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Abstract

This article presents the toy cipher BunnyTN and explains the functions which are
used in each round.
In each section we give an explanation about the motivations for which we have
chosen that function.
In particular we give the definition of the δ-differentially uniformity and MDS Ma-
trix.
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It is very hard to work with Block Cipher with a big key space and a big
message space and to understand the maths that we use to test the Block
Cipher.
For this reason we have created “BunnyTN”.
It is divided into six sections.

In the first section we will give some definitions and some notations that
we are going to use in this article.
In the second section we will present you the toy-cipher BunnyTN.
The third section contains the explanation about the S-Box step and the
fundamental valuation that a builder should test: i.e. the invertibiliy, the δ-
differential uniformity and the classical non-linearity.
In the fourth section we test the mixing layer and we explain because a
MDS-Matrix is a good choice.
The fifth section is dedicated at the key-schedule of BunnyTN.
In the sixth section we will choice the number of typical round to have a
block cipher which resists at distinguisher attacks. To choose this number we
used the NIST-tests.
In the seventh section there are other tests that we have used to evaluate
our block cipher.
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2 BunnyTN: a toy cipher

1 Preliminaries and notation

0 ∈ A, then A∗ = A\{0}.
We denote by n any integer n ≥ 1. For any field K, Kn denotes the n-
dimensional vectorial space over K.
We write Fq for the field with q elements, where q is any power of a prime.
We will use vectorial spaces over F2 or F26 . To simplify our notations we write:
F = F2 and E = F26 .
In F[x] we choose x6+x4+x3+x+1 as the primitive polynomial that we use to
represent E. We denote with e the primitive element of E (e6 = e4+e3+e+1).
Clearly the vectorial space F6 is isomorphic to the field E by:

ξ : F6 → E, ξ (v0, . . . , v5) =
5∑
i=0

vie
i.

Thanks to ξ, we can view vectors in F6 as field element and so we can multiply
them. Note that the addition is the XOR.
Also, we can write all functions from F6 to F6 as polynomial over E, since it
holds [LN97]:
Theorem 1. If Fq is a finite field and f : Fq → Fq is a function, then f can be
represent by a polynomial f̄ ∈ Fq[x] with deg f̄ ≤ q − 1.

Any vectors over F24 can be divided in four parts of 6 bits each, in this
way:

div : F24 → (F6)4,

div(m0, . . . ,m23) = ((m0, . . . ,m5), (m6, . . . ,m11), (m12, . . . ,m18), (m19, . . . ,m23)).

We will call each of these parts “word”.
We often use the parallel version of xi:

ϑ : (F6)4 → E4, ϑ(w1, . . . , w4) = (ξ(w1), . . . , ξ(w4)).

Definition 2. If v, w ∈ Fn then the Hamming distance of v and w is

d(v, w) = |{i : vi 6= wi, i ∈ {1, . . . , n}}| .

The Hamming weight of v ∈ Fn is w(v) = d(v, 0).

Definition 3. If A is a square matrix, the determinant of a square submatrix
of A is called a minor of A.

For example, if A =

2 4 2 1

3 3 1 0

9 2 2 1

1 3 6 2

, a minor of A could be:

det(A1,4
2,3) =

∣∣∣[4 2

3 6

]∣∣∣ = 18
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A1,4
2,3 is obtained from matrix A by removing two rows, the first and the fourth,

and two columns, the second and the third.

Definition 4. A square-matrix A is MDS (Maximum Distance Separable) if
each minor of A is non-zero.

2 The toy-cipher BunnyTN

BunnyTN is a “toy cipher” in the sense that we know a priori that it is
not secure. In fact, it has a small key space (with only 224 keys) and so a
key-search is easy to implement.
However, BunnyTN has been built with the hope that no attack exists faster
than the brute force.
Other toy ciphers were created with similar goal such as small scale variants
of the AES, [CMR05], the stream ciphers of the FLURRY family [CW09] or
the cipher CTC [Cou07].

2.1 Structure

The key space is K = F24. Any key induces a permutation ϕk on F24,
ϕk ∈ Sym(F24) ∀k ∈ K.
In traditional terminology, we say that the plaintext space coincides with the
ciphertext space, i.e. P = C = F24.
For any v ∈ F24, σv is the sum (the XOR), i.e. if v = (v0, v1, . . . , v23) and
m = (m0,m1, . . . ,m23) then

σv : F24 → F24, σv(m) = (m0 + v0,m1 + v1, . . . ,m23 + v23)

where + is the usual bit addition.

We consider 16 round keys {k0, . . . , k15} and they are generated by the key
scheduling, which is explained in Section 5.
We denote with γ the non-linear part of the block cipher (S-Box). It is ex-
plained in Section 3.
The linear function λ (Mixing Layer) is always the same for all typical rounds.
We explain it in Section 4.
Given a round key k, a typical round ρk is the composition of these three
operations:

ρk : F24 → F24, ρk = σk ◦ λ ◦ γ.
BunnyTN has 15 typical rounds ρki , i ∈ {1, . . . , 15}, plus the whitening ρk0 =
σk0 , that is, for any session key k, we have:

ϕk = ρk15 ◦ · · · ◦ ρk1 ◦ ρk0 .
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4 BunnyTN: a toy cipher

Note that BunnyTN is a translation based cipher [CDS09], similar to AES
[DR02], SERPENT [ABK98] and PRESENT [AKL+07].

3 S-Box step

The parallel S-Box step represents the non-linear part of BunnyTN.
The parallel function γ is constituted by four functions, each working on words:
F1(x1) = x621 , F2(x2) = x52, F3(x3) = x173 , F4(x4) = x624 + e2. In this way:

γ′ : E4 → E4, γ′(x1, x2, x3, x4) = (x621 , x
5
2, x

17
3 , x

62
4 + e2)

and so:

γ : F24 → F24, γ(x) = div−1 ◦ ϑ−1 ◦ γ′ ◦ ϑ ◦ div(x)

We note that f1 is the patched inversion in E because x62 ·x = x63 = x2
6−1 = 1

∀x ∈ E∗.
We have chosen F1, F2, F3, F4 in such way that they are:

• invertible;

• 4-differential uniform;

• highly non-linear (with the classical notion).

3.1 Invertibility

For the block cipher structure we use, inversion is required to decrypt.

The inverse of F4 can be easily determined F−14 (x) = (x+ e2)62.
For the other S-Boxes we apply the following corollary; obtained easily from
Theorem 1.15 [LN97]:

Corollary 5. If Fq is a finite field with primitive element e and f : Fq → Fq
is f(x) = xk, then f is invertible if and only if ek generate Fq. The inverse of
f(x) = xk is f−1(x) = xt such that kt = 1 mod (q − 1).

Since e5, e17 and e62 generate E, so x5, x17 and x62 are invertible.
The inverse of F2 is F−12 (x) = x38.
The inverse of F3 is F−13 (x) = x26.
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3.2 δ-differential uniformity

There are many criteria to evaluate the non-linearity of vectorial Boolean
functions: one of these is the δ-differential uniformity.

Definition 6. A function Fn : E → Fn is δ-differential uniform if ∀α ∈ (Fn)∗

and ∀β ∈ Fn |{x ∈ Fn : f(x) + f(x+ α) = β}| ≤ δ.
A function which is 2-differentially uniform is called APN (Almost Perfectly
Nonlinear).

A Block Cipher with high differential uniformity might be attacked by a dif-
ferential attack, so it is desirable that δ is small. Invertible APN functions are
very difficult to find (we do not know even if any exists over F2k with k ≥ 8
even). We claim that F1, F2, F3, F4 are are 4-differential uniform.

Theorem 7 (Proposition 3, [Nyb94]). Let f(x) = x2
k+1 be a power polynomial

in F2n and let s = gcd(k, n). Then f is differentially 2s-uniform.

If we choose k = 2 and k = 4, we can apply the previous theorem, with n = 6
(so s = 2), and x5 and x17 are differentially 4-uniform.

The inversion x62 is 4-differentially uniform due to the following result:
Theorem 8 (Proposition 6, [Nyb94]). For any finite field Fq, the inversion is
4-differentially uniform.

The inversion over E translated by e2 is obviously 4-differential uniform, be-
cause the δ-differential uniformity is invariant w.r.t. translations.

3.3 Classical non-linearity

Another of the classical criteria to evaluate the non-linearity of a Boolean
function f is the Hamming distance from the set of the affine functions, where
the distance is defined as follows:
Definition 9. Let f , g: Fn → F, then

d(f, g) = |{v : f(v) 6= g(v), v ∈ Fn}| .

If A is a set of functions from Fn to F, then d(f, A) = ming∈A d(f, g).
If B is another set of functions from Fn to F, then d(A,B) = minf∈A d(f,B).
f : Fn → F is called affine function if ∃w ∈ Fn and ∃c ∈ F such that f(v) =
v · w + c.
If A is the set of affine functions from Fn to F, then we define the classical
non-linearity of a function f : Fn → F as:

N(f) = d(f,A).
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6 BunnyTN: a toy cipher

To evaluate the non-linearity of vectorial Boolean functions, we use the non-
linearity of Boolean functions.
Let G : Fn → Fn, we define gi : Fn → F, i ∈ {1, . . . , n}, such that
G(x1, . . . , xn) = (g1(x1, . . . , xn), . . . , gn(x1, . . . , xn)).
Then we can define the non-linearity of G as the minimum of the non linearity
of all combinations og gi’s, that is:

N(G) = min
(λ1,...,λn)∈Fn

d(
n∑
i=1

λigi,A). (1)

A low non-linearity is dangerous. For example, if N(G) = 0 we have the
worst case, since there is a combination of gi’s, w ∈ F6 and b ∈ F such that∑n

i=1 λigi(v) = v · w + b.
To find w and b is very easy, the attacker needs only v = 0 to find b and a
basis of F6 to find w.
Even if N(G) > 0 but N(G) is low, then the attacker can easily find an affine
function α and a combination β of gi’s such that d(α, β) is minimal in order
to approximate β accurately.

The maximum that w can have from a Boolean function f : F6 → F is 24
(see [PJ99]). In BunnyTN all our functions enjoy
N(F1) = N(F2) = N(F3) = N(F4) = 24.

3.4 Other observations

We took the fourth S-Box f4 adding a translation to f1, so γ has no fixed
points.
If we had chosen f4(x) = x62 then we would have had 16 fixed points for γ,
because each of x62, x5 and x17 has 2 fixed points (0 and 1).

CGC



S. Martin, M. Sala 7

4 Mixing Layer

The Mixing Layer is the linear part of a typical round. We want an in-
vertible matrix which “mixes” the output words of the S-Box step. As Mix-
ing Layer we could have chosen A ∈ GL(24,F) but we choose a matrix
A ∈ GL(4,E), which is a byte-control. The operation of the Mixing Layer
is:

λ : F24 → F24, λ(x) = div−1 ◦ ϑ−1 ◦ λ′ ◦ ϑ ◦ div(x)

where

λ′ : E4 → E4, λ′(v) = vA

A =


e45 e61 e23 e29

e25 e44 e54 e59

e56 e5 e18 e8

e55 e17 e23 e16



We have chosen this Matrix A with the MDS property.
A brutal search of an MDS matrix in the group GL(E, 4) is hard, because the
set of MDS matrices is very small. To select an MDS matrix we have used the
generating matrix of a Reed Solomon code.

Definition 10 ([MS77]). Let α be a primitive element of Fq, then we can define
an evaluation function:

ev : Fq[x]→ (Fq)q−1 ev(p) = (p(α), . . . , p(αq−1))

For any 0 ≤ ∆ ≤ q − 1, the Reed Solomon code

RS(q,∆) = {ev(p) : deg p ≤ ∆, p ∈ Fq[x]}

.

Let G be a systematic generating matrix for RS(q,∆). It is well-known in
coding theory that any square sub-matrix in the non-systematic part of G is
an MDS matrix. In our case it is enough to consider RS(26, 3), so that G is a
4× 63 matrix.

In this case its branch number is 5.

Definition 11. An n × n matrix over K A has branch number k if k is the
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8 BunnyTN: a toy cipher

maximal integer such that ∀x, y ∈ (Kn)∗ and x 6= y then

d(x, y) + d(Ax,Ay) ≥ k

Theorem 12 ( [BR00]). An n × n MDS matrix A over K has branch number
n+ 1.

It easy to see that n+ 1 is the maximal branch number possible for a matrix
in GL(n,K). In fact if we choose c with weight 1,
d(0, c) + d(A(0), A(c)) = 1 + d(0, A(c)) and so our branch number will be less
than 1 + w(A(c)) ≤ 1 + n.

Our 4× 4 matrix A is MDS, so its branch number is 5. This ensures high
diffusion between the words of the message.

5 Key-schedule

In this section, to simplify our notation, we do not write explicitly the
isomorphism ϕ.
The Key-schedule of BunnyTN is divided into three steps.

5.1 First step: creation of W−8, . . . ,W−1

The first step of the Key-Schedule is to divide the session key with the
usual subdivision div : F24 → (F6)4 to obtain four words:W−8,W−7,W−6,W−5 ∈
F6. To create W−4,W−3,W−2,W−1 we proceed as follows:

W−4 = W−8
62 +W−7

W−3 = W−7
5 +W−6

W−2 = W−6
17 +W−5

W−1 = W−5
62 + e2 +W−8

In other words we use the S-Boxes.

5.2 Second step: creation of W1, . . . ,W80

The second step takes as input W−8, . . . ,W−1 and returns as output the
Wi’s to create the round-key.

Wi = Wi−8 +Wi−1 if i mod 4 6= 1
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Wi = Wi−8 + RB(Wi−1)
5 + (1, 0, 1, 0, 1, 0) if i mod 8 = 1

Wi = Wi−8 +W 17
i−1 if i mod 8 = 5

i = {0, 1, . . . , 80}

where RB is the rotation of six bits in a word to the left:

RB : F6 → F6, RB((x5, x4, x3, x2, x1, x0)) = (x4, x3, x2, x1, x0, x5).

5.3 Third step: creation of the round keys

At the last step we create the round keys.
We discard the W−8, . . . ,W−1.
We use this algorithm:

ki = div−1(Wi mod 5+20bi/5c,Wi mod 5+20bi/5c+5,Wi mod 5+20bi/5c+10,Wi mod 5+20bi/5c+15)

i = {0, . . . , 15}

Note that we use rectangular blocks with 20 Wi’s. For this reason in the
previous step i goes to 80 which is a multiple of 20. This algorithm picks the
Wi’s in diagonal in each block to build each round key.

This picking guarantees a higher security than, for example, the key-
schedule of AES, since we reduce the mutual information between all round
keys. In AES, the algorithm takes the Wi horizontally, but if an attacker finds
a round key, he can discover a lot of information on the previous round key,
and so it is easier to discover all the round keys. In BunnyTN, this is not
possible for the structure given in Step 3, in fact the structure of our round
key is diagonal and an attacker cannot use the inverse of the Step 2 to find
some information about the previous key.
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10 BunnyTN: a toy cipher

For this reason, in the classification of security of the key schedules (see
[CDN98]), BunnyTN is 2A, instead of AES128 which is 1C.

5.4 Other observation

Again, in the Step 2 the use of the translation helps to avoid fix points. In
fact x5 and x17 have two fix points (0 and 1) and a fix point of the key-schedule
could be dangerous.

6 Number of rounds

The choice of the number of rounds is important: too few rounds can give
bad security, too many rounds need expensive computations. So the design
usually starts from a low number of rounds and checks the robustness of
the resulting cipher. A way to check the robustness of a cipher is to too see
if the encrypted ciphers are similar to random messages. If the encryption
looks random, then it is impossible to predict its behavior. If an algorithm
is distinguishable from a random oracle, it may b attackable. That is, there
may exist a relation between different outputs, or between input and output,
which can be used by an attacker.

Fifteen distinguishers are proposed by the National Institute of Standard
and Technology (NIST) at this link:
http://csrc.nist.gov/groups/ST/toolkit/rng/documentation_software.html.
(A more detailed presentation is in the documentations of NIST [NIS00]).

A one-round BunnyTN has no security: it fails all NIST tests.
A two-rounds BunnyTN turns out to be weak in the “Approximate Entropy Test”.
A three-rounds BunnyTN shows problems with “Cumulative Sums” and with “Longest
Run Test”.
A four-rounds BunnyTN has apparently no problems with any NIST test.

We would choose 12 rounds, in conservative manners, as three times the mini-
mum of the apparent indistinguishability, but curiously a 12-rounds BunnyTN has
some weakness with the “Random Excursion Test”. So we move to a 15-rounds
BunnyTN. Obtained results are good, except for a tiny discrepancy in the “Non
Periodic Template Matchings Test”.

Here we present a table with the results of the NIST-tests on BunnyTN with 15
rounds and 60 sequences with 106 bits:

CGC
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P-value Statistical Test

0.090936 Frequency

0.019188 Block Frequency

0.366918 Cumulative Sums (1/2)

0.181557 Cumulative Sums (2/2)

0.090936 Runs

0.162606 Longest Run

0.595549 Rank

0.304126 FFT

0.224821 Non Overlapping Template (1/148)

0.366918 Overlapping Template

0.595549 Universal

0.224821 Approximate Entropy

0.888137 Random Excursions (1/8)

0.060239 Random Excursions Variant (1/18)

0.002559 Serial (1/2)

0.224821 Serial (2/2)

0.181557 Linear Complexity

7 Evaluation

We have evaluated BunnyTN from many points of view.

Diffusion

Definition 13. Let be ρ : Fn → Fn a typical round. We said that ρ has got i-th
diffusion k if ρk = ρ ◦ . . . ◦ ρ︸ ︷︷ ︸

k

has got this property:

if ρk(x1, . . . , xi, . . . , xn) = (f1(x1, . . . , xi, . . . , xn), . . . , fn(x1, . . . , xi, . . . , xn)) then
fj(x1, . . . , xi, . . . , xn) /∈ F[x1, . . . , xi−1, xi+1, . . . , xn] ∀j ∈ {1, . . . , n}.
We said that ρ has got diffusion k if ρ has got i-th diffusion k, ∀i ∈ {1, . . . , n}.

We have proved that BunnyTN has diffusion 2 with only two rounds, i.e. each
bit of the ciphertext is edited by each bit of the plaintext after two rounds.
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12 BunnyTN: a toy cipher

Weakly δ-differential uniform

Definition 14 ([CDS09]). Let F : F2n → F2n , a ∈ F∗2n , F̂a(x) = F (x) + F (x+ a).
We say that F is weakly δ-differential uniform if ∀ ∈ F∗2n then:∣∣∣Im(F̂a)

∣∣∣ > 2n−1

δ
.

If F is weakly 2-differential uniform, it is called weakly APN.

As it is know [CDS09] the δ differential uniformity implies the weakly δ differential
uniformity.
Our functions x5 and x17 are not weakly APN, however they are 4 differential
uniform, so they are weakly 4-differential uniform. On the other hand, x62 and
x62 + e2 are weakly APN.

Algebraic Degree

Definition 15. We call pure monomial any polynomial in Fq[x1, . . . , xn] of type
XS =

∏
i∈S xi where S ⊂ {1, . . . , n} (for example: x{1,4,5} = x1x4x5). x∅ = 1.

Given f : Fn → F, we can write f =
∑

S⊂{1,...,n} aSXS . This writing is called normal
form of f .

Definition 16 ([CM03]). If f : Fn → F, f =
∑

S⊂{1,...,n} aSXS then the algebraic
degree of f is

∆(f) = max{deg(XS)|aS 6= 0}

If F : Fn → Fm, F (x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) then the alge-
braic degree of F is

∆(F ) = min
(λ1,...,λm)∈(Fm)∗

∆(
m∑
i=1

λifi)

The algebraic degree of x5 and x17 is 2, the algebraic degree of x62 is 5. The alge-
braic degree for x5 and x17 is very low, but it is the minimum to have a nonlinearity.
The algebraic degree for the inverse is very good (it is the maximum).

Algebraic Density

Definition 17. If f : Fn → F, f =
∑

S⊂{1,...,n} aSXS then the algebraic density of f
is

η(f) = |{aS |aS 6= 0}|

If F : Fn → Fm, f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) then the alge-
braic density of F is

η(F ) = min
(λ1,...,λm)∈Fm

η(
m∑
i=1

λifi)
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The density of x5, x17 is 7, the one of x62 is 23. This is not very good because
a random function over F6 has density 32. However this is not so terrible, because
the use of many rounds give us a good density.

Anti-invariance

Definition 18. Let F : Fn → Fn, it is strongly l-anti-invariant if ∀V,W ⊂ Fn r-
dimensional subspace such that f(V ) = W , then r < n− l.
Let F : Fn → Fn, is is l-anti-invariant if ∀V ∈ Fn r-dimensional subspace such that
F (V ) = V , then r < n− l.

In BunnyTN x5, x17 and x62 are 3-anti-invariant and strongly-3-anti-invariant.

Affine equivalence

Definition 19 ([BCP06]). Let be K a field and F,G : Kn → Kn two functions. They
are affine equivalent if exist two n × n invertible matrix A and B and two vectors
c and d of length n such that:

B(F (Ax+ c)) + d = G(x) ∀x ∈ Kn.

x5 and x17 are affine equivalent.
x62 is in a different affine equivalent class.

Proper and strongly proper

Definition 20 ([CDS09]). Let be V = ⊕si=1Vi vectorial space and Vi ⊂ V subspaces
of V . We call Vi bricks.
Let be I ⊂ {1, . . . , s} I 6= ∅, W = ⊕i∈IVi is called wall.

Definition 21. Let be λ ∈ GL(V ), λ is proper if a sum of Vi does not exist which is
invariant per λ; i.e. ∀W wall, λ(W ) 6= W .

Definition 22. Let be λ ∈ GL(V ), λ is strongly proper if ∀W wall, λ(W ) is not a
wall.

Mixing Layer of BunnyTN is proper and strongly proper.
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14 BunnyTN: a toy cipher

Effective non linearity

Definition 23 ([DK07]). F : Fn → Fn, f ∈ SymFn . Its effective non linearity is:

E(F ) =
2n

(2n − 1)2

∑
α,k 6=0

P(α
Fk→ α)

where Fk is the Even-Mansovr’s Cipher, i.e. Fk(x) = F−1(F (x) + k).

Theorem 24.
E(F ) ≈ −1 + 2−2n

∑
α 6=0,β 6=0

(DDTF (α, β))2

where DDT is the Distribution Differential Table, which is a square matrix so de-
fined:

DDTF (α, β) = {x : F (x) + F (x+ α) = β}.

Effective non linearity of one round of BunnyTN is about 232.

A Appendix

To decipher we need to know the inverse of S-Box and of Mixing Layer.
The inverse of Mixing Layer is given by:

A−1 =


e46 e56 e53 e31

e35 e48 e38 e29

e20 e18 e11 e58

e50 e47 e25 e12


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