order logic to express trust relations (e.g., DKAL)
 - Agent1 trusts Agent2 on issuing certain certificates
- Combine formulae expressing trust relations with formulae expressing access control policies
- Use same deductive approach as before

Conclusions

- Cloud IAM is gaining importance
 - authentication, authorization, and trust
 - increasing complexity of systems
 - severe security pbs

- security certification w.r.t. given threat model
- difficulties in access control models due to variety of requirements: technological, business, legislation
- separation of concerns
 - Web-protocols: perfect cryptography
 - Access control: policies, model, enforcement
 - abstract analysis of policies w.r.t. model
 - analysis of enforcement w.r.t. model

