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1 Introduction

These are the notes of the 42-hours course “Ordinary Differential Equations” (“Equazioni
Differenziali Ordinarie”) that I am going to deliver for the “Laurea in Matematica” of
the University of Trento. I have decided to write them in English (even if the course will
be delivered in Italian), since in the future they may be also suitable for the “Laurea
Magistralis in Mathematics”, whose official language is English.

To profitably read these notes, some background on Analysis, Geometry and Linear
Algebra is needed (roughly speaking: the subject of the Analysis and Geometry courses
of the first two years of the degree in Mathematics). Other advanced concepts will be
somewhere used: convergence of functions, topology for functions spaces, complete metric
spaces, advanced linear algebra. A familiarity with such concepts is certainly welcome.
However, in the Appendix some of the requested notions and results are briefly treated.

The mathematical notations in these notes are the standard ones. In particular R, N,
Q and C respectively stand for the sets of real, natural, rational and complex numbers.
Moreover, if n ∈ N \ {0}, then Rn is, as usual, the n-dimensional space R × . . . × R
i.e. the cartesian product of R n-times. The points (or vectors) of Rn, when thought as
string of coordinates, will be usually written as a line, even if, when a m × n matrix is
applying to them, they must be think as column. With the notation [a, b] we will mean
the interval of real numbers {x ∈ R|a ≤ x ≤ b}, that is the closed interval containing
its extreme points. In the same way ]a, b[ will denote the open interval without extreme
points {x ∈ R|a < x < b}1, ]a, b] the semi-open interval {x ∈ R|a < x ≤ b} and [a, b[ the
semi-open interval {x ∈ R|a ≤ x < b}2.

The time-derivative will be usually denoted by “y’ ”, and very rarely by “ẏ”.
The Euclidean norm in Rn, with n > 1, will be denoted by ‖ · ‖Rn or, if there is no

ambiguity, simply by ‖ · ‖. The absolute value of R is denoted by | · |. When x ∈ Rn, with
n > 1, and when r > 0, with the notation BRn(x, r) we will denote the open ball centered
in x with radius r

BRn(x, r) = {z ∈ Rn|‖z − x‖Rn < r} .

Also in this case, if no ambiguity arises, we may use the simpler notation B(x, r).
If A is a subset of Rn, by A we will denote its closure.
In these notes the formulas will be enumerated by (x.y) where x is the number of

the section (independently from the number of the subsection) and y is the running
number of the formula inside the section. Moreover, the statements will be labeled by “S
x.y” where “S” is the type of the statement (Theorem, Proposition, Lemma, Corollary,
Definition, Remark, Example), x is the number of the section (independently from the
number of the subsection), and y is the running number of the statement inside the section
(independently from the type of the statement).

The symbol “¤” will mean the end of a proof.

1Here, we of course permit a = −∞ as well as b = +∞.
2In the last two cases we, respectively, permit a = −∞ and b = +∞.
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Some possible references are3

• G. De Marco: Analisi Due -seconda parte, Decibel-Zanichelli, Padova 1993.

• C.D. Pagani - S. Salsa: Analisi Matematica, Volume 2, Masson, Milano 1991.

• L.C. Piccinini, G. Stampacchia, G. Vidossich: Ordinary Differential Equations in
Rn, Springer-Verlag, New York 1984.

• W. Walter: Ordinary Differential Equations, Springer-Verlag, New York 1998.

Please feel free to point out to me the mathematical as well as the english mistakes,
which are for sure present in the following pages.

Let’s start!

1.1 Motivating examples

The theory of ordinary differential equations is one of the most powerful method that
humans have invented/discovered4 and continuously improved for describing the natural
phenomena whose investigation is fundamental for the progress of humanity. But its
power is not limited to the “natural phenomena” (physical, biological, chemical etc.), it is
also fundamental for the study and the construction of mechanical systems (engineering)
as well as for the study and the prediction of the economical/social behavior of our real
world.

An ordinary differential equations is a functional equation which involves an unknown
function and its derivatives. The term “ordinary” means that the unknown is a function
of a single real variable and hence all the derivatives are “ordinary derivatives”.

A natural extension of the theory of ordinary differential equations is the theory of
partial differential equations5, which is certainly more suitable for describing those phe-
nomena whose space-dependence is not negligible. However, most of the results about
partial differential equations were not be obtainable without a good theory for the ordi-
nary differential equations.

Since the unknown function depends only on a real variable, it is natural to give it
the meaning of time, denoting it by t ∈ R, and to interpret the solution as the evolution
of the system under study. Here are some examples in this sense.

3The first two have strongly inspired the present notes, the second two may be suggested for deeper
readings.

4Is Mathematics invented or is it discovered? We do not enter in such a diatribe. We leave it to
philosophers.

5A partial differential equation is a functional equation which involves an unknown function and its
derivatives. The term “partial” means that the unknown depends on many real variables and hence the
derivatives in the equation are “partial derivatives”.
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Example 1.1 Capital management. The evolution of the amount of a capital at disposal
is represented by a time-dependent function K(·). At every instant6, there is a fraction
cK which is re-invested with an instantaneous interest rate given by i, and there is also
a fraction dK which is spent without earning. Here c, d, i are all real numbers between 0
and 1 and c + d ≤ 1. The evolution law for the capital is then given by the equation

K ′(t) = (ic− d)K(t), (1.1)

which means that K instantaneously tends to increase for the capitalization of the re-
invested quantity cK, and instantaneously tends to decrease for the spent quantity dK.
Even if this is a very simple model, it is obvious that the possibility of computing the
capital evolution K(·), i.e of solving the equation (1.1), is extremely important for the
management of the capital. For instance, one may be interested in suitably choosing the
coefficients c and d7 in order to get a desired performance of the capital without too much
reducing the expendable amount. To this end, the capability of solving the equation is
mandatory. Here, a solution is a one-time derivable real-valued function K, defined on a
suitable interval I ⊆ R, K : I → R.

Example 1.2 Falling with the parachute. A body is falling hanged to its parachute.
Denoting by g the gravity acceleration and by β > 0 the viscosity coefficient produced by
the parachute, the law of the motion is, in a upward oriented one-dimensional framework,

x′′(t) = −g − βx′(t). (1.2)

This means that the time-law of the fall (i.e. the time-dependent function x(·)) must solve
the functional equation (1.2), which says: the acceleration of the falling body is given by
the downward gravity acceleration plus a term which depends on the velocity of the fall
and on a viscosity coefficient. This last term is responsible of the fall’s safety: bigger is β
slower is the fall8. With air’s viscosity fixed, the coefficient β depends only on the shape
of the parachute. Hence, one may be interested in calculating a suitable9 coefficient β and
then construct a corresponding parachute. It is obvious that the “suitableness” of β may
be tested only if we know the corresponding evolution x, that is only if we can solve the
equation (1.2) for all fixed value of β. A solution is then a two-times derivable real-valued
function x, defined on a suitable interval I ⊆ R, x : I → R.

Example 1.3 Filling a reservoir. A natural water reservoir is modeled by a bidimen-
sional rectangular box [a, b] × [0, H]. Let us suppose that the reservoir is filled in by a
water source whose rate of introduction of water is constantly equal to c > 0 (volume of

6Let us suppose that the model is based on a “continuous time” instead of a “discrete time” (for
instance:day by day, week by week...) as may be more natural to assume. The “continuity” of the time
may be reasonable if we are looking to the evolution of the capital in a long period: ten, twenty years.

7Unfortunately, the most important coefficient in (1.1), that is i, is not at disposal of the investor, but
it is decided by the bank. And also changing bank is not helpful.

8Note that, when the body is falling, x′ is negative and hence −βx′ is positive
9“Suitable” could mean: safely reach the ground without spending too much time.
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water per unit time). Let us suppose that the vertical layers of the reservoir have some
degree of porosity. This means that, at every instant t, an amount of water exits through
the points (a, h), (b, h) with a rate that is proportional to the porosity and to the quantity
of water over the point (the pressure). In particular, let us denote by u(t) the level of
water inside the reservoir at the time t and let us suppose that the porosity depends on
the height10. This means that there exists a function g : [0, h] → [0, 1] such that the rate
of exit through (a, h) and (b, h) at time t is equal to zero if u(t) < h, otherwise it is given
by g(h)(u(t)− h).11 Hence, the rate at the time t of the total volume of water that exits
through the vertical layers is given by

∫ u(t)

0

g(h)(u(t)− h)dh.

Hence, the instantaneous variation of the level u, that is its time derivative, is given by

u′(t) =
c

b− a
− 1

b− a

∫ u(t)

0

g(h)(u(t)− h)dh.

For instance, if

g(h) =
h

H
,

which means that the more permeable soils are on the surface, we then get the equation

u′(t) =
c

b− a
− u3(t)

6(b− a)H
. (1.3)

If the source supplies water with a rate which is not constant but it depends on time, let
us say c(t), then the equation is

u′(t) =
c(t)

b− a
− u3(t)

6(b− a)H
. (1.4)

Being able to calculate the solution u of (1.3) (or of (1.4)) permits to predict whether
(and possibly at which time) the reservoir will become empty, or filled up, or whether its
level will converge to a stable value. Here a solution is a one-time derivable real-valued
function.

Example 1.4 The prey-predator model of Lotka-Volterra. Two species of animals, X
and Y , occupy a certain region and interact. Let us denote by x(t) ≥ 0 and by y(t) ≥ 0 the
number of present individuals at time t for both species respectively. Let us suppose that

10Such a situation is common in the application where, for deep reservoirs, different types of soils are
stratified along the wall of the reservoir.

11Note that the point is not permeable if g(h) = 0, and hence nothing exit through that point; it is
completely permeable if g(h) = 1, and hence if u(t) > h, then through that point the water exits with
rate given by (u(t)− h). If 0 < g(h) < 1 all the intermediate cases may hold.
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the species Y is given by predators whose preys are exactly the individuals X. Moreover,
we suppose that the relative rate of increasing for the preys (i.e x′/x) is constant and
positive when there are no predators (y = 0), and instead linearly decreases as function of
y in case of presence of predators (y > 0). On the other hand, we suppose that the relative
rate of increasing for the predators (i.e. y′/y) is constant and negative when there are no
preys (x = 0)12, and instead is linearly increasing as function of x in case of presence of
preys (x > 0). Hence we have the following system





x′

x
= α− βy

y′

y
= −γ + δx

,

where α, β, γ, δ are positive constants. The system can also be written as

{
x′ = x(α− βy)
y′ = y(−γ + δx)

(1.5)

Solving (1.5) may permit to study the evolution of the two species, which is certainly
important from many points of view13. A solution of (1.5) is a one-time derivable vectorial
function t 7→ (x(t), y(t)) ∈ R2.

Up to now, we have considered model problems where the variable of the unknown
function has the meaning of time, and the solution the meaning of evolution. However,
this not the only case (even if it is a natural framework). Next two examples show cases
where the real variable of the unknown function does not have the meaning of time, but
rather the meaning of space14 15.

Example 1.5 The catenary curve. A homogeneous chain is hanged to a vertical wall
by its extremes on two points, not on the same vertical line, and it is subject only
to the gravity force. Which is the shape attained by the chain? Let us suppose that
the shape of the chain is given by the graph of a function y : [a, b] → R, x 7→ y(x),
where a and b are the abscissas of the two hanging points. On every piece of arch
of the chain, the resultant of all the applied forces must be zero, since the chain is
in equilibrium. Such forces are: 1) the total weight of the piece of arch, 2) the force
exerted on the right extremum by the remaining right part of the chain, 3) the force
exerted on the left extremum by the remaining left part of the chain. The first force
is vertical and downward, the other two are tangential. Let our piece of arch be the

12They have nothing to eat.
13Nowadays we can in particular say “from an ecological point of view”.
14However, in the sequel, we will often adopt the point of view of “time” and “evolution”. It is obvious

that, from an analytical point of view, the meaning given to the variable (time, space, what else...) and
the name given to it (t, x, p...) is completely meaningless.

15The second of the next examples (Optimal control) starts from a problem of “evolution” but in the
ordinary differential equation (1.7) the variable p has the meaning of space: the starting point of the
evolution.
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part of the graph over the subinterval [xl, xr] ⊆ [a, b]. We write our three forces by
their horizontal and vertical components in the following way: 1) P = (0,−p) dis-
tributed on all the piece of arch, 2) Tr(xr, y(xr)) = (T r

1 (xr, y(xr)), T
r
2 (xr, y(xr))), 3)

Tl(xl, y(xl)) = (T l
1(xl, y(xl)), T

l
2(xl, y(xl))). Since we must have

P + Tr(xr, y(xr)) + Tl(xl, y(xl)) = (0, 0),

we then deduce that the modules of the horizontal component of Tr(xr, y(xr)) and of
Tl(xl, y(xl)) are equal. By the arbitrariness of xl and xr, we deduce that such a modulus
is constant, let us denote it by c > 0. Now, let xv ∈ [a, b] be a point of minimum for
y (i.e. a point of minimum height for the chain). On (xv, y(xv)) the tangent is then
horizontal, and, if we repeat the previous argument on the interval [xv, xr], we have that
Tl(xv, y(xv)) has null second component (since it is tangent). Hence, the vertical weight
must be balanced only by the vertical component of Tr(xr, y(xr)). Let us denote by g
the modulus of the gravity acceleration, and by µ the constant linear mass-density of the
chain. Hence the weight of the arch over the interval [xv, xr] is given by16

p =

∫ xr

xv

gµ
√

1 + (y′(x))2dx.

We then get

T r
2 (xr, y(r)) =

∫ xr

xv

gµ
√

1 + (y′(x))2dx.

Since the ratio T r
2 (xr, y(r))/T

r
1 (xr, y(r)) = T r

2 (xr, y(r))/c is the angular coefficient of the
graph of y in (xr, y(xr)), that is y′(xr), we also get, for the arbitrariness of xr ≥ xv and
repeating similar consideration for points to the left of xv,

y′(x) =
gµ

c

∫ x

xv

√
1 + (y′(ξ))2dξ, ∀x ∈]a, b[.

Differentiating, we finally obtain

y′′(x) =
gµ

c

√
1 + (y′(x))2 ∀x ∈]a, b[. (1.6)

Being able to calculate the solution of (1.6) permits to know the shape of the chain17.

16It is the curvilinear integral of the infinitesimal weight gµds, where ds =
√

1 + (y′(x))2dx is the
infinitesimal element of length of the arch.

17Actually, to exactly know the shape of the chain, we need some other information: the heights of
the hanging points and the total length of the chain, otherwise many solutions are possible. But this is
a common feature. Also in previous examples we usually need some other information as, for instance,
the value of the solution in a fixed instant.
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Example 1.6 Optimal control. A material point is constrained to move, without friction,
on a one-dimensional guide. On the guide there is a system of coordinates, let us say p ∈ R.
The material point has to reach a fixed point positioned on p, and it has several choices
for moving: one per every value of the parameters a ∈ [−1, 1]. That is, at every instant
t ≥ 0, for every choice of a, it moves with instantaneous velocity equal to a. However,
every such a choice has a cost, which depends on the actual position p of the point on
the guide and on the parameter a, via an instantaneous cost function `(p, a). The goal
is to reach the target point p using a suitable moving strategy a(t) ∈ [−1, 1] in order to
minimize the following quantity

t∗ +

∫ t∗

0

`(p(t), a(t))dt,

where t∗ is the reaching time of the target point and p(·) is the evolution of our point.
In other words, using a suitable moving strategy a(·), we want to reach the target point
trying to minimize a “combination” of the spent time and the total cost given by `18. For
every starting point p, we can consider the “optimal function” V (p) which is the optimum
(i.e. the minimum cost) that we can get starting from p. Under suitable hypotheses19, V
solves the following equation

sup
a∈[−1,1]

{−V ′(p)a− `(p, a)} = 1. (1.7)

Being able to calculate V from (1.7) may permit to get useful information on the mini-
mization problem, for instance on how to construct an optimal strategy a(·)20.

1.2 Notations, definitions and further considerations

An ordinary differential equation is an expression of the following type:

F (t, y(n), y(n−1), . . . , y′, y) = 0, (1.8)

where F : D ⊆ R × Rk × · · · × Rk = R × (
Rk

)n+1 → R is a function; t ∈ R is a scalar
parameter; y is the unknown function, which is a function of t and takes values in Rk with
k ∈ N \ {0}; y′ is the first derivative of y and, for every i, y(i) is the i-th derivative y. The
highest order of derivation which occurs in the equation is said the order of the equation.
If k = 1, then the equation is said a scalar equation.

Solving (1.8) means to find an interval I ⊆ R and a n-times derivable function y : I →
Rk such that for every t ∈ I

18The idea is that using values of a which give high velocities, and then reduce the spent time a lot, is
probably not convenient from the point of view of `: such velocities may be expensive. Hence a suitable
combination of high and cheap velocities is needed.

19Actually, such “suitable hypotheses” are very delicate.
20However, in the real application, the evolution of the point p is not one-dimensional, but it is an

evolution in Rn, and hence the equation (1.7) satisfied by the optimum V is a partial differential equation,
with V ′ replaced by the gradient ∇V .
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(t, y(n)(t), y(n−1)(t), . . . , y′(t), y(t)) ∈ D,

and also that

F (t, y(n)(t), y(n−1)(t), . . . , y′(t), y(t)) = 0.

The function y is said a solution of the ordinary differential equation.
Let us note that a solution is a function from an interval of the real line to Rk. Then

it is a parametrization of a curve in Rk, and the law t 7→ y(t) is the time-law of running
such a curve. For this reason, a solution of an ordinary differential equation is sometimes
called a trajectory.

An ordinary differential equation may have infinitely many solutions, or finitely many
solutions or even no solutions at all. We define the general integral of the equation as the
following set (which may be infinite, finite, a singleton or empty)

I :=
{

y : I → Rk
∣∣∣I ⊆ R is an interval and y is solution of the equation

}
(1.9)

In other words the general integral is the set of all solutions of the equation, everyone
defined on its interval of definition.

The equation (1.8) is in the so-called non-normal form, that is the highest order deriva-
tive (the one of order n, in our case) is not “privileged”, that is it is not “isolated”, it is
not “outside” from the function F . On the contrary we say that an ordinary differential
equation is in normal form if it is of the following type

y(n) = f(t, y(n−1), . . . , y′, y), (1.10)

where f : D ⊆ R×Rk · · ·×Rk → Rk. In particular, let us note that the co-domain of f is
now Rk (and not anymore R), and that the domain is contained in R×(

Rk
)n

(and not any-

more R×(
Rk

)n+1
). Hence, we have a system of k scalar differential equations of n order21.

Indeed, denoting y = (y1, . . . , yk) and f = (f1, . . . , fk) by their components, we get





y
(n)
1 = f1

(
t, (y

(n−1)
1 , . . . , y

(n−1)
k ), . . . , (y′1, . . . , y

′
k), (y1, . . . , yk)

)

y
(n)
2 = f2

(
t, (y

(n−1)
1 , . . . , y

(n−1)
k ), . . . , (y′1, . . . , y

′
k), (y1, . . . , yk)

)

. . . . . .

y
(n)
k = fk

(
t, (y

(n−1)
1 , . . . , y

(n−1)
k ), . . . , (y′1, . . . , y

′
k), (y1, . . . , yk)

)

It is evident that all equations (systems) in normal form may be written in a non-
normal form, for instance by

21Actually, systems of s non-normal equations as (1.8) in m unknowns may also be considered. However,
we will not discuss such a situation.
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F (t, y(n), . . . , y′, y) :=
∥∥y(n) − f(t, y(n−1), . . . , y′, y)

∥∥
Rk .

On the contrary not all equations in non-normal form may be written in normal form.
This depends on the solvability of the algebraic equation F = 0 with respect to its second
entry y(n). For instance, the second order scalar equation

F (t, y′′, y′, y) = (y′′)2 − 1 = 0,

where F has domain D = R × R × R × R cannot be “globally” written in normal form,
that is there is not a function f(t, y′, y) such that

F (t, y′′, y′, y) = 0 ⇔ y′′ = f(t, y′, y),

for every values (t, y′′(t), y′(t), y(t)) ∈ D. For example, the functions

y1 : t → t2

2
, y2 : t → −t2

2

satisfy the equation F (t, y′′, y′, y) = 0, but they cannot satisfy y′′ = f(t, y′, y) with the
same f because otherwise, for t = 0, we should have

1 = f(0, 0, 0) = −1.

Hence, the property of being in normal form or in non-normal form does not depend on
how we write the equation, but it is an intrinsic feature of the equation itself.

In general, the normal form equations are simpler to study.
An ordinary differential equation of the general form (1.8)22 is linear homogeneous if

it is linear in the unknown function y and its derivatives. That is if F is linear with
respect to its second n + 1 components. In other words if for every n-times differentiable
functions u, v : I → Rk, for every t ∈ I, and for every scalars α, β, we have

F (t, (αu + βv)(n)(t), . . . , (αu + βv)′(t), (αu + βv)(t))

= αF (t, u(n)(t), . . . , u′(t), u(t)) + βF (t, v(n)(t), . . . v′(t), v(t)).

An ordinary differential equation is said to be a linear nonhomogeneous equation if it
is of the form

F (t, y(n), . . . , y′, y) = g(t)

with F linear as before.
An ordinary differential equation is said to be a autonomous equation if it does not

explicitly depend on the scalar variable t ∈ R. Again referring to (1.8), we must have, for
the non-normal form

22A similar definition obviously holds for equation in normal form, when we look to the linearity of the
function f with respect to its second n components.
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F (y(n), . . . , y′, y) = 0,

with F : D ⊆ (
Rk

)n+1 → R, and, for the normal form

y(n) = f(y(n−1), . . . , y′, y),

with f : D ⊆ (
Rk

)n → Rk. If the equation explicitly depends on t, we then speak of
nonautonomous equation.

The systems of first-order equations in normal form, y′ = f(t, y), have a particular
importance. Indeed, they are suitable for describing many evolutionary applied models.
Moreover, every n-order scalar equation in normal form may be written as a first-order
system of n scalar equations. Indeed, if we have the equation

y(n) = g(t, y(n−1), . . . , y′, y), (1.11)

with g : D ⊆ R × Rn → R, then we can define Y0 = y, Y1 = y′, . . . , Yn−1 = y(n−1),
Y = (Y0, . . . , Yn−1) ∈ Rn, and write the system





Y ′
0 = Y1

Y ′
1 = Y2

. . .
Y ′

n−2 = Yn−1

Y ′
n−1 = g(t, Yn−1, . . . , Y1, Y0)

(1.12)

It is evident that y : I → R is a solution of (1.11) if and only if y is the first component
of Y : I → Rn with Y solution of (1.12). If we define

f(t, Y0, . . . , Yn−1) = (Y1, Y2, . . . , Yn−1, g(t, Yn−1, . . . , Y1, Y0)) ,

we then may write the system (1.12) as Y ′ = f(t, Y ).
Concerning the “evolutionary” feature of first-order systems, we will often use the

interpretation of the solutions y : I → Rk as trajectories (or curves) in Rk, where y is the
parametrization and I is the set of parameters (thought as “time”). For the particular
case of first-order systems, the equality y′(t) = f(t, y(t)) means that, for every t ∈ I and
for every point x = y(t) of the trajectory, the tangent vector to the trajectory itself is
exactly given by f(t, x) = f(t, y(t)). In other words, if a particle is moving around Rk

with the condition that, at any instant t, its vectorial velocity is given by f(t, x), where x
is the position of the particle at the time t, then the particle is necessarily moving along
a trajectory given by a solution of the system. That is, if, for every time t and every
position x, we assign the vectorial velocity of a motion by the law v = f(t, x), then the
motion must be along a trajectory solution of the system. In this setting, the function f
is sometimes called dynamics and Rk the phase-space.
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From the previous considerations, it is naturally to observe that, in order to uniquely
determine the motion of the particle, we need to know, at least, its position at a fixed
(initial) instant. That is we have to assign the following initial condition

y(t0) = x0

where t0 ∈ R and x0 ∈ Rk are fixed and such that (t0, x0) ∈ D, the domain of f . Hence, we
are assigning the value of the solution y at a fixed instant t0. Then we have the following
initial value first order system, more frequently called Cauchy problem

{
y′ = f(t, y)
y(t0) = x0.

Solving such a problem means to find a solution/trajectory which “passes” through x0 at
time t0.

We end this subsection by applying all the definitions here given, to the equations of
the examples of the previous subsection.

Equation (1.1) is: scalar, first-order, autonomous, linear homogeneous, in normal form.
Equation (1.2) is: scalar, second-order, autonomous, linear nonhomogeneous, in nor-

mal form.
Equation (1.3) is: scalar, first-order, autonomous, nonlinear, in normal form.
Equation (1.4) is: scalar, first-order, nonautonomous, nonlinear, in normal form.
Equation (1.5) is: a system of two first-order scalar equations, autonomous, nonlinear,

in normal form.
Equation (1.6) is: scalar, second-order, autonomous, nonlinear, in normal form
Equation (1.7) is: scalar, first-order, autonomous, nonlinear, in non-normal form

1.3 Solving by hands and the need of a general theory

Let us consider the first order homogeneous nonautonomous linear equation

y′(t) = c(t)y(t), t ∈ R, (1.13)

where c : R → R is a continuous function. Let C : R → R be a primitive of c. It is easy
to see that, for every constant k ∈ R, the function

y(t) = keC(t) (1.14)

is a solution of (1.13).
The question is: are the functions of the form (1.14) all the solutions of (1.13)?
To answer the question, we are going to “work by hands” directly on the equation

and then to get information on the solutions. First of all, we see that the null function
y ≡ 0 is solution and it is of the form (1.14) with k = 0. Now, let y be a solution and let
us suppose that there exists t0 ∈ R such that y(t0) > 0 (the case y(t0) < 0 is similarly
treated). Let ]a, b[⊆ R be the maximal interval such that

13



t0 ∈]a, b[ and y(t) > 0 ∀ t ∈]a, b[.

Starting from the equation (1.13) we then get

y′(t)
y(t)

= c(t) ∀ t ∈]a, b[,

from which
∫ t

t0

y′(s)
y(s)

ds =

∫ t

t0

c(s)ds ∀ t ∈]a, b[.

Integrating and passing to the exponential, we finally get

y(t) =
(
y(t0)e

−C(t0)
)
eC(t) ∀ t ∈]a, b[.

Hence, in the interval ]a, b[, the solution y is of the form (1.14), with

k =
(
y(t0)e

−C(t0)
)

> 0. (1.15)

Now, we observe that

a ∈ R =⇒ y(a) = 0 =⇒ keC(a) = 0 =⇒ k = 0 contradiction!,

and similarly for b. Hence we must have a = −∞ and b = +∞, and we conclude that the
solutions of (1.13) are exactly all the functions of the form (1.14)23.

Now, the question is: which further conditions on the solution should we request, in
order to uniquely fix the value of the constant k?

The answer is suggested by (1.15): we have to impose the value of the solution at a
fixed time t0, that is we have to consider the Cauchy problem

{
y′(t) = c(t)y(t), t ∈ R,
y(t0) = y0,

(1.16)

where y0 ∈ R is the imposed value to the solution at t = t0. It is now immediate to see
that there is only one solution of the Cauchy problem (1.16): indeed we know that the
solution is necessarily of the form (1.14) for some k ∈ R, hence we get

y(t0) = y0 =⇒ keC(t0) = y0 =⇒ k = y0e
−C(t0).

Hence we have a unique solution to the problem (1.16), that is there exists a unique
function y which solves (1.13) and, at the time t0, passes through y0. Such a function is24

23In particular, if c(t) ≡ c̃ is a constant, then the solutions are exactly all the functions of the form
y(t) = kec̃t

24Again, if c(·) is the constant c̃, then we have y(t) = y0e
c̃(t−t0).

14



y(t) =
(
y0e

−C(t0)
)
eC(t) = y0e

C(t)−C(t0).

Let us summarize what we have discovered about the solutions of the equation (1.13)
and of the Cauchy problem (1.16):

1) the solutions of (1.13) are the functions of the form yk(t) = keC(t) and they are
defined (and solution) for all the times t ∈ R;

2) for every t0, y0 ∈ R fixed, the solution of (1.16) is unique, and it is the function
y(t) = y0e

C(t)−C(t0) (in particular, if y0 = 0 then the unique solution is the null function
y ≡ 0).

From 1) and 2) we can also get the following consideration
3) the general integral of (1.13), i.e. the set of all solutions, is a one-parameter family

of functions

Ĩ = {yk : R→ R|k ∈ R},

and the correspondence k 7→ yk between Ĩ and R is a bijection. In particular, it is an
injection because k1 6= k2 implies yk1 6= yk2 , since for instance they are different on t0.

Now, we consider the following first order nonhomogeneous nonautonomous linear
equation

y′ = c(t)y + g(t), (1.17)

where the function c(·) is as before and g : R→ R is also continuous. Inspired by (1.14)
in the previous case, we look for solutions of the form

y(t) = α(t)eC(t), (1.18)

where α : R → R is a continuously derivable function. Differentiating and inserting in
(1.17), we get

α′(t) = g(t)e−C(t)

and hence we must have

α(t) =

∫ t

t0

e−C(s)g(s)ds + k,

where t0 ∈ R is a fixed instant and k ∈ R is the integration constant. Hence, once t0 is
fixed, we have that, for all k ∈ R, the function

y(t) = eC(t)

(
k +

∫ t

t0

e−C(s)g(s)ds

)
, (1.19)

which is of the form (1.18), is a solution of (1.17).
Again, the question is: are the functions of the form (1.18) all the solutions of (1.17)?
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Here, arguing as in the previous case is not completely immediate, due to presence of
the term g(t). However, using the already obtained existence and uniqueness results for
the Cauchy problem (1.16), we immediate obtain a similar results for

{
y′(t) = c(t)y(t) + g(t), t ∈ R,
y(t0) = y0,

(1.20)

where t0, y0 ∈ R are fixed values. Indeed, we easily get k ∈ R such that the function in
(1.19) is a solution of (1.20):

y(t0) = y0 =⇒ k = y0e
−C(t0).

Now, using the linearity of (1.17), we have that, if y(·) and z(·) are any two solutions
of (1.20), then the difference function ψ = y − z is solution of (1.16) with condition
ψ(t0) = 0. But we already know that such a problem has a unique solution ψ ≡ 0. Hence
we certainly have y = z, that is (1.20) has a unique solution, which of course is

y(t) = eC(t)

(
y0e

−C(t0) +

∫ t

t0

e−C(s)g(s)ds

)
. (1.21)

From such uniqueness result for (1.20), we can answer to the question whether all the
solution of (1.17) are of the form (1.18). The answer is of course positive since, given any
solution y(·) of (1.17) and denoted by y0 its value in t0, then such a function solves (1.20)
and hence it is the function (1.21) which is of the form (1.18). Moreover, also in this case
we get that the general integral of (1.17) is a one-parameter family of functions, one per
every value of k ∈ R.

What have we learned from the study of (1.17) and (1.20)? We have learned that,
even if it is not obvious how to answer to our questions25 via a direct hand-management of
the equation, however we get a satisfactory answer using the already obtained uniqueness
result for (1.16). In this, we are certainly helped by the fact that the equation is linear.
Thus obtaining existence and uniqueness results for ordinary differential equations seems
very important, even before making direct calculations for searching solutions. And what
happens if the equation is not linear? Making the difference of two solutions is certainly
not helpful. Hence, we are still more lead to think that a general and abstract theory
concerning existence, uniqueness, comparison etc. of solutions is certainly useful and
important. This is the subject of the next sections.

1.4 Frequently asked questions

Before starting with the general study of the ordinary differential equations, we make
a list of those questions which are natural and common to formulate when we face an
ordinary differential equation or a Cauchy problem.

Such questions are

25Are all the solutions of the form (1.18)? and is the solution of (1.20) unique?
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(i) Does a solution exist?

(ii) If it exists, is it unique?

(iii) How long does a solution last?26

(iv) How much a solution is sensible with respect to parameters and coefficients which
are present in the equation?

(v) How to calculate a solution?

Questions (i), (ii), (iii) and (iv) are of qualitative type. The question (v) is of quanti-
tative type.

Another question is

(vi) Are there some types of equations which are easier to study than others, both from
a qualitative and a quantitative point of view?

Another qualitative question is

(vii) If a solution exists for all times, what can we say about its behavior as time goes to
infinity?

In the next sections, we will give some satisfactory answers to these questions. In
particular questions (i) and (ii) are treated in Section 2; question (iii) is treated in Section
2 and Section 5; question (iv) is treated in Section 6 and Section 7; question (v) is treated
in Section 4 and in Section 7; question (vi) is treated in Section 3; question (vii) is treated
in Section 7.

26For instance, if we a priori fix a time interval [t1, t2], does the solution exist for all those times?
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2 Existence and uniqueness theorems for the Cauchy

problem

2.1 Definitions: local and global existence

Let us consider the following Cauchy problem for a nonlinear nonautonomous system27

{
y′(t) = f(t, y(t)),
y(t0) = x0,

(2.1)

where (t0, x0) ∈ A ⊆ R × Rn = Rn+1 is fixed, with A a given open set and f : A → Rn

continuous.

Definition 2.1 We say that a function y : I → Rn is a solution of (2.1) on I if I ⊆ R
is an open interval, t0 ∈ I, y ∈ C1(I,Rn), y′(t) = f(t, y(t)) for all t ∈ I and y(t0) = x0.

Note that Definition 2.1 also implies that (t, y(t)) ∈ A for all t ∈ I, otherwise we
cannot apply f to the couple (t, y(t)). Moreover, it is evident that, if y : I → Rn is a
solution on I, then it is also a solution on every open interval J ⊆ I containing t0.

Definition 2.2 We say that the problem (2.1) admits a local solution (or equivalently
is locally solvable) if there exist an open interval I ⊆ R and a function y : I → Rn such
that y is a solution of (2.1) on I.

Definition 2.3 We say that the problem (2.1) admits global solutions (or equivalently
is globally solvable) if for every open interval I ⊆ R such that

t0 ∈ I, {x ∈ Rn|(t, x) ∈ A} 6= ∅ ∀ t ∈ I, (2.2)

there exists a function y : I → Rn which is solution of (2.1) on I.

The difference between local and global solvability is that in the first case we cannot
a-priori fix the time interval, but we only know that a (possibly very small) time interval
exists. On the contrary, in the second case, for any (suitable) fixed time interval, we find
a solution on it.

Of course, the global solvability implies the local one, but the contrary is false.

Example 2.4 We consider the problem
{

y′(t) = y2(t),
y(0) = 1.

Here, n = 1, f : R×R→ R, f(t, x) = x2, A = R2, t0 = 0, x0 = 1. Applying a uniqueness
result from next subsections, we see that such a problem has the unique solution

27Here “nonlinear system” means that we do not require that the system is linear. But, of course, all
the results can also be applied to the linear case. The same remark applies to “nonautonomous system”.
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y(t) =
1

1− t
,

which is defined only in the time interval ] −∞, 1[. For example, if we a-priori fix the
time interval J =] − 1, 2[ (which is an admissible time interval for our problem, that is
satisfies (2.2)), and we look for a solution on J , then we do not find anything. Hence the
problem admits only a local solution.

In general, if A is arch-connected, we may consider the maximal interval satisfying
(2.2)

Imax = {t ∈ R|∃x ∈ Rn, (t, x) ∈ A} =:]a, b[

Moreover, let us suppose that A is the maximal set of definition for f and that the problem
is only locally solvable. Then there exist a < ξ1 < ξ2 < b such that every solution exits
from A28 in the time interval ]ξ1, ξ2[. Hence, looking for solution defined up to times
t ∈]a, ξ1[∪]ξ2, b[ is meaningless since we certainly cannot apply f to the possible couple
(t, y(t)) 6∈ A.

2.2 The integral representation

Proposition 2.5 Let f : A → Rn be continuous and I ⊆ R be an open interval. Then a
function y : I → Rn is a solution of (2.1) on I, if and only if (t, y(t)) ∈ A for all t ∈ I,
and, more important, y is continuous (i.e. y ∈ C(I,Rn)) and29

y(t) = x0 +

∫ t

t0

f(s, y(s))ds ∀t ∈ I (2.3)

Proof. First of all let us note that, since y and f are both continuous, then the function
of time s 7→ f(s, y(s)) is also continuous and the integral in (2.3) exists for all t ∈ I. Let
us now prove the equivalence.

=⇒) If y is a solution then, by definition, y ∈ C1(I,Rn) and so, for every t ∈ I,
integrating the equation from t0 to t, we get

∫ t

t0

y′(s)ds =

∫ t

t0

f(s, y(s))ds =⇒ y(t) = x0 +

∫ t

t0

f(s, y(s))ds.

⇐=) If y is continuous and satisfies (2.3), then we also have y ∈ C1(I,Rn), and, by
the fundamental theorem of calculus, its derivative is exactly y′(t) = f(t, y(t)). Since by
(2.3) we obviously have y(t0) = x0, we then conclude. ¤

28By an abuse of definition, this means that the couple (t, y(t)) ∈ Rn+1 exits from A.
29The integral of a vectorial function f is the vector whose components are the integral of the compo-

nents of f .
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Proposition 2.5 gives an integral representation of the solution, as well as of the ordi-
nary differential equation. It is a powerful tool for studying the Cauchy problem, since
integrals are often more manageable than derivatives. Already starting from the next
subsection we are going to make an intensive use of the integral representation (2.3).

Remark 2.6 Note that the formula (2.3) is an “implicit formula”. That is we cannot
calculate the solution y just integrating in (2.3), because the second member itself depends
on y.

2.3 The Peano existence theorem under continuity hypothesis

Theorem 2.7 If f : A → Rn is continuous, then the Cauchy problem (2.1) is locally
solvable for any choice of the datum (t0, x0) ∈ A. This means that, for any (t0, x0) ∈ A,
there exist δ > 0 (depending on (t0, x0)) and a function y :]t0 − δ, t0 + δ[→ Rn which is a
solution of (2.1) on ]t0 − δ, t0 + δ[.

In the next two subsections we are going to give proofs of this theorem for the particular
case where

A = J × Rn, J =]a, b[⊆ R open interval , f bounded on A, (2.4)

and we prove the existence of a solution in a right neighborhood of t0: [t0, c[. This is
indeed a (right-) global existence result (for the arbitrariness of t0 < c < b). The general
case of local (both sides-) existence with arbitrary A, and f not bounded, may be obtained
restricting the problem to a rectangular inside A30.

In both following proofs, the idea is to approximate a solution by constructing a
suitable sequence of quasi-solutions, and then passing to the limit using the Ascoli-Arzelà
theorem 8.10.

2.3.1 A first proof: a delayed argument

If we look to the equation y′(t) = f(t, y(t)), we have an instantaneous relation (i.e. at the
same instant t) between the left- and right-hand sides. Hence, we decide to little change
the equation by introducing a time-delay α > 0. The idea is to consider the delayed
equation

y′(t) = f(t, y(t− α)),

where the unknown term y(t−α) in the right-hand side may be supposed already known,
indeed our goal is to solve the equation step-by-step, that is first in the interval [t0, t0 +α],
then in [t0 + α, t0 + 2α] and so on.

We define the following function in [t0 − α, c]

30In a similar way as we are going to do in the next Section under Lipschitz continuity hypothesis.
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zα(t) =





x0 if t0 − α ≤ t ≤ t0,

x0 +

∫ t

t0

f(s, zα(s− α))ds if t0 ≤ t ≤ c.

Note that, for every α > 0, the function zα is well defined in [t0, c]. For instance: if
t ∈ [t0, t0 +α] then zα(t) = x0 +

∫ t

t0
f(s, x0)ds, which is computable, and once we know zα

in [t0, t0 + α], we then can compute it in [t0 + α, t0 + 2α], and so on. Since f is bounded,
we have that, denoting by M > 0 its bound,

‖zα‖C([t0,c];Rn) ≤ ‖x0‖Rn + M(c− t0), ‖zα(t)− zα(s)‖Rn ≤ M |t− s| ∀t, s ∈ [t0, c]. (2.5)

Hence, the functions {zα}α>0 are equibounded and equicontinuous on the compact set
[t0, c]. By the Ascoli-Arzelà theorem, this implies that there exist a subsequence zk (i.e.
a subsequence αk → 0 as k → +∞) and a continuous function y : [t0, c] → Rn such that
zk uniformly converges to y on [t0, c].

Note that also the functions t 7→ zα(t − α) are well defined on [t0, c], and they also
uniformly converge to y. This is true since we have

‖zk(t− αk)− y(t)‖ ≤ ‖zk(t− αk)− zk(t)‖+ ‖zk(t)− y(t)‖,

and both terms in the right-hand side are infinitesimal as k → +∞ independently on
t ∈ [t0, c] (for the uniform convergence and the equicontinuity of zk (2.5)).

Moreover, the functions t 7→ f(t, zk(t − αk)) uniformly converges to the function
t 7→ f(t, y(t)), on [t0, c]. This is true since the couples (t, zk(t−αk)), (t, y(t)) all belong to
the compact set [t0, c]× BRn(O, (‖x0‖Rn + M(c− t0))), where O is the origin of Rn, and
f , being continuous, is uniformly continuous on such a set.

Finally, passing to the limit, as k → +∞, in the definition of zk, we get

y(t) = x0 +

∫ t

t0

f(s, y(s))ds,

which concludes the proof, proving that y is a solution.

2.3.2 A (sketched) second proof: the Euler method

Here, our goal is to construct an approximate solution yδ by dividing the time interval [t0, c]
into a series of a finite number of small subintervals [tk, tk+1] and, on every such subinter-
vals, defining yδ as the segment starting from yδ(tk) and parallel to f(tk, yδ(tk))

31 (which
may be considered as known if we apply such a procedure step by step (i.e. subinterval
by subinterval)). The idea is then to make the limit as δ, the length of the subintervals,
goes to zero.

31i.e. the linear function with slope given by f(tk, yδ(tk))
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Let us take δ > 0 and a finite set of instants

Tδ = {t0 < t1 < t2 < · · · < tm < tm+1 = c},

such that tk+1 − tk = δ for all k = 0, . . . , m and c− tm ≤ δ.
We define the following function yδ : [t0, c[→ Rn

yδ(t) = yδ(tk−1) + f(tk−1, yδ(tk−1))(t− tk−1) t ∈ [tk−1,tk ] ∀k = 1, . . . , m,m + 1

This is a good definition and yδ is a polygonal. Note that, in every subinterval [tk−1, tk],
y′δ(t) = f(tk−1, yδ(tk−1)), and hence, also in this case, we have a sort of “delay”.

It can be (sufficiently easily) proved that, for every ε > 0, there exists 0 < δε < ε (i.e.
a sufficiently fine partition of [t0, c]), such that

∥∥∥∥yδε(t)− x0 +

∫ t

t0

f(τ, yδε(τ))dτ

∥∥∥∥
Rn

≤ ε ∀t ∈ [t0, c], (2.6)

which, recalling the integral representation of the solution, may be seen as a criterium
of goodness of the approximate solution. Moreover, in the same way as in the previous
paragraph, we can prove that the sequence of functions

ϕδ : t 7→ x0 +

∫ t

t0

f(τ, yδ(τ))dτ

is equibounded and equicontinuous in [t0, c]. Hence, also the sequence ϕδε has the same
properties and so, by the Ascoli-Arzelà theorem, there exists a subsequence ϕδε(i)

which,
as i → +∞ (i.e. ε(i) → 0), uniformly converges in [t0, c] to a continuous function ϕ. But
then, yδε(i)

also uniformly converges to ϕ. Indeed, for every t ∈ [t0, c], we have32

‖yδε(i)
(t)− ϕ(t)‖ ≤ ‖yδε(i)

(t)− ϕδε(i)
(t)‖+ ‖ϕδε(i)

(t)− ϕ(t)‖ ≤ ε(i) + O(ε(i))

From this we deduce that, at the limit (passing to the limit inside the integral, noting
that yδ are equibounded by M̃ (since f is bounded), and that f is uniformly continuous
on [t0, c]×BRn(0, M̃)), we have

ϕ(t) = x0 +

∫ t

t0

f(τ, ϕ(t))dτ ∀ t ∈ [t0, c],

and the proof is concluded: we have found a solution (i.e. ϕ) of the Cauchy problem.

32Here O means an infinitesimal with respect to its argument.
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2.3.3 An example of non existence

Here, we give an example where the dynamics is discontinuous and the Cauchy problem
has no solution at all. Let us consider f : R→ R

f(x) =





−1 if x > 0,
1

2
if x = 0,

1 if x < 0,

and consider the Cauchy problem

{
y′(x) = f(y(x)),
y(0) = 0.

It is evident that such a problem cannot have a solution, even locally. Indeed, if a
solution y exists (remember that we require y ∈ C1) then y′(0) = f(y(0)) = f(0) = 1/2 >
0, and hence y is strictly increasing at x = 0. Since y(0) = 0, this means that y > 0
immediately to the right of x = 0, but this is impossible since when y > 0 the derivative
y′ must be negative.

Of course, if we change the value of f at x = 0, defining f(0) = 0, then f is still
discontinuous but the Cauchy problem has a solution, even unique: the null function
y(x) ≡ 0.

2.3.4 An example of non uniqueness

Let us consider the following scalar Cauchy problem

{
y′(t) = (y(t))

2
3 ,

y(0) = 0.

Here, f(t, x) = x2/3 which is defined on A = R×R and is continuous. Hence we have, at
least, one local solution. Indeed, we have infinitely many local solutions.

First of all, let us note that the null function y(t) ≡ 0 is a solution. But, for every
α, β ≥ 0, we also have the solution

yα,β(t) =





0 if − β ≤ t ≤ α,(
t− α

3

)3

if t ≥ α,
(

t + β

3

)3

if t ≤ −β.
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2.4 Local existence and uniqueness under Lipschitz continuity
hypothesis

Definition 2.8 We say that the Cauchy problem (2.1) has a unique local solution if there
exists an interval Ĩ and a solution ỹ : Ĩ → Rn on Ĩ such that, for every other solution
y : I → Rn, we have y = ỹ on I ∩ Ĩ33.

Note that in the Definition 2.8 we suppose that a local solution exists and we say that
it is unique in the sense that, in a suitable neighborhood of t0, all possible solutions must
coincide with ỹ.

Definition 2.9 The continuous function f : A → Rn of the problem (2.1) is said
to be locally Lipschitz continuous in x ∈ Rn uniformly with respect to t ∈ R if for every
(t0, x0) ∈ A there exist a neighborhood of (t0, x0), U ⊆ A, and a constant L > 0 such that

(t, x), (t, z) ∈ U =⇒ ‖f(t, x)− f(t, z)‖Rn ≤ L‖x− z‖Rn . (2.7)

Theorem 2.10 (Local existence and uniqueness) If f : A → Rn is continuous and sat-
isfies the local uniform Lipschitz condition (2.7), then, for every datum (t0, x0) ∈ A, the
Cauchy problem (2.1) has a unique local solution in the sense of Definition 2.8.

Proof. Let (t0, x0) ∈ A be fixed. Our goal is to find δ1 > 0 and δ2 > 0 such that, for
every 0 < δ′ ≤ δ1, the operator

Tδ′ : C
(
[t0 − δ′, t0 + δ′]; B(x0, δ2)

) → C
(
[t0 − δ′, t0 + δ′]; B(x0, δ2)

)
,

v 7→ Tδ′ [v] : t 7→ x0 +

∫ t

t0

f(s, v(s))ds
(2.8)

is well defined and has a unique fixed point. In this way, via the integral representation
of solutions (2.3), for every 0 < δ′ ≤ δ1, we simultaneously have existence of a solution
on ]t0 − δ′, t0 + δ′[ and uniqueness on such intervals.34. Hence, the local uniqueness in
the sense of Definition 2.8 comes from the following observation: let us take 0 < δ̃ ≤ δ1,
define Ĩ =]t0− δ̃, t0 + δ̃[ and define ỹ as the unique solution on Ĩ. Note that every solution
is also a solution on every subinterval. Then, if y : I → Rn is a solution, we must have
ỹ = y on Ĩ ∩ I (⊆]t0 − δ′, t0 + δ′[ for some 0 < δ′ < δ̃).

Hence, we are going to analyze the following four steps.
1) Find δ1 > 0 and δ2 > 0 such that, for every 0 < δ′ ≤ δ1, Tδ′ is well defined, that is

Tδ′(v) ∈ C
(
[t0 − δ′, t0 + δ′]; B(x0, δ2)

)
for all v ∈ C

(
[t0 − δ′, t0 + δ′]; B(x0, δ2)

)
.

2) Recognize that y :]t0 − δ′, t0 + δ′[→ Rn is a solution of (2.1) on ]t0 − δ′, t0 + δ′[ if
and only if it is a fixed point of Tδ′ .

3) Take δ1 as in 1) and also such that, for every 0 < δ′ ≤ δ1, Tδ′ is a contraction with
respect to the infinity norm.

33Note that, since I and Ĩ are both open intervals containing t0, then I ∩ Ĩ is also an open interval
containing t0.

34This means that there exists only one solution on ]t0 − δ′, t0 + δ′[, for every δ′.
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4) Apply the Contraction Lemma to Tδ′ to observe that it has one and only one fixed
point. Conclude by the point 2).

1) Let U and L be as in (2.7). Let us take δ1, δ2 > 0 such that [t0 − δ1, t0 + δ1] ×
B(x0, δ2) ⊆ U , and take M > 0 such that35

‖f(t, x)‖ ≤ M, ∀ (t, x) ∈ [t0 − δ1, t0 + δ1]×B(x0, δ2).

For every 0 < δ′ ≤ δ1, for every v ∈ C
(
[t0 − δ′, t0 + δ′], B(x0, δ2)

)
, and for every t ∈

[t0 − δ′, t0 + δ′], we have the following estimate

‖Tδ′ [v](t)− x0‖ =

∥∥∥∥
∫ t

t0

f(s, v(s))ds

∥∥∥∥ ≤
∣∣∣∣
∫ t

t0

‖f(s, v(s))‖ds

∣∣∣∣ ≤
∣∣∣∣
∫ t

t0

Mds

∣∣∣∣ ≤ Mδ′ ≤ Mδ1.

(2.9)
Hence, if we take δ1 ≤ δ1 such that Mδ1 ≤ δ2, then the point 1) is done36.

2) Obvious by Proposition 2.5.
3) Let us take 0 < δ′ ≤ δ1. For every u, v ∈ C

(
[t0 − δ′, t0 + δ′], B(x0, δ2)

)
, and for

every t ∈ [t0 − δ′, t0 + δ′] we have

‖Tδ′ [u](t)− Tδ′ [v](t)‖ ≤
∣∣∣∣
∫ t

t0

‖f(s, u(s))− f(s, v(s))ds

∣∣∣∣ ≤ L

∣∣∣∣
∫ t

t0

‖u(s)− v(s)‖ds

∣∣∣∣

≤ L

∣∣∣∣
∫ t

t0

‖u− v‖∞ds

∣∣∣∣ ≤ Lδ′‖u− v‖∞ ≤ Lδ1‖u− v‖∞.

By the arbitrariness of t ∈ [t0 − δ′, t0 + δ′], and also because the last term in the right is
independent from t, we then get

‖Tδ′ [u]− Tδ′ [v]‖∞ ≤ Lδ̃1‖u− v‖∞,

where ‖ · − · ‖∞ is the metrics in C
(
[t0 − δ′, t0 + δ′], B(x0, δ2)

)
.

Hence, if we take δ1 as in point 1) and also such that Lδ1 < 1, then point 3) is also done.
4) Immediate. ¤

Remark 2.11 A sufficient condition for satisfying the local Lipschitz hypothesis (2.7) is
to be a C1 function. Hence, every Cauchy problem with C1 dynamics f has a unique local
solution for every initial datum.

35Such a M exists for the continuity of f and the compactness of [t0 − δ1, t0 + δ1]×B(x0, δ2).
36Also observe that, just by definition, Tδ′ [v] is continuous.
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2.5 Global existence and uniqueness under Lipschitz continuity
hypothesis

Definition 2.12 We say that the Cauchy problem (2.1) has a unique global solution if
it has exactly one solution, in the sense that there exists a solution ỹ : Ĩ → Rn, such that
for every other solution y : I → Rn we have: I ⊆ Ĩ and y = ỹ on I.

Note that Definition 2.12 also requires that a local solution exists. However, the global
uniqueness is different from the local uniqueness of Definition 2.8. Indeed, in the second
case we require that a local solution ỹ exists in a suitable interval Ĩ and any other solution
is equal to ỹ in the common instants of existence, but they may be different outside the
common instants. On the other hand, the global uniqueness requires that a solution ỹ
exists on an interval Ĩ, that no other solution may be defined for instants t 6∈ Ĩ, and that
on the common instants of existence (necessarily contained in Ĩ) any other solution must
be equal to ỹ.

Of course, the global uniqueness of the solution implies the local one, but the contrary
is false.

Example 2.13 The following Cauchy problem has a unique local solution, but not a
unique global solution:





y′(t) = (y(t))
2
3 ,

y(−1) = − 1

27
.

The following two functions are both solution37

y1(t) =





(
t

3

)3

t ≤ 0,

0 t ≥ 0

, y2(t) =

(
t

3

)3

∀ t ∈ R.

Hence, such a problem has no global uniqueness since y1 and y2 are both solution on
I = R but they are different. On the contrary, it has a unique local solution y(t) = (t/3)3,
as can be seen by Theorem 2.10.

Remark 2.14 The global uniqueness in the sense of Definition 2.12 does not imply that a
global solution exists, that is that the problem is globally solvable in the sense of Definition
2.3. Indeed, the interval Ĩ is not necessarily the maximal interval satisfying the condition
(2.2). For instance, the problem in Example 2.4 has a unique global solution in the sense
of Definition 2.12, but it is not globally solvable in the sense of Definition 2.3.

Theorem 2.15 (Global existence and uniqueness on a strip) Let us consider the Cauchy
problem (2.1), with A given by the strip

37See the example in Subsection 2.3.4.
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A =]a, b[×Rn, (2.10)

where −∞ ≤ a < b ≤ +∞. If f satisfies the global uniform Lipschitz condition

∃ L > 0 such that ∀ t ∈]a, b[, ∀ x, y ∈ Rn :
‖f(t, x)− f(t, y)‖Rn ≤ L‖x− y‖Rn .

(2.11)

then, for every datum (t0, x0) ∈ A, the problem has a unique global solution, in the sense
of Definition 2.12. Moreover the solution is defined on the whole interval ]a, b[, that is the
problem is globally solvable.

Proof. We are going to prove that on every subinterval of ]a, b[ there exists one and
only one solution, from which the conclusion will follow.

Let us refer to the proof of Theorem 2.10. Over there, given (t0, x0), we have taken
the neighborhood U where we have found the local Lipschitz constant L (both depending
on (t0, x0)); we have taken δ1 and δ2 depending on (t0, x0), and moreover we have taken
M also depending on (t0, x0). All those choices have leaded us to choose

δ1 = min

{
δ1,

δ2

M
,
1

L

}
,

in order to prove the statement. Of course, δ1 was also depending on (t0, x0), and recall
that it was the semi-amplitude of the existence interval for the unique local solution. Now,
our goal is to construct δ1 independently from (t0, x0).

Let us fix ε > 0 sufficiently small and note that, in the present situation (if a, b ∈ R), we
can just take U = [a+ε, b−ε]×Rn and L independently from (t0, x0) ∈ [a+ε, b−ε]×Rn38.
In this way, once we have fixed (t0, x0) ∈ U , in order to remain inside U , δ1 has only to
satisfy, independently from x0,

δ1(t0) = min{t0 − a− ε, b− ε− t0},

and δ2 can be any positive value. Moreover, let us not that, by (2.11), there exists a
constant c > 0 (depending only on ε) such that

‖f(t, x)‖ ≤ L‖x‖+ c ∀(t, x) ∈ [a + ε, b− ε]× Rn. (2.12)

Indeed, we have

‖f(t, x)‖ = ‖f(t, x)− f(t, 0) + f(t, 0)‖ ≤ ‖f(t, x)− f(t, 0)‖+ ‖f(t, 0)‖
≤ L‖x‖+ max

s∈[a+ε,b−ε]
‖f(s, 0)‖ = L‖x‖+ c.

Hence, for any δ2 > 0 and for any (t0, x0) ∈ [a + ε, b− ε]×B(x0, δ2), we have

38If a = −∞ or b = +∞, we have to replace a + ε with an arbitrary K < 0 and b− ε with an arbitrary
H > 0, respectively.
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max
(t,x)∈[t0−δ1(t0),t0+δ1(t0)]×B(x0,δ2)

‖f(t, x)‖ ≤ Lδ2 + L‖x0‖+ c.

We can then take M = Lδ2 + L‖x0‖ + c, which depends on x0 and on ε (via c), but not
on t0. Hence, if we take

δ2 = L‖x0‖+ c,

which is independent from t0, we then get

δ2

M
=

1

1 + L
,

which is definitely independent from (t0, x0) ∈ [a + ε, b− ε]×Rn and from ε. In this way
we finally get

0 < δ1(t0) ≤ min

{
t0 − a− ε, b− ε− t0,

1

1 + L

}
,

depending on t0 ∈]a+ε, b−ε[, such that, for every initial value (t0, x0) ∈]a+ε, b−ε[×Rn,
the unique local solution (uniqueness in the sense of Definition 2.8) exists in the interval
]t0 − δ1(t0), t0 + δ1(t0)[. Hence, for 0 < ε ≤ 1

1+L
, and for all initial value (t0, x0) ∈

]a + 2ε, b− 2ε[×Rn we can take constantly

δ1 = ε.

This means that, for all possible initial value (t0, x0) ∈]a + 2ε, b − 2ε[×Rn, the unique
local solution exists, at least, in the whole interval ]t0 − ε, t0 + ε[.

Now, let us definitely fix the initial value (t0, x0) ∈]a + 2ε, b− 2ε[×Rn, and take

t1 ∈]t0, t0 + ε[, t2 ∈]t1, t1 + ε[, . . . , tk ∈]tk−1, tk−1 + ε[, tk+1 ∈]tk, tk + ε[
t1 ∈]t0 − ε, t0[, t2 ∈]t1 − ε, t1[, . . . , th ∈]th−1 − ε, th−1[, th+1 ∈]th − ε, th[

It is evident that we can choose k, h ∈ N and t1, . . . , tk, tk+1, t1, . . . , th, th+1 such that
t1, . . . , tk ∈]t0, b− 2ε[, tk+1 ≥ b− 2ε, and that t1, . . . , th ∈]a + 2ε, t0[, th+1 ≤ a + 2ε.

Let us denote Ii =]ti − ε, ti + ε[ for all i = 0, . . . , k, and Ij =]tj − ε, tj + ε[ for all
j = 1, . . . , h.

Hence we define the function y :]a + 2ε, b− 2ε[→ Rn as

y(t) =





y0(t) t ∈ I0 y0 is the unique solution with datum (t0, x0)
yi(t) t ∈ Ii yi is the unique solution with datum (ti, yi−1(ti)) i = 1, . . . , k
yj(t) t ∈ Ij yj is the unique solution with datum (tj, yj−1(tj)) j = 1, . . . , h.

By the local uniqueness on every intervals Ii and Ij, y is well defined and it turns out to
be the unique global solution in ]a + 2ε, b − 2ε[. By the arbitrariness of ε > 0, we then
conclude. ¤
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Remark 2.16 If in Theorem 2.15 we change the global uniform Lipschitz condition (2.11)
in the weaker condition

∀ δ > 0 sufficiently small ∃ Lδ > 0 such that
‖f(t, x)− f(t, y)‖ ≤ Lδ‖x− y‖ ∀ (t, x), (t, y) ∈]a + δ, b− δ[×Rn,

(2.13)

then, the same thesis holds true. Indeed, it is sufficient to apply Theorem 2.15 to ]a +
δ, b− δ[×Rn for all δ > 0, and then to construct a unique solution in ]a, b[.

Exercise. Show that the global existence and uniqueness defined by Definition 2.12
is equivalent to the following

i) a local solution exists and
ii) if y1 : I1 → Rn and y2 : I2 → Rn are two solutions on I1 and I2 respectively, then

y1 = y2 on I1 ∩ I2.
Exercise. Show, with a counterexample, that the following “natural” conditions do

not imply the uniqueness of the local solution in the sense of Definition 2.8:
i) a local solution exists and
ii) if y1 : I1 → Rn and y2 : I2 → Rn are two solutions on I1 and I2 respectively, then

there exists an open interval J ⊆ I1 ∩ I2, containing t0, such that y1 = y2 on J .
(Hint. Consider, for t, x ≥ 0 the dynamics39

f(t, x) =

{
x

2
3 if 0 ≤ x ≤ t4,

0 if x ≥ t4,

and the corresponding Cauchy problem with y(0) = 0.)
Exercise. Show, with a counterexample, that the uniqueness of a solution in an open

interval I does not imply the uniqueness of the solution in every open subinterval J ⊆ I.
(Hint. For instance consider the function f such that, for (t, x) ∈ [0, +∞[×[0, +∞[, is

given by

f(t, x) =





x
2
3 if 0 ≤ x ≤ √

t,

x
4x+2t−6

√
t+2

3(t+1−√t) if
√

t ≤ x ≤ t + 1,
x2 if x ≥ t + 1.

Consider the Cauchy problem with initial datum y(0) = 0, and show that in [0, +∞[
there is only the null solution y ≡ 0 but that on every proper subinterval [0, k[ there are
infinitely many solutions.

Hint of the hint. Note that, apart from the zero solution, every solution starts as one
of the solutions in the Subsection 2.3.4 and, outside of an “intermediate linking region”,
it goes on as the solution in Example 2.4, which does not exist for all times.)

39Such a dynamics is discontinuous, but for our purpose here is not a problem.
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3 The linear case

3.1 Linear systems of first order equations

Let us consider a matrix-valued function and a vectorial-valued function

A : I →Mn, t 7→ A(t); g : I → Rn

where Mn is the set of n× n real matrices, and I ⊆ R is in open interval.
A linear system of first order equations is a system of the following type

y′(t) = A(t)y(t) + g(t) t ∈ I, (3.1)

which, if we write the vectors as y(t) = (y1(t), . . . , yn(t)), g(t) = (g1(t), . . . , gn(t)), and
the matrix as A(t) = (aij(t))i,j=1,...,n, is





y′1(t) = a11(t)y1(t) + . . . + a1n(t)yn(t) + g1(t)
. . . . . .
y′n(t) = an1(t)y1(t) + . . . + ann(t)yn(t) + gn(t).

Here, aij : I → R is the ij coefficient of A, and A is continuous (as matrix-valued function)
if and only if aij is continuous (as real valued function) for every i, j = 1, . . . , n.

The system (3.1) is, of course, linear, nonhomogeneous and nonautonomous. It corre-
sponds to the system y′ = f(t, y) with dynamics given by

f(t, x) = A(t)x + g(t) ∀ (t, x) ∈ I × Rn. (3.2)

We now consider the corresponding Cauchy problem

{
y′(t) = A(t)y(t) + g(t) t ∈ I,
y(t0) = x0,

(3.3)

where (t0, x0) ∈ I × Rn is fixed.

Theorem 3.1 If A and g are continuous on I, then, for every (t0, x0) ∈ I × Rn, the
linear Cauchy problem (3.3) is globally solvable in the sense of Definition 2.3, and it has
a unique global solution in the sense of Definition 2.12.

Proof. We apply Theorem 2.15 and Remark 2.16 to (3.3). By hypothesis, the dynamics
f given in (3.2) is continuous. Hence, we have only to prove the uniform Lipschitz property
in every compact subinterval J ⊆ I. Using the Cauchy-Schwarz inequality, for every
(t, x), (t, y) ∈ J × Rn, we have

‖A(t)x + g(t)− (A(t)y + g(t))‖Rn = ‖A(t)(x− y)‖Rn ≤ ‖A(t)‖‖x− y‖Rn ,

where ‖A(t)‖ is the matrix-norm of the matrix A(t). Since A is continuous on I, then
there exists LJ > 0 such that

max
t∈J

‖A(t)‖ ≤ LJ ,

and we conclude. ¤
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3.2 Homogeneous linear systems of first order equations

A homogeneous linear system of first order equations is of the form

y′(t) = A(t)y(t), (3.4)

which differs from (3.1) only for g ≡ 0. We also have the corresponding Cauchy problem

{
y′(t) = A(t)y(t), t ∈ I,
y(t0) = x0.

(3.5)

Of course, if A : I →Mn is continuous, then for (3.5) we have global solvability on I and
uniqueness of the global solution. In particular, if x0 = 0 ∈ Rn, then the unique solution
of (3.4) is the null function y ≡ 0.

3.2.1 The fundamental set of solutions and the Wronskian

Proposition 3.2 Let I be the general integral of (3.4), i.e. the set of all solutions y :
I → Rn. Then I is a vectorial space of dimension n. In particular, there exist n solutions
y1, . . . , yn which are linearly independent i.e.

(c1, . . . , cn) ∈ Rn, c1y1(t) + . . . + cnyn(t) = 0 ∀ t ∈ I =⇒ (c1, . . . , cn) = (0, . . . , 0),

and such that, for any other solution y : I → Rn, there exist n constants c1, . . . , cn ∈ R
such that

y(t) = c1y1(t) + . . . + cnyn(t) ∀ t ∈ I.

Such a set of solutions y1, . . . , yn is called a fundamental set of solutions.

Proof. First of all, let us prove that I is a vectorial space. We have to prove that, for
every two solutions y1, y2 and for every α1, α2 ∈ R, the function y = α1y1 + α2y2 is also a
solution40. This is immediate by linearity

y′(t) = (α1y1 + α2y2)
′(t) = α1y

′
1(t) + α2y

′
2(t) = α1A(t)y1(t) + α2A(t)y2(t)

= A(t)(α1y(t) + α2y2(t)) = A(t)y(t).

Now, we prove that it has dimension n by exhibiting an isomorphism between Rn and
I. Let us fix t0 ∈ I. We define the function

ψ : Rn → I, x 7→ ψ(x) = yx,

where yx is the unique solution of the Cauchy problem (3.5) with initial datum (t0, x) ∈
I × Rn. Linearity: by uniqueness we have

40The general integral is a subset of C1(I,Rn) which is already a vectorial space. Hence, we have only
to prove that I is closed with respect to the sum and to the multiplication by a scalar.
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α1ψ(x1) + α2ψ(x2) = α1yx1 + α2yx2 = yα1x1+α2x2 = ψ(α1x1 + α2x2),

since (α1yx1 + α2yx2) (t0) = α1yx1(t0) + α2yx2(t0) = α1x1 + α2x2.
Injectivity:

ψ(x1) = ψ(x2) =⇒ yx1 = yx2 =⇒ yx1(t0) = yx2(t0) =⇒ x1 = x2.

Surjectivity:

y ∈ I =⇒ y = ψ(y(t0)).

¤

Definition 3.3 Given n functions ϕ1, . . . , ϕn : I → Rn we define the wronskian matrix
associated to them, as the time-dependent n× n matrix

W(t) =




ϕ11(t) ϕ12(t) . . . ϕ1n(t)
ϕ21(t) ϕ22(t) . . . ϕ2n(t)

. . . . . . . . . . . .
ϕn1(t) ϕn2(t) . . . ϕnn(t),


 (3.6)

where ϕij is the i-th component of the function ϕj
41.

The determinant

W (t) = detW(t) (3.7)

is said the Wronskian of the set of n functions.

Proposition 3.4 Given the n functions ϕ1, . . . , ϕn : I → Rn, if there exists t0 ∈ I such
that

W (t0) 6= 0,

then the n functions are linearly independent.

Proof. We just observe that, for any c = (c1, . . . , cn) ∈ Rn we have

c1ϕ1(t) + . . . + cnϕn(t) = W(t)c ∀ t ∈ I.

Hence, let c = (c1, . . . , cn) ∈ Rn be such that

c1ϕ1 + . . . + cnϕn ≡ 0 in I.

41In other words, the functions ϕ1, . . . , ϕn are the columns of the matrix.
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Hence, since by hypothesis W(t0) is not singular, we have

W(t0)c = 0 =⇒ c = 0 ∈ Rn.

¤

The condition W (t0) 6= 0 is however not necessary for the linearly independence of the
functions ϕi. Just consider the following example

n = 2, I =]− π

2
,
π

2
[, ϕ1(t) = (sin t, tan t), ϕ2(t) = (cos t, 1).

Hence, we have

W (t) = det

(
sin t cos t
tan t 1

)
= 0 ∀t ∈ I,

but ϕ1, ϕ2 are linearly independent because

c1 sin t + c2 cos t = 0 ∀ t ∈ I =⇒ c1 = c2 = 042.

Theorem 3.5 If the n functions, as in Proposition 3.4, are all solutions of the same
homogeneous linear system of the form (3.4), then

∃ t0 ∈ I such that W (t0) 6= 0 ⇐⇒ ϕ1, . . . , ϕn are linearly independent. (3.8)

Moreover, in the case of linear independence, W (t) 6= 0 for all t ∈ I.

Proof. Let ϕ1, . . . , ϕn : I → Rn be solutions of (3.4) linearly independent, that is a
fundamental system of solution. Let us prove that there exists t0 ∈ I such that W (t0) 6= 0.
Any other solution is of the form

ϕ(t) = W(t)c,

with any c ∈ Rn. If, by absurd, W (t) = 0 for all t ∈ I, then, fixed any t̃ ∈ I, there exists
c̃ 6= 0 ∈ Rn such that W(t̃)c̃ = 0. This implies that the solution ϕ̃ = c̃1ϕ1 + . . . + c̃nϕn is
zero in t̃. But, by the uniqueness result for the Cauchy problem, the unique solution of
(3.4) which passes through zero at t̃ is the null function ϕ ≡ 0. By the linear independence
of ϕ1, . . . , ϕn we then get c̃ = 0, which is a contradiction. By the arbitrariness of t̃ ∈ I,
we have that, if ϕ1, . . . , ϕn is a fundamental set of solutions, W (t) 6= 0 for all t ∈ I. ¤

Proposition 3.6 If ϕ1, . . . , ϕn : I → Rn are solutions of (3.4), then the wronskian matrix
satisfies the equation

W′(t) = A(t)W(t) ∀t ∈ I. (3.9)

42Just check for t = 0 and for t = π
4 .
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Proof. Just a calculation. ¤

Remark 3.7 Summarizing, we have found that:
i) the general integral of the homogeneous linear system (3.4) is a vectorial space of

dimension n;
ii) given a fundamental set of solutions (i.e. a basis) y1, . . . , yn, any other solution is,

obviously, written in the form (which is called the general solution)

y(·) = c1y1(·) + . . . + cnyn(·) = W(·)c, c = (c1, . . . , cn) ∈ Rn,

where W is the wronskian matrix of the fundamental set of solutions;
iii) The wronskian matrix of n solutions is either everywhere singular (i.e. W (t) =

0 for all t) or everywhere nonsingular (i.e. W (t) 6= 0 for all t). In particular it is
everywhere nonsingular if and only if the n solutions are linearly independent (i.e. they
are a fundamental set of solutions).

3.3 Homogeneous systems of first order linear equations with
constant coefficients

In this subsection we suppose that the n×n matrix A(·) in (3.4) is constant: A(·) ≡ A ∈
Mn. That is the system has constant coefficients (i.e. it is autonomous). In this case, we
can consider the system and the corresponding Cauchy problem as defined in the whole
R:

y′(t) = Ay(t) t ∈ R, (3.10)

and

{
y′ = Ay in R,
y(t0) = x0

(3.11)

with (t0, x0) ∈ R× Rn fixed.

Proposition 3.8 Every solution of (3.10) is defined in the whole R. In particular, the
Cauchy problem (3.11) is globally solvable in R and it has a unique global solution for
every initial datum (t0, x0) ∈ R× Rn. Moreover, such a unique solution is given by

y(t) = e(t−t0)Ax0, t ∈ R, (3.12)

and a fundamental set of solutions for the system is for instance given by the columns of
the exponential matrix etA, that is the exponential matrix is the Wronskian matrix.

Proof. All the theses are immediate consequences of the results of the previous sub-
section and of the definition of exponential matrix and its differentiability properties.
¤
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Remark 3.9 Note that t 7→ (t−t0)A is a primitive of the constant matrix valued function
t 7→ A, and hence (3.12) is coherent with the one-dimensional solution y(t) = keC(t) as
in (1.14). One may be then induced to think that a solution for the general non-constant
homogeneous system is of the form

y(t) = eA(t)x0,

where A(·) is a primitive of the matrix valued function t 7→ A(t). This is unfortunately
not true since it is not true that

d

dt
eA(t) = A(t)eA(t),

and the main problem for this fact is that in general A(t) and A(t) do not commute.

Example 3.10 Find the solution of the Cauchy problem




y′1(t) = 2y1(t)− y2(t) + y3(t)
y′2(t) = y1(t) + y3(t)
y′3(t) = y1(t)− y2(t) + 2y3(t)
y1(0) = 0, y2(0) = 0, y3(0) = 1.

This is the Cauchy problem for a linear system of three equations with constant
coefficients. It is given by the 3× 3 matrix

A =




2 −1 1
1 0 1
1 −1 2




and the initial datum is (t0, x0) = (0, (0, 0, 1)). The eigenvalues of A are 1 and 2, and A is
diagonalizable since there exists a basis of Rn given by eigenvectors: {(1, 1, 0), (0, 1, 1), (1, 1, 1)}
(where the first two are corresponding to the eigenvalue 1). Hence, the diagonal matrix
D, the passage matrix B and its inverse are

D =




1 0 0
0 1 0
0 0 2


 , B =




1 0 1
1 1 1
0 1 1


 , B−1 =




0 1 −1
−1 1 0

1 −1 1


 .

Hence we get, for every t ∈ R,

etA = BetDB−1 =




e2t et − e2t −et + e2t

−et + e2t 2et − e2t −et + e2t

−et + e2t et − e2t e2t


 .

The solution is then (written as column)

y(t) = etA




0
0
1


 =



−et + e2t

−et + e2t

e2t


 .
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3.3.1 The homogeneous linear equation of n-th order with constant coeffi-
cients

We consider the following homogeneous linear equation of order n with constant coeffi-
cients (i.e. autonomous):

y(n) + an−1y
(n−1) + . . . + a1y

′ + a0y = 0 in R. (3.13)

We already know that it is equivalent to the linear system of n equation with constant
coefficients

Y ′ = AY, (3.14)

where Y = (Y0, Y1, . . . , Yn−1) = (y, y′, . . . , y(n−1)) ∈ Rn and

A =




0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1 0
0 0 0 0 . . . 0 1
−a0 −a1 . . . . . . . . . −an−2 −an−1.




For the linear system associated to the matrix A, we know what is a Cauchy problem.
What does it correspond to, for the n order equation (3.13)? By our interpretation, fixing
the values of Y0(t0), . . . , Yn−1(t0) corresponds to fixing the values of y and of its first n−1
derivatives: y(t0), y

′(t0), . . . , y(n−1)(t0). Hence, the Cauchy problem for (3.13) is given by





y(n)(t) + an−1y
(n−1)(t) + . . . + a1y

′(t) + a0y(t) = 0 in R,
y(t0) = x0,
y′(t0) = x1,
. . . . . .

y(n−1)(t0) = xn−1,

(3.15)

where the initial values (t0, x0), (t0, x1), . . . , (t0, xn−1) ∈ R× R are fixed.
The proof of the following proposition is now immediate43.

Proposition 3.11 All the solutions of the equation (3.13) are defined on the whole R.
The general integral is a vectorial space of dimension n. For all choices of the initial
values, the Cauchy problem (3.15) is globally solvable in R and it has a unique global
solution (that is there exists a unique function y ∈ Cn(R;R) which satisfies the equation
and which, at a fixed instant t0 ∈ R, has preassigned values for the derivatives from zero
order44 up to the order n− 1).

43By the interpretation as a linear system, a similar proposition of course holds for a homogeneous
linear equation of n order with non-constant coefficients. But here, we concentrate only on the case of
constant coefficients

44The derivative of zero order is the function itself.
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Also for the singular scalar equation of n order, for a set of n solutions, we can consider
the wronskian matrix and the Wronskian. Still considering the interpretation as linear
system, we immediately get the following proposition.

Proposition 3.12 Given n solutions of (3.13), ϕ1, . . . , ϕn : R→ R, we define the wron-
skian matrix

W(t) =




ϕ1(t) . . . ϕn(t)
ϕ′1(t) . . . ϕ′n(t)
. . . . . . . . .

ϕ
(n−1)
1 (t) . . . ϕ

(n−1)
n (t)


 , (3.16)

and the Wronskian

W (t) = detW(t).

Then, W (t) 6= 0 for all t ∈ R if and only if the n functions are a fundamental set of
solutions (i.e. they are linearly independent). On the contrary (i.e. if the n functions are
not linearly independent), W (t) = 0 for all t ∈ R.

If ϕ1, . . . , ϕn is a fundamental set of solutions, then the general solution is

ϕ(·) = c1ϕ1(·) + . . . + cnϕn(·) = (W(·)c)1 ,

where c = (c1, . . . , cn) ∈ Rn and (·)1 means the first component of the vector.

Now, we want to search for a fundamental system of solutions for the equation (3.13).
Inspired by the solutions for the linear system as expressed in (3.12), we look for solutions
of the form

y(t) = eλt,

where λ ∈ R is a fixed parameter. Just inserting such a function in the equation, and
imposing the equality to zero, we get

λn + an−1λ
n−1 + . . . + a1λ + a0 = 0, (3.17)

which is called the characteristic equation of (3.13). We have the following proposition.

Proposition 3.13 Given λ ∈ R, the function y(t) = eλt is a solution of (3.13) if and
only if λ is a solution of the characteristic equation (3.17).

Moreover, let λ1, . . . , λr ∈ C, r ≤ n, be all the distinct (complex) solutions of (3.17),
together with their multiplicity n1, . . . , nr,

∑r
i=1 ni = n. Then, we can construct a fun-

damental system of solutions, by associating to any solutions λi a set of functions in the
following way45:

45Here, z means the conjugate α− iβ of z = α+ iβ ∈ C. Moreover, recall that, being the characteristic
equation and algebraic equation with real coefficients, then if λ ∈ C is solution, λ is solution too.
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1)λi ∈ R =⇒ {
eλit, teλit, . . . , tni−1eλit

}
;

2)λi = λj = α + iβ =⇒ {
eαt cos(βt), teαt cos(βt), . . . , tni−1eαt cos(βt),

eαt sin(βt), teαt sin(βt), . . . , tni−1eαt sin(βt)
}

.
(3.18)

Before proving Proposition 3.13, we need the following lemma.

Lemma 3.14 Given a linear homogeneous n order differential equation with constant
coefficients as (3.13), we can consider the linear differential operator of n order

D : Cn(R;R) → C(R,R), y 7→ D(y) = y(n) + an−1y
(n−1) + . . . + a1y

′ + a0y, (3.19)

that is

D =
dn

dtn
+ an−1

dn−1

dtn−1
+ . . . + a1

d

dt
+ a0(id),

where id : C(R,R) → C(R;R) is the identity map. Moreover we can consider the corre-
sponding polynomial

p(λ) = λn + an−1y
n−1 + . . . + a1λ + a0,

which is called the characteristic polynomial of the differential equation. We write the
characteristic polynomial p as decomposed in its irreducible (on R) factors46

p(λ) = (λ− λ1)
n1 · · · (λ− λr)

nr(λ2 + a1λ + b1)
m1 · · · (λ2 + asλ + bs)

ms

Then we can decompose the differential operator D in its irreducible (on R) factors of
first and second order

D =

(
d

dt
− λ1

)n1

· · ·
(

d

dt
− λr

)nr

·
(

d2

dt2
+ a1

d

dt
+ b1

)m1

· · ·
(

d2

dt2
+ as

d

dt
+ bs

)ms

,
(3.20)

where, for every λ ∈ R, we have

Dλ :=
d

dt
− λ :=

d

dt
− λ(id) : C1(R,R) → C(R,R),

y 7→ Dλ(y) = y′ − λy,

46This means that λi ∈ R, 1 ≤ i ≤ r ≤ n, are all the real roots of p with their multiplicity n1, . . . , nr,
and λ2 + ajλ + bj , aj , bj ∈ R, 1 ≤ j ≤ s ≤ n, are all the second-degree irreducible factors, which
means that they have two conjugate complex roots αj + iβj , αj − iβj , both with multiplicity mj , where

αj = −(aj/2), βj =
√

bj − (a2
j/4). Moreover, n1 + . . . + nr + 2m1 + . . . + 2ms = n.
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for every a, b ∈ R we have

D2
a,b :=

d2

dt2
+ a

d

dt
+ b :=

d2

dt2
+ a

d

dt
+ b(id) : C2(R;R) → C(R,R),

y 7→ D2
a,b(y) = y′′ + ay′ + by

and finally where multiplication means composition as operators. For instance

(DλDµ) (y) =

(
d

dt
− λ

) (
d

dt
− µ

)
(y) =

(
d

dt
− λ

)
(y′ − µy)

= y′′ − (λ + µ)y′ + λµy =

(
d2

dt2
− (λ + µ)

d

dt
+ λµid

)
(y)

Proof of Lemma 3.14. Just a calculation. ¤

Proof of Proposition 3.13. The first assertion is obvious. Let us prove that the func-
tions in (3.18) are all solution of (3.13). First of all note that in the decomposition (3.20),
every factor may commute with the other ones. This is true since it is already true for
the decomposition of the characteristic polynomial. Moreover, a function y is a solution
if and only if D(y) = 047. Let λi ∈ R be a root with multiplicity ni, and let us consider
the function y(t) = t`eλit with 0 ≤ ` < ni fixed. Then, among the factors of D, there is
the operator

(Dλi
)`+1 =

(
d

dt
− λi

)`+1

.

A simple calculation shows that

(Dλi
)`+1 (y) = 0,

and then we conclude that D(y) = 0, that is y is a solution. On the other hand, for any
irreducible factors D2

aj ,bj
, we consider the following two functions

z(t) = t`e−
aj
2

t cos




√
bj −

a2
j

4
t


 , w(t) = t`e−

aj
2

t sin




√
bj −

a2
j

4
t


 ,

with 0 ≤ ` < mj fixed. Again, we have the factor
(
D2

aj ,bj

)`+1

, for which another simple

(but tedious) calculation shows that

(
D2

aj ,bj

)`+1

(z) =
(
D2

aj ,bj

)`+1

(w) = 0,

and then we conclude (see also the footnote in Lemma 3.14).

47The general integral is exactly the kernel of the linear operator D.
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Now, we have to prove that they are linearly independent (which is sufficient for
proving that they are a fundamental set of solutions since they are exactly n functions).
First of all let us prove that every block of solutions, i.e. solutions referring to the same
irreducible factor, are linearly independent. Indeed, let λi be a real root with multiplicity
ni. Then the ni functions

y`(t) = t`eλit, 0 ≤ ` < ni

generate the wronskian matrix ni × ni

Wi(t) =




y1(t) · · · yni
(t)

y′1(t) · · · y′ni
(t)

· · · · · · · · ·
y

(ni−1)
1 (t) · · · y

(ni−1)
ni (t)


 ,

and one can easily see that Wi(0) is a triangular matrix with non-zero coefficients on the
principal diagonal. Hence Wi(0) 6= 0 and the functions are linearly independent48. Now,
for any irreducible factor, indexed by 1 ≤ j ≤ s, we have to prove the linear independence
of the functions

z`(t) = t`eαjt cos(βjt), 0 ≤ ` < mj,

as well as of the functions

w`(t) = t`eαjt sin(βjt), 0 ≤ ` < mj,

where α and β are as in the footnote in Lemma 3.14. The idea is to separately prove the
linear independence of the functions z` + w` and of the functions z` − w`. Just sketch-
ing the proof, let us consider the corresponding mj × mj wronskian matrices, a similar
analysis as before, leads to the desired conclusion. Moreover, by the linear indepen-
dence of cos and sin, we also get the linear independence of the whole set of functions
z1, . . . , zmj

, w1, . . . , wmj
.

Now, for any 1 ≤ i ≤ r we have the set Ii which is the general integral of the linear
equation of ni order (Dλi

)ni (y) = 0, and for every 1 ≤ j ≤ s we consider the set Ij, which

is the general integral of the 2mj order differential equation
(
D2

aj ,bj

)mj

(y) = 0. A basis

of Ii is {
eλit, teλit, . . . , tni−1eλit

}
,

whereas a basis of Ij is

{
eαt cos(βt), teαt cos(βt), . . . , tmj−1eαt cos(βt), eαt sin(βt), teαt sin(βt), . . . , tmj−1eαt sin(βt)

}
.

Hence, denoted by I the general integral of (3.13), we have

48Since they are ni functions which are solutions of the linear homogeneous equation of ni order
Dni

λ1
y = 0.
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I1 + · · ·+ Ir + I1 + · · ·+ Is ⊆ I.

If the left hand-side is a direct sum, then we are done because, in such a case, collecting
the bases of the subspaces we get a basis of the whole space. We see that it is really
a direct sum since every non-null element of an addendum is not an element of another
different addendum since it does not solve the corresponding differential equation. ¤

Remark 3.15 For searching a fundamental set of solutions, it is obviously more conve-
nient to look for the (complex) roots of the characteristic polynomial, instead of looking
for its irreducible factors, and then to apply the rule given in Proposition 3.13.

Actually, all the theory of linear n order differential equations with constant real coef-
ficients can be made for solutions t 7→ y(t) taking value in C, and then all the solutions
are of the exponential form t 7→ t`eλt, with λ (complex) root. In particular, if λ = α + iβ
is really complex (non-zero imaginary part), then, together with its conjugate, it gives the
(complex) solutions

t`eλt = t`eαt(cos(βt) + i sin(βt)), t`eλt = t`eαt(cos(βt)− i sin(βt)),

which, combined, give the two real solutions t`eαt cos(βt) and t`eαt sin(βt)

Example 3.16 Given the scalar linear homogeneous equation

yiv − 2y′′′ + 2y′′ − 2y′ + y = 0,

i) find the general integral,
ii) solve the Cauchy problem with data y(π) = −3, y′(π) = 0, y′′(π) = 1, y′′′(π) = 0,
iii) find all solutions y such that y(0) = 0.
i) The characteristic equation is

λ4 − 2λ3 + 2λ2 − 2λ + 1 = 0,

whose roots are λ1 = 1 (with multiplictity 2), λ2 = i, λ3 = −i. Hence, the general integral
is given by the functions of the form

y(t) = c1e
t + c2te

t + c3 cos t + c4 sin t, c1, . . . , c4 ∈ R. (3.21)

ii) We have to impose the initial data to the general form. First we have to compute
the general form of the derivatives:

y′(t) = (c1 + c2)e
t + c2te

t − c3 sin t + c4 cos t,
y′′(t) = (c1 + 2c2)e

t + c2te
t − c3 cos t− c4 sin t,

y′′′(t) = (c1 + 3c2)e
t + c2te

t + c3 sin t− c4 cos t,
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from which we get 



c1e
π + c2πeπ − c3 = −3

(c1 + c2)e
π + c2πeπ − c4 = 0

(c1 + 2c2)e
π + c2πeπ + c3 = 1

(c1 + 3c2)e
π + c2πeπ + c4 = 0,

whose solution is (c1, c2, c3, c4) = (−(2 + π)e−π, e−π, 1,−1). We finally have the solution
of the Cauchy problem

y(t) = −(2 + π)et−π + tet−π + cos t− sin t.

iii) Using the general form (3.21), we immeditely get the necessary and sufficient
condition c1 = −c3. Hence the requested solutions are all the functions of the form

y(t) = aet + btet − a cos t + c sin t, a, b, c ∈ R.

3.4 Nonhomogeneous systems of first order linear equations

We consider the nonhomogeneous linear system as in (3.1). In this case, if g is not the
null function, the general integral is not a vectorial space anymore. To see this, just take
a solution y and consider the function ỹ = 2y. Then ỹ is solution of

ỹ′ = Aỹ + 2g,

which is different from the originary system. However, the general integral is not so
different from a vectorial space. Indeed it is a so-called affine space, that is the shift of
a vectorial space49. The homogeneous linear system (3.4) (with the same matrix A(t)) is
said the associated homogeneous system of the nonhomogeneous system (3.1).

Proposition 3.17 Let us denote by I and by I the general integral of the nonhomoge-
neous system and the general integral of the associated homogeneous system, respectively.
Moreover, let y be a solution of the nonhomogeneous (called a particular solution50). Then

I = y + I. (3.22)

Proof. By the linearity, if ỹ ∈ I, then ỹ−y ∈ I. Hence we have ỹ = y+(ỹ−y) ∈ y+I.
On the contrary, if w ∈ I, then, again by linearity, y + w ∈ I. ¤

49Exactly as it happens for the algebraic linear systems.
50Here, “particular” means that it is a specific solution, not written in “general” form. Of course, any

(specific) solution is suitable.
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Remark 3.18 Proposition 3.17 says that the general integral of the nonhomogeneous
linear system is the general integral of the associated homogeneous system (which is a
vectorial space) shifted by a vector given by any particular solution of the nonhomogeneous
one. Hence, if we denote by y such a particular solution, and if we have a fundamental set
of solution for the associated homogeneous system, let us say y1, . . . , yn, then the general
solution of the nonhomogeneous is

y(t) = c1y1(t) + · · ·+ cnyn(t) + y(t), (c1, . . . , cn) ∈ Rn. (3.23)

3.4.1 The constants variation method

As pointed out by Remark 3.18, if we know a particular solution of the nonhomogeneous
system and a fundamental set of the associated homogeneous system, then we immediately
have the general form of the solutions of the nonhomogeneous. The problem here is then
given by the calculation of a particular solution and of a fundamental set. In general
these are two hard problems. However, if we already know a fundamental system of
the homogeneous, then the calculation of a particular solution of the nonhomogeneous is
quite easy. The method is called the constants variation method, and it is based on the
following argument. Let y1, . . . , yn be a (known) fundamental set for the homogeneous.
Then, for every n constants c1, . . . , cn, the function c1y1 + · · ·+ cnyn is still a solution of
the homogeneous. Then the idea is to look for a solution of the nonhomogeneous in the
following form

ψ(t) = c1(t)y1(t) + · · ·+ cn(t)yn(t) = W(t)c(t), (3.24)

where c1(·), . . . , cn(·) are derivable functions, c(t) = (c1(t), . . . , cn(t)) and W is the wron-
skian matrix of the fundamental set of solutions y1, . . . , yn. Hence, the idea is: “let the
constants be not constant, but variate on time”.

The problem is now to find suitable n functions c1, . . . , cn. By imposing that the
function ψ defined in (3.24) is a solution of the nonhomogeneous system (3.1), recalling
the equation (3.9) satisfied by the wronskian matrix, and also recalling its nonsingularity
for every time, we have

ψ is a solution ⇐⇒ W′(t)c(t) + W(t)c′(t) = A(t)W(t)c(t) + g(t)
⇐⇒ W(t)c′(t) = g(t) ⇐⇒ c′(t) = W−1(t)g(t)

Hence, the problem is to calculate the vectorial integration (i.e. component by com-
ponent)

c(t) =

∫ t

τ

W−1(s)g(s)ds, (3.25)

where τ is any instant in the time interval I (whose choice corresponds to the choice of
the integration constant), and a particular solution is then of the form
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ψ(t) = W(t)

∫ t

τ

W−1(s)g(s)ds.

The main difficulties in applying the constant variation method are of computational
type: computing the inverse wronskian matrix and the integral in (3.25). Of course, we
a-priori need to know a fundamental set of the associated homogeneous. This is another
kind of problem, which is in general a hard question. In the next subsection we analyze
a favorable case where we know how to compute a fundamental set of solutions: the
nonhomogeneous linear equation with constant coefficients51.

3.4.2 The nonhomogeneous linear system with constant coefficients

Let us suppose that the matrix A of system (3.1) has constant coefficients, that is the
system is autonomous. Then, by the results of the previous section, we have an explicit
formula for the solution of the Cauchy problem with datum (t0, x0), which involves the
exponential matrix52, and whose validity may also directly checked:

y(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Ag(s)ds (3.26)

Example 3.19 Let us consider the linear homogeneous system of Example 3.10, where
we also insert the known term

g(t) =




es

0
0


 ,

that is we consider the Cauchy problem for the linear nonhomogeneous system
{

y′(t) = Ay(t) + g(t)
y(0) = (0, 0, 1)

where A is the same as in Example 3.10. Hence, just applying (3.26), and recalling the
exponential matrix and the solution as in Example 3.10, we get

y(t) =



−et + e2t

−et + e2t

e2t


 +

∫ t

0




e2t−s

−et + e2t−s

−et + e2t−s


 ds =




−2et + 2e2t

−tet − 2et + 2e2t

−tet − et + 2e2t


 .

51Of course, the constants variation methods works as well for the nonhomogeneous linear equation
with non-constant coefficients. But in that case, the computation of a fundamental set of solutions is
harder.

52Note that the column of the exponential matrix etA are a fundamental set of solutions and hence the
exponential matrix is its Wronskian matrix. Indeed they are linearly independent since etA is nonsingular
and also they are solution (the i-th column is the solution of the Cauchy problem with datum y(0) = ei

where ei is the i-th vector of the canonical basis of Rn). Also note that e−tA is the inverse of etA.
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3.4.3 The nonhomogeneous linear equation of n-order with constants coeffi-
cients. A special case: the annihilators method

Let us consider the nonhomogeneous linear equation of n order with constant coefficients

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

′(t) + a0y(t) = g(t), t ∈ R, (3.27)

where a0, . . . , an−1 ∈ R are constants, and g : R→ R is a continuous function. In this case,
the associated homogeneous equation is given in (3.13). Using the usual interpretation of
the equation as a linear system, we have that (3.27) is equivalent to the system

Y ′(t) = AY (t) + G(t),

where the vector Y (t) ∈ Rn and the matrix A ∈ Mn are defined as in (3.14) and G(t)
is the vector (0, . . . , 0, g(t)) ∈ Rn. Since a particular solution ψ : R → R of the equation
is the first component of a particular solution of the associated system, we have (now we
take τ = 0)

ψ(t) =

(
W(t)

∫ t

0

W−1(s)G(s)ds

)

1

=
n∑

i=1

yi(t)

∫ t

0

(
W−1(s)

)
in

g(s)ds, (3.28)

where W is the wronskian matrix of the fundamental set of solutions, y1, . . . , yn, of the
associated homogeneous linear equation.

Example 3.20 We want to find the general integral of the equation

y′′ − y =
2

1 + ex
. (3.29)

The associated homogeneous equation has the fundamental set of solutions {ex, e−x},
whose wronskian matrix and its inverse are

W(x) =

(
ex e−x

ex −e−x

)
, W(x)−1 = −1

2

( −e−x −e−x

−ex ex

)
.

Applying formula (3.28) for the calculus of a particular solution, we then get the
general integral53

y(t) = c1e
x + c2e

−x − 1− xex + (ex − e−x) log(1 + ex).

(The annihilators method). Here we treat a favorable case where, for a nonhomoge-
neous linear equation with constant coefficients, we are able to easily calculate the general
solution.

Let us consider the equation (3.27), and suppose that there exists a linear differential
operator with constant coefficients D (see (3.19)) such that

53For the calculus of the integrals, note that (e−s − es)/(1 + es) = e−s − 1.
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D(g)(t) = 0 ∀t ∈ R.

We call such an operator an annihilator for g. Moreover, let D be the linear differential
operator with constant coefficients corresponding to the homogeneous equation associated
to (3.27). It is obvious that, if y is a solution of (3.27), then y is also a solution of the
linear homogeneous equation with constant coefficients

DD(y) = 0. (3.30)

Once we have calculated the general integral of (3.30), then we can easily get the general
solution of (3.27), just imposing to the general solution of (3.30) to also solve (3.27), and
hence fixing some of the free parameters.

Of course, in general, a function g is not annihilated by any linear operator with
constant coefficients, take for instance g(t) = log(t) or the right-hand side of (3.29),
with x as t. However, here there is a list of (common) functions which are annihilated
by linear operators with constant coefficients, and the annihilators are also reported54.
Also note that, if f and g are annihilated by D1 and D2 respectively, then f , g and
f + g are annihilated by D1D2, and moreover µf is still annihilated by D1, for every
µ ∈ R. Hence, given the following list of functions with their annihilators, we can easily
construct the annihilators for every linear combination of the functions. In the following,
m ∈ N, λ, α, β ∈ R are arbitrary:

function annihilator

f(t) = tmeλt D =
(

d
dt
− λI

)m+1
,

f(t) = tmeαt cos βt D =
(

d2

dt2
− 2α d

dt
+ (α2 + β2)id

)m+1

,

f(t) = tmeαt sin βt D =
(

d2

dt2
− 2α d

dt
+ (α2 + β2)id

)m+1

.

Example 3.21 We want to find the general integral of the equation

yiv(t)− 2y′′′(t) + 2y′′(t)− 2y′(t) + y(t) = t + t2. (3.31)

The associated homogeneous equation is the one studied in Example 3.16, which cor-
responds to the linear operator

D =

(
d

dt
− I

)2 (
d2

dt2
+ I

)
.

The right-hand side is annihilated by

D̃ =

(
d

dt

)3

,

54Note that, such functions are just all the functions which are solutions of some linear homogeneous
equations with constant coefficients.
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hence, the general integral of (3.31) is contained in the general integral of

D̃Dy =

(
d

dt

)3 (
d

dt
− I

)2 (
d2

dt2
+ I

)
= 0,

which is

y(t) = c1e
t + c2te

t + c3 cos t + c4 sin t + c5 + c6t + c7t
2, c1, . . . , c7 ∈ R. (3.32)

Now, we have to impose to (3.32) to satisfy (3.31). To this end, we have to fix the
parameters c5, c6, c7

55. Inserting the function c5 + c6t + c7t
2 in (3.31), we get c5 = 6, c6 =

5, c7 = 1. Hence the general integral is

y(t) = c1e
t + c2te

t + c3 cos t + c4 sin t + t2 + 5t + 6, c1, . . . , c4 ∈ R.

3.5 Boundary value problems for second order linear equations

In this section we just sketch an important situation which frequently occurs in the ap-
plications56.

Let us consider three continuous functions

p0, p1, p2 : [a, b]× Λ → R,

where [a, b] is a compact interval and Λ ⊆ R is a suitable set of parameters λ ∈ Λ.
Moreover we also consider some real numbers

α0, α1, α2, α3, β0, β1, β2, β3, k1, k2,

and finally a continuous function f : [a, b] → R. The boundary value problem is the
following: for any λ ∈ Λ fixed, study the following linear problem in the unknown y :
[a, b] → R, x 7→ y(x):





p2(x, λ)y′′(x) + p1(x, λ)y′(x) + p0(x, λ)y(x) = f(x),
α0y(a) + α1y

′(a) + α2y(b) + α3y
′(b) = k1,

β0y(a) + β1y
′(a) + β2y(b) + β3y

′(b) = k2.
(3.33)

Remark 3.22 The problem (3.33) is not a Cauchy problem (which would require the
imposition of the values of y and y′ in a fixed point x0 ∈ [a, b] (the same point for both
values)). Instead, (3.33) requires that some suitable linear combinations of y and y′,
calculated on the extreme points (boundary) of the interval, be satisfied. Note, however,
that such boundary conditions are just two, as the order of the equation.

55Note that the other part of the solution is the general integral of the associated homogeneous equation,
and hence it does not play any role in the construction of a particular solution of the non-homogeneous.

56Whose name is often referred as Sturm-Liouville problems.
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Example 3.23 (The vibrating chord) Let us consider the problem

{
y′′ + λy = 0 in ]0, 1[
y(0) = y(1) = 0.

This problem corresponds to the choices Λ = R, [a, b] = [0, 1], p0 = λ, p1 = 0, p2 = 1,
α0 = 1, α1 = α2 = α3 = k1 = 0, β0 = β1 = 0, β2 = 1, β3 = k2 = 0.

If λ < 0, then the second order equation has the following general integral

y(x) = c1e
√−λx + c2e

−√−λx;

if λ = 0

y(x) = c1x + c2,

and if λ > 0

y(x) = c1 cos(
√

λx) + c2 sin(
√

λx).

It is obvious that, for any λ ∈ R, the problem admits the null function y ≡ 0 as
solution. The question is: for which values of λ, does the problem admit other solutions
than the null one? Using the general integrals, we easily get the answer, just imposing
the boundary conditions y(0) = y(1) = 0:
i)

λ < 0 =⇒ c1 + c2 = e
√−λc1 + e−

√−λc2 = 0
⇐⇒ c1 = c2 = 0 ⇐⇒ y ≡ 0;

ii)

λ = 0 ⇐⇒ c2 = c1 + c2 = 0 ⇐⇒ c1 = c2 = 0 ⇐⇒ y ≡ 0;

iii)

λ > 0 ⇐⇒ c1 = c1 cos(
√

λ) + c2 sin(
√

λ) = 0
⇐⇒ c1 = c2 = 0 or c1 = 0, c2 6= 0, λ = n2π2.

Hence, the answer is: only for λ = n2π2 with n ∈ N, and the solutions are of the form

y(x) = c sin(kπx) c ∈ R, k ∈ Z.

Such solutions represent the modes of vibration of a chord hanged by its extremes57.
The solutions corresponding to such values of λ are called harmonics.

57Think to the chord of a guitar.
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For the general case (3.33), let58

y(x) = c1ϕ1(x, λ) + c2ϕ2(x, λ) + ψ(x, λ)

be the general solution of the equation, for every fixed λ ∈ Λ. Then for every λ, imposing
the boundary data, we get the following 2 × 2 algebraic linear system in the unknown
(c1, c2), (here for instance, ϕ′i is the derivative with respect to x ∈ [a, b], and if x = a or
x = b it is the right derivative or, respectively, the left derivative):





(
α0ϕ1(a, λ) + α1ϕ

′
1(a, λ) + α2ϕ1(b, λ) + α3ϕ

′
1(b, λ)

)
c1

+
(
α0ϕ2(a, λ) + α1ϕ

′
2(a, λ) + α2ϕ2(b, λ) + α3ϕ

′
2(b, λ)

)
c2

= k1 − α0ψ(a, λ)− α1ψ
′(a, λ)− α2ψ(b, λ)− α3ψ

′(b, λ)

(
β0ϕ1(a, λ) + β1ϕ

′
1(a, λ) + β2ϕ1(b, λ) + β3ϕ

′
1(b, λ)

)
c1

+
(
β0ϕ2(a, λ) + β1ϕ

′
2(a, λ) + β2ϕ2(b, λ) + β3ϕ

′
2(b, λ)

)
c2

= k2 − β0ψ(a, λ)− β1ψ
′(a, λ)− β2ψ(b, λ)− β3ψ

′(b, λ)

Let ∆(λ) be the determinant of the system on the left-hand side. We easily conclude
that, concerning the solutions of (3.33)59,

i) ∆(λ) 6= 0 ⇐⇒ exactly one solution,
(the null one in the homogeneous case f ≡ 0 = k1 = k2);

ii) ∆(λ) = 0 ⇐⇒ infinitely many solutions for the homogeneous case,
either no solutions or infinitely many for the nonhomogeneous case.

In the homogeneous case, a value λ such that ∆(λ) = 0 is said an eigenvalue of the
problem and a corresponding non null solution is said an eigenfunction.

58General solution of the homogeneous plus a particular solution of the nonhomogeneous.
59Also recall the Rouché-Capelli theorem.
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4 Integration of some nonlinear equations

In this section we give some methods for calculating the general integral (and hence, the
solution of the Cauchy problem) for some special kinds of nonlinear scalar equations.

For convenience we first recall that, given the first order linear equation

z′ = P (t)z(t) + Q(t),

its general integral is given by (recall (1.21))

z(t) = e
R

P (t)dt

(
c +

∫
Q(t)e−

R
P (t)dtdt

)
. (4.1)

4.1 Separation of variables

We consider equations of the following type

y′ = f(t)g(y),

with f : I → R, g : J → R continuous. If y0 ∈ J and g(y0) = 0, then, it is obvious that
the function y(t) ≡ y0, t ∈ I, is a solution. Otherwise, if we are looking for solutions such
that g(y) 6= 0, we can divide the equation by g(y) and, formally, obtain

dy

g(y)
= f(t)dt,

which, integrated, gives

G(y) = F (t) + k,

where G and F are primitives, respectively, of 1/g and f and k ∈ R is a constant of
integration. If, at least locally, G is invertible, then we can get

y(t) = G−1 (F (t) + k) , k ∈ R

which gives the general integral.

Example 4.1 (The catenary curve.) We consider the equation in Example 1.5

y′′(x) =
gµ

c

√
1 + (y′(x))2.

We set v = y′, and hence we get

v′(x) =
gµ

c

√
1 + v(x)2,

which may be solved by separation of variables
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dv√
1 + v2

=
gµ

c
⇐⇒ settsinh(v) =

gµ

c
x + k1 ⇐⇒ v(x) = sinh

(gµ

c
x + k1

)
,

from which

y(x) =
c

gµ
cosh

(gµ

c
x + k1

)
+ k2, k1, k2 ∈ R.

Hence, the shape attained by the chain is given by a piece of the graph of a hyperbolic
cosine (suitably shifted by k1 and k2, depending on the data of the problem).

4.2 The Bernoulli equation

These are equations of the following type

y′(t) = P (t)y(t) + Q(t)y(t)α, (4.2)

where P, Q are continuous, α ∈ R. The interesting cases are of course α 6= 0, 1, otherwise
the equation become linear, first order.

If α > 0, then we certainly have the null solution y ≡ 0, whereas, if α < 0, the null
function is certainly not a solution. Also note that, when 0 < α < 1, the second member is
not more Lipschitz in general, and so we may have non-uniqueness for the corresponding
Cauchy problem, when y0 = 0, as in the case of the example in Section 2.3.4. Then, let
us suppose that y is a solution and that y 6= 0. We can divide the equation by yα and
obtain

y′

yα
= P (t)y1−α + Q(t).

If we define z = y1−α, then z is a solution of the linear first order equation

z′ = (1− α)P (t)z + (1− α)Q(t). (4.3)

We easily find the general integral of (4.3) and then we get the general integral of (4.2),

by imposing y = z
1

1−α , and taking also account of y ≡ 0 if α > 060.

Example 4.2 Find the general integral of

y′(t) =
y(t)

t
+ y(t)2.

Here we have P (t) = 1
t
, Q(t) ≡ 1, and α = 2. Since α > 0, we certainly have the null

solution y ≡ 0. Moreover, all the solutions must be defined in a interval I not containing

60Pay attention to the fact that, if α is irrational then we can only search for solution y ≥ 0 (otherwise
yα is meaningless), if 1− α is a rational number with even numerator, then z must be nonnegative and
we have the solutions y = ±z

1
1−α .
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t = 0, otherwise P is not defined. Let us look for the general integral in ]0, +∞[. We
have to look for the general integral of the linear equation (in z = y−1)

z′(t) = −z(t)

t
− 1,

which (for t > 0) is given by (see (4.1))

z(t) =
2c− t2

2t
, c ∈ R

which gives the general integral of our equation (for t > 0)

y :]0, +∞[→ R, t 7→ 2t

2c− t2
c ≤ 0,

y :]0,
√

2c[→ R, t 7→ 2t

2c− t2
c > 0,

y :]
√

2c, +∞[→ R, t 7→ 2t

2c− t2
c > 0,

to which we have to add the null function y ≡ 0.
The reader is invited to calculate the general integral for t < 0 and to draw the picture

of all solutions in the (t, x) plane.
If, for instance, we now look for the solution of the Cauchy problem

{
y′ =

y

t
+ y2,

y(2) = 100,

we immediately get

y :

]
0,

√
101

25

[
→ R, t 7→ 2t

101
25
− t2

.

4.3 Homogeneous equations

These are equations of the following type

y′ = ϕ(t, y),

where ϕ is a homogeneous function of degree zero61:

ϕ(λt, λy) = ϕ(t, y) ∀(x, y), ∀λ ∈ R \ {0}. (4.4)

A typical example is

61Note that, here, the meaning of the word “homogeneous” is that the second member is a homogeneous
function in the sense of (4.4), and not in the sense of “linear homogeneous”. In particular, the equation
is not linear!
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ϕ(t, y) = f
(y

t

)
,

where f is a given function.
If y is a solution and if we set

z(t) =
y(t)

t
,

then we get

z′ =
ty′ − y

t2
=

tϕ(t, y)− y

t2
=

tϕ(1, z)− y

t2
=

ϕ(1, z)− z

t
,

which is of the separation of variables type62.

Example 4.3 Solve

y′(t) =
y3 + 3t3

ty2
.

The equation, defined for t 6= 0, is homogeneous, with

ϕ(t, y) =
y3 + 3t3

ty2
,

which is the ratio of two homogeneous polynomial of degree three. Hence we have

z′(t) =
3

z2t
,

which may be solved by separation of variables, getting

z(t) = (9 log |t|+ k)
1
3 , t 6= 0, k ∈ R,

from which we get

y(t) = tz(t) = t (9 log |t|+ k)
1
3 , t 6= 0, k ∈ R. (4.5)

However, the function y in (4.5) is not solution of our equation in whole ]−∞, 0[∪]0, +∞[.

Indeed, it is not derivable in t = ±e−
k
9 . Hence, the general integral is given by

y :]−∞,−e−
k
9 [→ R t 7→ t (9 log(−t) + k)

1
3 k ∈ R,

y :]− e−
k
9 , 0[→ R t 7→ t (9 log(−t) + k)

1
3 k ∈ R,

y :]0, e−
k
9 [→ R t 7→ t (9 log t + k)

1
3 k ∈ R,

y :]e−
k
9 , +∞[→ R t 7→ t (9 log t + k)

1
3 k ∈ R

62If the equation is y′ = f
(

y
t

)
, then we get z′ = f(z)−z

t .
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The reader is invited to draw a picture of the general integral.
If for instance we are looking for the solution of the Cauchy problem





y′ =
y3 + 3t3

ty2

y(1) = 1,

we get

y :]e−1/9, +∞[→ R, x 7→ t(9 log t + 1)1/3.

Transformation of suitable equations into a homogeneous equation. By a suitable
change of variables, the equations of the following kind (here a, b, a1, b1 ∈ R)

y′ =
ax + by + c

a1x + b1y + c1

(4.6)

may be transformed into an equivalent homogeneous equation. Indeed, let us suppose
that

det

(
a b
a1 b1

)
6= 0, (4.7)

and let us make the following change of variables

{
u = ax + by + c
v = a1x + b1y + c1.

(4.8)

Differentiating in (4.8), we get

{
du = adx + bdy
dv = a1dx + b1dy,

which, by the hypothesis (4.7), may be solved (inverted) with respect to dx and dy, getting
dx and dy as linear functions of du and dv:

dx = a′du + b′dv, dy = a′1du + b′1dv,

which inserted in (4.6), together with (4.8), gives

du

dv
=

b′u− b′1v
a′1v − a′u

,

which is a homogeneous equation for the function u(v). Once we know a solution u(v)
then we have an implicit representation for the solution y(x) by

u(a1x + b1y + c1) = ax + by + c,
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which, if it is at least locally solving with respect to y, may give an explicit formula for
y(x).

On the other hand, if (4.7) does not hold, that is the matrix is not invertible, this
means that the rows are proportional, and so there exists k ∈ R such that

a1 = ka, b1 = kb.

Hence if we put u = ax + by, and so du = adx + bdy, we get63

dy =
1

b
(du− adx),

from which

du

dx
=

(
a + b

u + c

ku + c1

)
,

which is an equation for u(x), which may be solved by separation of variables. Also in
this case, once we know a solution u(x), we may get a solution y(x) just solving, with
respect to y, the algebraic equation (if possible)

u(x) = ax + by

Example 4.4 Find the general integral of

y′ =
6x− 2y

y − x + 3
. (4.9)

The matrix is
(

6 −2
−1 1

)
,

which has determinant 4 6= 0. Hence we have

{
u = 6x− 2y
v = y − x + 3

=⇒
{

du = 6dx− 2dy
dv = dy − dx

=⇒





dx =
1

4
du +

1

2
dv

dy =
1

4
du +

3

2
dv

(4.10)

We then get the homogeneous equation, for u(v):

u′ =
2u− 6v

v − u

63Note that, in this particular case, we must have b 6= 0 (and hence also b1 6= 0), otherwise the equation
(4.6) is not more a differential equation: there is not y on the right-hand side.
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which is meaningful only if u 6= v. Hence, putting z(v) = u/v, and so z 6= 1, for v 6= 064,
we get the equation of separation of variables

z′ =
z2 + z − 6

v(1− z)
.

Imposing the condition z2 + z − 6 6= 0 we get

1− z

z2 + z − 6
dz =

dv

v
,

which, after some calculations, gives the general integral, in an implicit form65:

|v|5|z − 2||z + 3|4 = k, k ∈ R, k > 0. (4.11)

Recalling z = u/v we get the implicit formula

|u− v||u + 3v|4 = k, k > 0,

from which, using (4.10), and letting drop the absolute values

(8x− 4y − 6)(3x + y + 9)4 = m, m ∈ R, m 6= 0. (4.12)

Now, we have to examine the case i) u = v, ii) z2 + z − 6 = 0.
i) This case would correspond to the possible solution y = (7x − 3)/3. But such a

function is not a solution of (4.9), as can be directly checked.
ii) This case gives the two possibilities z = 2 and z = −3 which correspond to u = 2v

and u = −3v, that is, referring to x and y, exactly to the cases given by (4.12) with
m = 0.

Hence, we eventually get the general integral in an implicit form,

(8x− 4y − 6)(3x + y + 9)4 = m, m ∈ R.

4.4 Exact differential equations and integrand factors

We consider the following type of equation (here, for similarity to other familiar notations,
the independent variable of the unknown function is denoted by x instead of t):

y′(x) = −P (x, y(x))

Q(x, y(x))
, (4.13)

where P, Q : A → R are two continuous functions, with A ⊆ R2 open, and Q(x, y) 6= 0
for all (x, y) ∈ A.

64Note that such condition is exactly the condition that the denominator of the right-hand side of (4.9)
is not vanishing.

65This means that the values z(v) assumed by the solution z are those such that the couple (v, z(v))
satisfies the equality (4.11).
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As already done for the case of separation of variables, we can write (4.13) in the
following way (at least formally):

P (x, y(x))dx + Q(x, y(x))dy = 0,

which is reminiscent of the differential 1-form

(x, y) 7→ P (x, y)dx + Q(x, y)dy. (4.14)

Definition 4.5 The differential equation (4.13) is said to be an exact differential equation
if the differential form (4.14) is exact in A.

Remark 4.6 Note that the separation of variable equations are particular cases of the
exact differential equations.

Theorem 4.7 Let A ⊆ R2 be open and connected, and let the equation (4.13) be exact.
Moreover, let ϕ : A → R be a primitive of the differential form (4.14). Then, the general
integral of (4.13) is given by

Ĩ =
{

y : I → R
∣∣∣y ∈ C1(I), (x, y(x)) ∈ A∀x ∈ I, ∃c ∈ R such that ϕ(x, y(x)) = c∀x ∈ I

}
.

(4.15)

Proof. Let us take y : I → R such that y ∈ C1(I), and that (x, y(x)) ∈ A for all x ∈ I.
Then, we denote by ψ the function

ψ : I → R, x 7→ ϕ(x, y(x)).

If we prove that ψ′ ≡ 0, if and only if y is a solution of (4.13) then we are done. This is
indeed true, by the following chain of equalities (recalling also Q 6= 0):

ψ′(x) =
∂ϕ

∂x
(x, y(x)) +

∂ϕ

∂y
(x, y(x))y′(x) = P (x, y(x)) + Q(x, y(x))y′(x).

¤

Remark 4.8 Let ϕ be a primitive of (4.14), and, for every c ∈ R, let us consider the
level set c of ϕ

Ec(ϕ) =
{

(x, y) ∈ A
∣∣∣ϕ(x, y) = c

}
.

If y : I → R is a solution of the exact equation (4.13), then the couple (x, y(x)) belongs
to the level set Ec(ϕ), for some c ∈ R, for all x ∈ I.

On the contrary, let (x0, y0) ∈ A be such that ϕ(x0, y0) = c ∈ R. Since Q = ∂ϕ
∂y

is

always not null by hypothesis, then, using the implicit function theorem, around (x0, y0)
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we can represent, in a unique manner, Ec as a graph of a function x 7→ y(x). It is obvious
that such a function is the unique local solution of the Cauchy problem





y′(x) =
P (x, y(x))

Q(x, y(x))
,

y(x0) = y0.

Example 4.9 Write the general integral of the equation

y′(x) =
2x− y(x)3

3xy(x)2
.

Here we have

P (x, y) = y3 − 2x, Q(x, y) = 3xy2,

and Q 6= 0 for x 6= 0 or y 6= 0, that is out of the coordinated axes. Let us look for solutions
y such that the couple (x, y(x)) belongs to the first open quadrant A (x > 0, y > 0). Let
us check if the equation is exact:

∂P

∂y
(x, y) = 3y2 =

∂Q

∂x
(x, y),

and so, since A is simply connected, there exists a primitive ϕ of the associated differential
form. That is the equation is exact. Let us look for a primitive ϕ.

∂ϕ

∂x
(x, y) = P (x, y) = y3 − 2x ⇐⇒ ϕ(x, y) = xy3 − x2 + g(y),

where g is a C1 continuous function, to be determined.

∂ϕ

∂y
(x, y) = Q(x, y) ⇐⇒ g′(y) ≡ 0,

which means g constant, and hence,

ϕ(x, y) = xy3 − x2

is a primitive of the differential form. From this, we immediately conclude that the general
integral (with respect to the first quadrant) is

y :]0, +∞[→ R y(x) =
(

x2+c
x

) 1
3

if c ≥ 0

y :]
√−c, +∞[→ R y(x) =

(
x2+c

x

) 1
3

if c < 0

If in particular, we search for the solution of the Cauchy problem
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



y′(x) =
2x− y(x)3

3xy(x)2
,

y(1) = 2,

then we definitely get

y(x) =

(
x2 + 7

x

) 1
3

, x > 0.

Sometimes66 the equation (4.13) is not exact, that is the associated differential form
(4.14) has no primitives. However, it may happen that, for some suitable never null
function h(x, y) the differential form

h(x, y)P (x, y)dx + h(x, y)Q(x, y)dy (4.16)

becomes exact. We have then the following definition

Definition 4.10 A never null function h : A → R for which the differential form (4.16)
is exact, is said to be an integrand factor for the differential form (4.14) (or for the
equation (4.13)).

Proposition 4.11 If h is an integrand factor for (4.13), then the general integral of
(4.13) is exactly the same as the general integral of the exact equation

y′(x) = −h(x, y(x))P (x, y(x))

h(x, y(x))Q(x, y(x))
.

Proof. Obvious. ¤

Here are two special cases where an integrand factor is easily found: if the function

1

Q

(
∂P

∂y
− ∂Q

∂x

) (
respectively,

1

P

(
∂P

∂y
− ∂Q

∂x

))

is a function of the variable x only (respectively, y only), let us say g(x) (respectively,
h(y)), then

µ(x) = eG(x), (respectively, µ(y) = eH(y))

where G (respectively, H) is a primitive of g (respectively, of h), is an integrand factor.

66Better: almost always...
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4.5 On the equations of the form y = F (y′)

Here, we examine the first order scalar equation of the form

y = F (y′)

where F : A → R is of class C1 on its domain A ⊆ R. This is an equation in non normal
form67.

We consider the following change of variable

y′ = p, (4.17)

from which we get

y = F (p) =⇒ dy = F ′(p)dp

y′ = p =⇒ dy

dx
= p =⇒ dx =

dy

p



 =⇒ dx =

F ′(p)

p
dp.

Hence, the general integral of the equation is given, in a parametric form, by





x =

∫
F ′(p)

p
dp,

y = F (p),
(4.18)

to which we have to add the constant function y ≡ F (0), whenever p = 0 belongs to the
domain of F .

The meaning of the parametric form (4.18) is the following. Let F be a primitive of
F ′(p)/p, hence (4.18) becomes

{
x = F(p) + C,
y = F (p),

(4.19)

where C ∈ R is any constant. If, for instance, we are looking for solutions of the Cauchy
problem with initial datum y(x0) = y0, then we insert y0 in the second line of (4.19),
thus obtaining p0 solving the equation (if possible). Then, inserting such a p0, together
with x0, in the first line of (4.19), we may fix the constant C = C0. Now, if F ′(p0) 6= 0,
then around p0 the function F is invertible, and we may consider p = F−1(y) getting x
as function of y:

x(y) = F (
F−1(y)

)
+ C0. (4.20)

Since in this case F ◦F−1 has not null derivative in y0
68, then we may locally invert (4.20)

and obtain a formula for the solution x 7→ y(x).

67With similar techniques as the one exposed in this section, we can also study other equations in non
normal form as x = F (y′) and F (y, y′, y′′) = 0.

68Just recall which is the derivative of F and what is the derivative of the inverse function F−1.
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On the other hand, if F ′(p0) = 0, and F is not invertible around p0
69 we have two

cases: p0 is a relative minimum or p0 is a relative maximum. In both cases, around (p0, y0),
we have two different ways for choosing p such that y = F (p), but we may proceed as
before just inverting one of the two branches. However, in these cases, we possibly get a
solution only defined on a right interval [x0, x0 + δ[ or on a left interval ]x0 − δ, x0].

Also note that if there are more than one way of choosing p0 such that F (p0) = y0,
then we may have multiplicity of the solution70.

Finally , if there are not p0 such that y0 = F (p0), then the Cauchy problem has not
solutions at all, whichever x0 is.

Example 4.12 For any choice of the couple (x0, y0) ∈ R2, study existence and uniqueness
for the following Cauchy problem:

{
2(y′)3 + (y′)2 − y = 0,
y(x0) = y0.

The equation is of the form y = F (y′) with

F (p) = 2p3 + p2.

We put y′ = p and, after some simple calculations, we get the parametric form

{
x = 3p2 + 2p + C,
y = 2p3 + p2,

to which we have to add the constant function y ≡ F (0) = 0. Studying the function
F (p) = 2p3 + p2 we see that it tends to ±∞ as p goes to ±∞, it is negative for p < −1/2,
and non negative for p ≥ −1/2, it has a relative maximum in p = −1/3, that is 1/27, and
a relative minimum in p = 0, that is zero.

Hence we certainly have local existence and uniqueness for y0 < 0 and for y0 > 1/27
(independently from x0). For 0 < y0 < 1/27 we may have three local solutions71. For
y0 = 1/27 and y = 0 we have three solutions.

As example, let us calculate the solutions for the initial datum y(0) = 0. In this case
we have x0 = 0, y0 = 0 and we get the two values for p0: −1/2 and 0. Let us first consider
p0 = −1/2. Then we get C0 = 1/4. Hence, around (x0, p0) we can invert72

x = 3p2 + 2p +
1

4
,

69That is p0 is not an inflection point, otherwise F is still invertible around p0 and then we may
similarly proceed as before.

70The multiplicity is not always guaranteed, since it may happens that with respect to different values
of p0, and so to different values the constant C0, the function in (4.20) is anyway the same. However,
multiplicity is very probable.

71And indeed we have three different solutions.
72In the general procedure above explained, we inverted y = F (p), however, if, when the constant C0

is fixed, also x = F(p) + c0 is invertible, we can then begin with that inversion.
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getting

p(x) =
−1−

√
1+12x

4

3
, x ≥ − 1

12
,

and hence we get the solution

y1(x) = 2


−1−

√
1+12x

4

3




3

+


−1−

√
1+12x

4

3




2

, x ≥ − 1

12
.

If instead p0 = 0, then we have C0 = 0 and again, inverting x = 3p2 + 2p around
(x0, p0), we get the solution

y2(x) = 2

(−1 +
√

1 + 3x

3

)3

+

(−1 +
√

1 + 3x

3

)2

, x ≥ −1

3
.

Finally we also have the stationary solution y3(x) ≡ 0.

Exercise. i) For the same problem as in Example 4.12, write the solutions for the
initial datum y(0) = 1/27. Observe that some solutions may be defined only on a right
(or left) interval around x0.

ii) For the equation yy′ − y(y′)2 − 1 = 0, study similar questions as in Example 4.12
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5 Prolongation of solutions

In the local existence and uniqueness result for the Cauchy problem, Theorem 2.10, we
have established the existence of δ > 0 such that the solution exists unique in the interval
]t0− δ, t0 + δ[. Of course, such a constructed δ is not in general the optimal one73, that is
we can probably obtain existence and uniqueness also in some larger interval I. In other
words, we can probably prolong the solution beyond t0 + δ or beyond t0 − δ.

5.1 Maximal solutions and existence up to infinity

Let us consider the first order system of equations in normal form

y′ = f(t, y), (5.1)

where f : A → Rn with A ⊆ Rn+1 open.

Definition 5.1 A solution ỹ : Ĩ → Rn of (5.1), is said to be a maximal solution if there
is not another solution y : I → Rn such that Ĩ ⊆ I, Ĩ 6= I, and y(t) = ỹ(t) for all t ∈ Ĩ.
In other words, the solution ỹ is maximal if it is not prolongable beyond its domain Ĩ.

In a similar way we define a maximal solution for a Cauchy problem associated to
(5.1)

Remark 5.2 Let us note the difference of Definition 5.1 with the definition of the global
solution, Definition 2.3, and with the definition of the unique global solution, Definition
2.12. In the first case we a priori fix an interval of existence (which we do not make in
Definition 5.1), in the second case we require the uniqueness, whereas in Definition 5.1 we
are not concerning with uniqueness: a maximal solution may exist without being unique
as solution (even locally)74. However, as we are going to see, the two notions are strongly
related.

If the Cauchy problem associated to (5.1) has local existence and uniqueness for all
initial data (t0, y0) ∈ A, then a maximal solution for the Cauchy problem exists and
coincides with the unique global solution in Definition 2.12. This the statement of the
next theorem, but first we need the following lemma.

Lemma 5.3 Let us suppose that, for all (t0, x0) ∈ A, the Cauchy problem for (5.1) has
a unique local solution. Then if two solutions of the equation y′ = f(t, y), let us say
ϕ : I → Rn, I open, and ψ : J → Rn, J open, are equal in a point t ∈ I ∩ J , then they
are equal in all their common interval of definition I ∩ J .

Proof. We are going to prove that the set

C =
{

t ∈ I ∩ J
∣∣∣ϕ(t) = ψ(t)

}
,

73we have only required that it was sufficiently small in order to be sure that our argumentation holds
74Recall, for instance, the example in Paragraph 2.3.4
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is a nonempty open-closed subset of I ∩J (for the induced topology)75. Hence, since I ∩J
is an interval and so connected, we must have C = I ∩ J which will conclude the proof.

First of all note that C 6= ∅ since t ∈ C by definition.
Let tn ∈ C converge to t∗ ∈ I ∩ J . Then, by definition of C, ϕ(tn) = ψ(tn) for all n.

Since both ϕ and ψ are continuous on I ∩ J (they are solutions), we get ϕ(t∗) = ψ(t∗),
and so t∗ ∈ C, which turns out to be closed.

Let us now take any t∗ ∈ C and consider the Cauchy problem with datum (t∗, y∗)
where y∗ = ϕ(t∗) = ψ(t∗). By hypothesis, such a problem has a unique local solution.
Since both ϕ and ψ are solution of such a Cauchy problem, they must coincide in an
interval ]t∗ − δ, t∗ + δ[, which is then contained in C, which turns out to be open. ¤

Theorem 5.4 Let us suppose that, for all (t0, x0) ∈ A, the Cauchy problem for (5.1) has
a unique local solution. Then for any initial datum, the Cauchy problem has a unique
maximal solution ỹ : Ĩ → Rn, which also turns out to be the unique global solution in the
sense of Definition 2.12. The interval Ĩ is said the maximal interval of existence.

Proof. For a fixed initial datum, let us consider the general integral of the Cauchy
problem, and define Ĩ as the union of all intervals I such that there exists yI : I → Rn

solution of the Cauchy problem.
First of all note that Ĩ is an open interval containing t0, since so are all the intervals

I. Now we define

ỹ : Ĩ → Rn, y 7→ yI(t) if t ∈ I. (5.2)

Using Lemma 5.3 it is easy to see that (5.2) is a good definition76, and also that ỹ is the
unique maximal solution, as requested. ¤

Remark 5.5 If A is a strip: ]a, b[×Rn, then the condition

∃ c1, c2 ≥ 0 such that ‖f(t, x)‖ ≤ c1‖x‖+ c2 ∀(t, x) ∈ A, (5.3)

together with the usual hypotheses of continuity and Lipschitz continuity (2.7), guarantees
the existence of the maximal solution ỹ in the whole interval ]a, b[77. Indeed, this is
exactly what we have proven in the global existence and uniqueness Theorem 2.15, where

75Since I ∩ J is open, C is open in I ∩ J for the induced topology if an only if it is open in R, and it
is closed for the induced topology if and only if, whenever tn → t∗ as n → +∞, with tn ∈ C, t∗ ∈ I ∩ J ,
then also t∗ ∈ C.

76If t ∈ I ∩ J then yI(t) = yJ (t).
77Condition (5.3) says that if f , that is the derivative of ỹ, has a linear behavior as ‖ỹ‖ → +∞, then

the solution ỹ exists for all times ]a, b[. As example, think to the scalar case with ỹ, ỹ′ ≥ 0; hence we
have 0 ≤ ỹ′ ≤ c1ỹ + c2, and it is believable that ỹ must stay under the solution of y′ = c1y

′ + c2 which
is an exponential function. Since the exponential function exists for all times, that is it is finite for all
times, then ỹ cannot go to +∞ before the time b, and hence it must exist until b. In the next section we
will formalize the comparison between solutions.
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we used (2.12) which is nothing but (5.3), which, in that case, was given by the global
uniform Lipschitz condition (2.11). Another simple condition which implies (5.3) is the
boundedness of f .

Moreover if f ,besides satisfying (5.3), is also defined and continuous in [a, b[×Rn or
]a, b]×Rn (which implies a or b finite), then the limits limt→a+ ỹ(t) or limt→b− ỹ(t) exist in
Rn, that is, the solution is prolongable till [a, b[ or ]a, b]78. This is easily seen just slightly
modifying the proof of Theorem 2.15.

Note that, if, for instance, A =]a, +∞[×Rn, and f satisfies (2.7) and (5.3) then, by
Remark 5.5, the maximal interval of existence is ]a, +∞[, that is the maximal solution
exists for all times t → +∞. It similarly happens if A =]−∞, b[×Rn.

In Remark 5.5, we gave some results about the behavior of the maximal solution on
a strip when the extrema of the maximal interval are approached. Here we want to say
something similar for the general case of A not a strip and in the case of strip but with a
different condition than (5.3).

Proposition 5.6 Let us suppose that f : A → Rn, with A ⊆ Rn+1 open, satisfies the
usual conditions for local existence and uniqueness of the Cauchy problem (see Theorem
2.10). Let ỹ : Ĩ → Rn be a maximal solution of the equation y′ = f(t, y), and also suppose
that, defined β = sup Ĩ, there exists c ∈ Ĩ such that ỹ′ is bounded in [c, β[. Then, we have
the following alternative:

i) β = +∞
otherwise

ii) the limit limt→β+ ỹ(t) = xβ exists in Rn, but (β, xβ) 6∈ A.

A similar conclusion holds for α = inf Ĩ.

Proof. By our hypothesis, ỹ is Lipschitz (and in particular uniformly continuous) in
[c, β[, since its derivative is bounded. Hence, if β < +∞, we can prolong ỹ up to the
boundary β, that is the limit xβ ∈ Rn exists. However, if by absurd (β, xβ) ∈ A, which
is open, then ỹ′−(β) = f(β, xβ)79 and, again by hypothesis, we can extend the solution
beyond β. This is a contradiction since ỹ is maximal. ¤

Theorem 5.7 Let f be as in Proposition 5.6, let ỹ : Ĩ → Rn be a maximal solution of
y′ = f(t, y), and let K ⊂ A be a compact set. Then there exists [a, b] ⊂⊂ Ĩ80 such that

(t, ỹ(t)) 6∈ K ∀ t ∈ Ĩ \ [a, b].

We then say that the maximal solutions definitely exit from any compact set in the
domain of f .

78This means, for instance, that limt→b− ỹ(t) = xb exists in Rn and that ỹ′−(b) = f(b, xb), where ỹ′− is
the left-derivative. The validity of the last formula is easily seen using the integral representation.

79See Footnote 78. Such an equality guarantees that the extension beyond β is really an extension of
ỹ, since it glues to it in t = β in a C1-manner.

80This means that inf Ĩ < a ≤ b < sup Ĩ.
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Proof. Let us define β = sup Ĩ, and by absurd, let us suppose that there exists a
sequence tn ∈ Ĩ converging to β such that (tn, ỹ(tn)) ∈ K for all n. Hence, possibly
extracting a subsequence, there exists xβ ∈ Rn such that

lim
n→+∞

(tn, ỹ(tn)) = (β, xβ) ∈ K ⊂ A.

In particular, this means that β < +∞. We now get the contradiction since, by virtue
of the convergence, there exists a ball B ⊆ A which contains (β, xβ) and (tn, ỹ(tn)) for
sufficiently large n ≥ n. If then we look back to the proof of the local existence and
uniqueness Theorem 2.10, we see that there should exist a common δ > 0 such that the
unique local solution of any Cauchy problem

{
y′(t) = f(t, y(t))
y(tn) = ỹ(tn),

must exist at least until tn + δ. By uniqueness, such a local solution must be equal to ỹ
itself for t ≤ β. This means that, whenever tn > β − δ, we can prolong ỹ beyond β81. A
contradiction to the maximality of ỹ.

The proof for α = inf Ĩ is similar. ¤

Remark 5.8 In the particular case of an autonomous system y′ = f(y), with f : A → Rn

locally Lipschitz and A ⊆ Rn open, if ỹ : Ĩ → Rn, Ĩ open, is a maximal solution and
K ⊆ A is compact, then we have the following alternative

i) ỹ definitely exits from K, that is there exist a, b ∈ Ĩ such that

ỹ(t) 6∈ K ∀ t ∈ Ĩ \ [a, b],

otherwise
ii) sup Ĩ = +∞ or inf Ĩ = −∞.
Indeed, let us first note that we can think to the system as y′ = f̃(t, y), where f̃ : Ã →

Rn with Ã = R × A, f̃(t, x) = f(x). Hence, if i) is not verified, we have, for instance,
tn → sup Ĩ− with ỹ(tn) ∈ K. But then, if sup Ĩ ∈ R we have, for a suitable compact
interval J around it and for large n, (tn, ỹ(tn)) ∈ J ×K, which is compact in Ã, and this
is a contradiction to Theorem 5.7.

Remark 5.9 Note that both Proposition 5.6 and Theorem 5.7 say that, if β = sup Ĩ <
+∞ and A is bounded82, then

lim
t→β−

dist ((t, ỹ(t), ∂A)) = 0, (5.4)

that is the couple (t, ỹ(t)) approximates the boundary ∂A when t approximates β. More-
over, Proposition 5.6 also says that, if ỹ′ is bounded, then the limit limt→β− ỹ(t) does exist
in Rn (if ỹ′ is not bounded, then the solution may oscillate).

81See Footnote 79.
82We are here supposing the boundedness of A in order to give an immediate meaning to (5.4), without

ambiguities for ‖ỹ‖ → +∞.
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Now we give another criterium for the existence of the solution up to infinity.

Proposition 5.10 Let f be again as in Proposition 5.6 and also suppose that A is the
strip ]a, +∞[×Rn. Let ỹ : Ĩ → Rn be a maximal solution of y′ = f(t, y) such that, for
some τ ∈ Ĩ and for some c1, c2 ≥ 0, we have83

‖ỹ(t)‖ ≤ c1 + c2(t− τ) ∀ t ≥ τ, t ∈ Ĩ . (5.5)

Then, ỹ is prolongable up to infinity, that is β = sup Ĩ = +∞.
A similar result holds for the prolongation up to −∞.

Proof. By absurd, let us suppose that β < +∞. Hence, fixed any B > c1 + c2(β − τ),
the compact cylinder

K =
{

(t, x) ∈ Rn+1
∣∣∣t ∈ [τ, β], ‖x‖ ≤ B

}
,

is contained in A. Hence, by Theorem 5.7, the maximal solution ỹ must definitely exit
from K when times approach β. By (5.5) and by our assumption on B we have, for any
t ≥ τ , t ∈ Ĩ,

‖ỹ(t)‖ ≤ c1 + c2(β − τ) < B,

which implies that ỹ must exit from the cylinder K through the “wall” {(β, x)|‖x‖ ≤ B}.
But this means, as before, that we can prolong ỹ beyond Ĩ, which is a contradiction since
Ĩ is the maximal interval. ¤

5.2 Qualitative studies (I)

The results of the previous paragraph may be used to get information about the qualita-
tive behavior of the solutions of scalar equations, even when an explicit formula for the
solutions can not be found (or it is hard to be found). In this way it may be possible to
draw a ”qualitative” picture of the graphs of the solutions. Here is a list of points that
are usually convenient to address.

1) Check the local existence and uniqueness, for instance verifying the hypothesis (2.7).
2) Check the prolongability of the solutions, for instance using (5.3).
3) Find the possible stationary solutions y ≡ y0, which correspond to the values y0 ∈ R

such that f(t, y0) = 0 for all t.
4) Find the region of the plane (t, x) where f > 0 and where f < 0 respectively, to

get information about the monotonicity of the solutions. Also observe that, when passing
from one region to another, the solution must have a relative extremum.

5) Observe that by uniqueness the graphs of the solutions cannot intersect each other.

83Also (5.5) is a condition of linearity up to infinity as (5.3), but here it is respect to time instead of
space, and moreover it is requested to the solution instead of to the dynamics.
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6) Study the limit limt→±∞ y(t), when reasonable84 and possible. Here, we can use
some known facts as, for instance: if a C1 function g satisfies limt→+∞ g(y) = ` ∈ R then
it cannot happen that limt→+∞ g′(t) = ±∞85.

7) Sometimes it may be useful to check whether there are some symmetries in the
dynamics f , since this fact may help in the study. For instance, if f has the following
symmetry (oddness with respect to the vertical axis t = 0)

f(t, x) = −f(−t, x) ∀ (t, x) ∈ R2,

then the behavior of the solutions on the second and third quadrants is specular with
respect to the one in the first and fourth quadrants. Indeed, let y :]a, b[→ R be a solution
with 0 ≤ a ≤ b, then the function

ψ :]− b,−a[→ R, t 7→ y(−t),

is also a solution. This can be easily checked. Let us fix τ ∈]a, b[ and consider x0 = y(τ).
Then we have

y(t) = x0 +

∫ t

τ

f(s, y(s))ds ∀ t ∈]a, b[,

and hence, for all t ∈]− b,−a[, via the change of variable ξ = −s,

ψ(t) = y(−t) = x0 +

∫ −t

τ

f(s, y(s))ds =

x0 +

∫ t

−τ

f(−ξ, y(−ξ))(−dξ) = x0 +

∫ t

−τ

f(ξ, ψ(ξ))dξ,

which means that ψ is solution86.
8) Sometimes it may be useful to study the sign of the second derivative y′′. This can

be guessed just deriving the equation87.

Example 5.11 Given the following scalar equation

y′(t) = (t2 − y)
log(1 + y2)

1 + y2
, (5.6)

discuss existence, uniqueness, maximal interval of existence and draw a qualitative graph
of the solutions.

We are going to analyze the above eight points.

84That is when the maximal interval is a left- and/or right- half line.
85The simple proof is left as exercise.
86Another simpler way to check that ψ is a solution is just to calculate its derivative.
87Concerning the existence of the second derivative, note that if f ∈ Cm then any solution y belongs

to Cm+1. Indeed, for instance, if f ∈ C1, then, since the solutions are C1 by definition, y′ = f(t, y) ∈ C1

and hence y ∈ C2. We can then go on in this way.
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1) Here we have

f(t, x) = (t2 − x)
log(1 + x2)

1 + x2
,

which is of class C1 in whole R2, which is a strip. Hence, there is local existence and
uniqueness for the Cauchy problem with any initial datum (t0, x0) ∈ R2.

2) Since log(1 + x2) ≤ 1 + x2 for all x ∈ R, then, for every a > 0 we have

|f(t, x)| ≤ |x|+ a2 ∀ (t, x) ∈ [−a, a]× R,

which, by Remark 5.5, guarantees the existence of the maximal solutions in the whole
interval ]− a, a[. By the arbitrary of a > 0 we get the existence of the maximal solution
for all times t ∈ R.

3) The only stationary solution is y(t) ≡ 0.
4) The sign of f is given by

{
f(t, x) > 0 if x < t2,
f(t, x) < 0 if x > t2.

This means that the solutions are decreasing if y(t) > t2 and increasing if y(t) < t2.
Moreover, when the graph of a solution crosses the parabola y = t2 at time t, then, at
that time, the solution has a relative extremum: a maximum if crosses in the second
quadrant (where it can only pass from the increasing region to the decreasing region),
and a minimum if crosses in the first quadrant88.

5) Since the null function y ≡ 0 is a solution, then all the solutions which sometimes
have a strictly positive value (respectively: a strictly negative value) are strictly positive
(respectively: strictly negative) for all times t ∈ R.

6) Let us consider a solution y negative. We must have limt→−∞ y(t) = −∞. Indeed,
since the negative solutions are all increasing, the alternative is −∞ < limt∞ y(t) = ` < 0.
But this fact would imply that limt→−∞ y′(t) 6= −∞, which is absurd since

lim
t→−∞

y′(t) = lim
t→−∞

(t2 − y(t))
log(1 + y(t)2)

1 + y(t)2
= lim

t→−∞
t2 − `

log(1 + `2)

1 + `2
= +∞.

In a similar way, we have limt→+∞ y(t) = 0. Indeed, y is increasing and bounded above
(by zero). Hence it must converge to a finite value `. But, whenever ` 6= 0 we get
limt→+∞ y′(t) = +∞ which is an absurd.

Now, let us consider a solution y positive. First of all, let us note that y must cross
the parabola y = t2 in the first quadrant, passing from the decreasing region to the
increasing one, and remaining on the latter for the rest of the times. Hence we have
limt→+∞ y(t) = +∞. Indeed y is increasing and hence the alternative is the convergence

88Note that, for instance, a solution cannot cross the parabola in the second quadrant passing from
the decreasing region to the increasing region, otherwise it should decrease a little bit in the increasing
region too. Similarly it happens in the first quadrant.
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to a finite value ` > 0, but also in this case, looking to the behavior of the derivative,
we would get an absurd. Concerning the behavior in the second quadrant, we note that
every solution must cross the parabola in that quadrant too. Indeed, if not, we would
have limt→−∞ y(t) = +∞ with y(t) ≥ t2 for all t ≤ 0 and y decreasing. But this implies

0 ≥ lim
t→−∞

y′(t) = lim
t→−∞

(t2 − y(t))
log(1 + y(t)2)

1 + y(t)2
≥ lim

t→−∞
−y

log(1 + y(t)2)

1 + y(t)2
= 0,

which is an absurd since, if it is true, we would not have y(t) ≥ t2 definitely for t → −∞.
Hence, y must definitely belong to the increasing region and, as before, the only possibility
is limt→−∞ y(t) = 0.

For this example, there are not evident symmetries and also we let drop point 8),
since we already have sufficient information in order to draw a qualitative picture of the
solutions. The drawing is left as an exercise.
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6 Comparison and continuous dependence on data

In this section we first address the problem of comparing the solutions of two scalar
equations, that is of being able to say if one is larger than the other just working on
the equations without explicitly knowing the solutions (or more generally, to give some
a-priori estimates on the solutions of a system of equations). A second problem we are
going to address is the dependence from the initial data for the solution of a Cauchy
problem.

Both problems rely on the following important lemma.

6.1 Gronwall Lemma

Theorem 6.1 Let y : [t0, +∞[→ [0, +∞[ be a continuous (nonnegative) function, where
t0 is a fixed real number. Let us also suppose that there exist a non decreasing continuous
function u : [t0, +∞[→ R and a constant L > 0 such that

0 ≤ y(t) ≤ u(t) + L

∫ t

t0

y(s)ds ∀t ≥ t0. (6.1)

Then, we have

0 ≤ y(t) ≤ u(t)eL(t−t0) ∀t ≥ t0.

Proof. For τ ≥ t0, and recalling that e−Lτ > 0, we have the following sequence of
implications:

0 ≤ y(τ) ≤ u(τ) + L

∫ τ

t0

y(s)ds =⇒

0 ≤ e−Lτy(τ) ≤ e−Lτu(τ) + e−LτL

∫ τ

t0

y(s)ds =⇒

e−Lτy(τ)− e−LτL

∫ τ

t0

y(s)ds ≤ e−Lτu(τ) =⇒
d

dτ

(
e−Lτ

∫ τ

t0

y(s)ds

)
≤ e−Lτu(τ).

From this, for every t ≥ t0, using also the monotonicity of u and the positivity of the
functions, we get

∫ t

t0

d

dτ

(
e−Lτ

∫ τ

t0

y(s)ds

)
dτ ≤

∫ t

t0

e−Lτu(τ)dτ ≤ u(t)

∫ t

t0

e−Lτdτ =⇒

e−Lt

∫ t

t0

y(s)ds ≤ u(t)

L
e−Lt0 − u(t)

L
e−Lt =⇒

e−Lt

(
u(t) + L

∫ t

t0

y(s)ds

)
≤ u(t)e−Lt0 =⇒

u(t) + L

∫ t

t0

y(s)ds ≤ u(t)eL(t−t0).

(6.2)
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Since, by hypothesis (6.1), the left-hand side of the last line of (6.2) is larger than or equal
to y(t), we get the conclusion. ¤

Remark 6.2 In particular, if u ≡ M is a constant, then we get the simpler formulation
of the Gronwall Lemma

0 ≤ y(t) ≤ M + L

∫ t

t0

y(s)ds =⇒ y(t) ≤ MeL(t−t0).

Moreover, if M = 0, then we get

0 ≤ y(t) ≤ L

∫ t

t0

y(s)ds =⇒ y(t) = 0,

that is: the only non negative continuous function which is smaller than its integral mul-
tiplied by any constant, is the null function.

6.2 Comparison of solutions and qualitative studies (II)

The first use of the Gronwall Lemma 6.1 is to obtain a-priori estimates on solutions.

Theorem 6.3 Let f : A → Rn, with A ⊆ Rn+1 open, satisfy the standard hypothesis
for existence and uniqueness result of Theorem 2.10. Let us suppose that there exists a
function

µ : R× R→ R, (t, ξ) 7→ µ(t, ξ),

which is continuous and locally Lipschitz continuous with respect to ξ uniformly in t (the
usual hypothesis (2.7)), and such that

‖f(t, x)‖ ≤ µ(t, ‖x‖) ∀ (t, x) ∈ A. (6.3)

Moreover, let us take (t0, x0) ∈ A, ξ0 ∈ R, with

‖x0‖ ≤ ξ0, (6.4)

and consider the solutions y and v of the two following Cauchy problems, respectively

{
y′(t) = f(t, y(t))
y(t0) = x0,

{
v′(t) = µ(t, v(t))
v(t0) = ξ0.

Then, we have

‖y(t)‖ ≤ v(t), ∀t ≥ t0, t ∈ I (6.5)

where I is the common interval of existence of the solutions.
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Proof. By absurd, let us suppose that there exists t ≥ t0, t ∈ I such that

‖y(t)‖ > v(t). (6.6)

Then, we define

t∗ = sup
{

t ∈ [t0, t]
∣∣∣‖y(t)‖ ≤ v(t)

}
,

and note that by (6.4), by the continuity of the solutions, and by the absurd hypothesis
(6.6), t∗ exists and

t∗ < t, ‖y(t)‖ > v(t) ∀t ∈]t∗, t], ‖y(t∗)‖ = v(t∗).

We consider the continuous non negative function, defined in [t∗, t],

w(t) = ‖y(t)‖ − v(t) > 0.

Since v and ‖y‖ are continuous, then they are bounded in [t∗, t], and hence the couples
(t, ‖y(t)‖), (t, v(t)) do not exit from a compact set K ⊂ R2 for t ∈ [t∗, t]. Let Lµ be a
Lipschitz constant for µ in K. We get (also recall that ‖y(t∗)‖ = v(t∗))

0 ≤ w(t) =
∥∥∥x0 +

∫ t

t0

f(s, y(s))ds
∥∥∥− ξ0 −

∫ t

t0

µ(s, v(s))ds =

∥∥∥x0 +

∫ t∗

t0

f(s, y(s))ds +

∫ t

t∗
f(s, y(s))ds

∥∥∥− ξ0 −
∫ t∗

t0

µ(s, v(s))ds−
∫ t

t∗
µ(s, v(s))ds ≤

‖y(t∗)‖+
∥∥∥

∫ t

t∗
f(s, y(s))ds

∥∥∥− v(t∗)−
∫ t

t∗
µ(s, v(s))ds =

∥∥∥
∫ t

t∗
f(s, y(s))ds

∥∥∥−
∫ t

t∗
µ(s, v(s))ds ≤

∫ t

t∗

(
‖f(s, y(s))‖ − µ(s, v(s))

)
ds ≤

∫ t

t∗

(
µ(s, ‖y(s)‖)− µ(s, v(s))

)
ds ≤ Lµ

∫ t

t∗

(
‖y(s)‖ − v(s)

)
ds = Lµ

∫ t

t∗
w(s)ds.

By the Gronwall Lemma we get w(t) = 0 for all t ∈ [t∗, t], which is a contradiction. ¤

In the case of scalar equations, we obtain the following comparison result between
solutions, without involving the absolute values. The proof is left as an exercise.

Proposition 6.4 Let f, g : A → R, A ⊆ R2 open, be continuous and Lipschitz continuous
in x, such that

f(t, x) ≤ g(t, x) ∀ (t, x) ∈ A, (6.7)

and moreover, let us consider (t0, x0), (t0, ξ0) two admissible initial states with x0 ≤ ξ0.
Then, if y, v : I → R are, respectively, the solutions of the Cauchy problems

{
y′(t) = f(t, y(t)),
y(t0) = x0,

{
v′(t) = g(t, v(t)),
y(t0) = ξ0,
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where I is the common interval of existence, we have

y(t) ≤ v(t) ∀ t ∈ I, t ≥ t0. (6.8)

Remark 6.5 If in Theorem 6.3 (respectively in Proposition 6.4)), µ is only continuous89

(respectively g is only continuous), we still get (6.5) (respectively (6.8)), provided that
(6.3) (respectively (6.7)) holds as strict inequality for all (t, x) ∈ A.

One natural first use of the comparison result is to compare the (not analytically
known) solution of a scalar Cauchy problem with the (analytically known) solution of
another scalar Cauchy problem. This may permit to say something about the qualitative
behavior of the unknown solution. Referring to the Example 5.11, this may be seen as
the point 9) of a plan of procedure. It is explained in the following example.

Example 6.6 Study the qualitative behavior of the solutions of

y′(t) = ty
(
max(1, y(t)) + sin2(y(t))

)
.

We are going to analyze the eight points as in Example 5.11, plus the new point 9).
First of all, we have to check the local existence and uniqueness. The dynamics is

f(t, x) = tx
(
max(1, x) + sin2(x)

)
,

which is defined on the whole plane R2, is continuous but not C1, since the function
x 7→ max(1, x) is not derivable at x = 1. However, such a function of x is Lipschitz
continuous and so f is locally Lipschitz continuous with respect to x uniformly in t90.

Hence, there is existence and uniqueness for every initial datum (t0, w0) ∈ R2.
The only stationary solution is y ≡ 0 since other possible stationary solutions y ≡

y0 6= 0 would imply

sin2(y0) = −max(1, y0) ≤ −1

which is impossible.
The other non zero solutions are either always positive or always negative. They are

increasing in the first and third quadrants, and they are decreasing in the second and
fourth quadrants. This also means that the vertical line t = 0 is a line of minima for
positive solutions and of maxima for negative solutions. Moreover the dynamics has the
symmetry f(t, x) = −f(−t, x) and hence we can study the behavior in the first and fourth
quadrant only.

89And hence the corresponding Cauchy problem may not have uniqueness.
90Prove these facts as exercise. Hints: 1) prove that |max(1, x1) − max(1, x2)| ≤ |x1 − x2| for all

x1, x1 ∈ R; 2) observe that, just adding and subtracting a suitable term,

|f(t, x1)−f(t, x2)| ≤ |t||x1−x2||max(1, x1)− sin2 x1|+ |t||x2||max(1, x1)−max(1, x2)+sin2 x1− sin2 x2|,
from which the desired local Lipschitz property follows (also recall that sin2 is Lipschitz).
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If x < 0 then, for all t ∈ [−a, a], a > 0 arbitrary,

|f(t, x)| =
∣∣tx(1 + sin2(x))

∣∣ ≤ 2a|x|,
and hence the negative solutions are defined for all times t ∈] −∞, +∞[. We easily get
that, for negative solutions it is (the limit cannot be finite)

lim
t→±∞

y(t) = −∞.

Now let us examine the positive solutions. Let ỹ : Ĩ → R be a maximal positive
solution. Then 0 ∈ Ĩ since, otherwise, ỹ is prolongable to the left of 0 ≤ α = inf Ĩ91.
Let us consider the case ỹ(0) = ỹ0 ≥ 1: for all positive t of its domain of definition we
certainly have ỹ(t) ≥ 1 and hence we are not more able to get a linear estimate for f ,
since the best we can do for x ≥ 1 is

|f(t, x)| ≤ tx2 + tx,

which is quadratic in x. But, if we take c > 0, c ∈ Ĩ, we then get

ỹ′(t) = tỹ(t)(ỹ(t) + sin2(ỹ(t))) ≥ cỹ2(t) ∀t ∈ Ĩ , t ≥ c,

and hence, for t ≥ c, t ∈ Ĩ, by the comparison results, ỹ stays above the solution y of the
Cauchy problem

{
y′(t) = cy2(t),
y(c) = ỹ(c),

which is easily computed as

y(t) =
ỹ(c)

1 + c2ỹ(c)− cỹ(c)t
. (6.9)

Since such a function y tends to +∞ as

t → 1 + c2ỹ(c)

cỹ(c)
> c,

we conclude that the maximal positive solutions such that ỹ(0) ≥ 1 do not live for all
times but the maximal interval of existence is bounded, and they go to +∞ when they
approach the boundary of the maximal interval. On the other hand, if 0 < ỹ(0) < 1,
then, after some lap of time, we must have ỹ(t) ≥ 1. Indeed, if it is not the case, by
monotonicity, we should have 0 < limt→+∞ ỹ(t) = ` ≤ 1, which is impossible because, in
that case, limt→+∞ ỹ′(t) = +∞. We then conclude that also the positive solutions starting
at t = 0 below 1, after some lap of time stay above a function of the type (6.9), and hence
they do not last for all times.

The qualitative picture of the graph is left as exercise.

91We certainly have limt→α+ ỹ(t) ∈ R because in the first quadrant ỹ is positive and increasing.
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6.3 Continuous dependence on the initial datum and phase flow
of solutions

Let us consider the equation y′ = f(t, y), with f : A → Rn, A ⊆ Rn+1 open. In
this section, for simplicity, we will always assume the following hypothesis, and use the
following notation92

A = Rn+1, f is continuous and satisfies the Lipschitz condition (2.7), moreover
all the maximal solutions are defined for all times t ∈ R, and for all (t, x) ∈ Rn+1;
we denote by Φ0(t, x), the state y(t) ∈ Rn of the solution y which passes through x
at the time t0 = 0, that is y(0) = x

(6.10)

Definition 6.7 The function Φ0 : Rn+1 → Rn, (t, x) 7→ Φ0(t, x), is said the phase flow
of the solutions.

Let us note that by definition, for every fixed x the function t 7→ Φ0(t, x) is just the
solution of the Cauchy problem

{
y′(t) = f(t, y(t))
y(0) = x,

and hence it is continuous, and derivable.

Proposition 6.8 Let (6.10) hold. Then, the flow Φ0 is locally Lipschitz continuous.

For proving Proposition 6.8, we first need the following result.

Lemma 6.9 For every compact set K ⊂⊂ Rn and for every T > 0, there exists a compact
set K̃ ⊂⊂ Rn such that

Φ0(t, x) ∈ K̃ ∀ (t, x) ∈ [−T, T ]×K.

Proof of Lemma 6.9. Let us fix T > 0. We are going to prove that, for all x ∈ Rn,
there exist a neighborhood U of x and a compact set K ′ ⊂⊂ Rn such that

Φ0(t, z) ∈ K ′ ∀ (t, z) ∈ [−T, T ]× U.

From this fact the conclusion follows, since every compact set can be covered by a
finite number of neighborhoods of a finite number of its points.

92Similar results as the ones stated in this section also hold, with suitable modifications, in the more
general case when the prolongability to infinity does not hold and also in the case of φ(t, t0, x): the state
y(t) at the time t of the solution such that y(t0) = x (our case Φ0(t, x) corresponds to the particular case
t0 = 0).

Moreover, see Remark 6.11 for the easier case when f is also globally bounded and Lipschitz continuous.
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Let us take K ′ as a tubular neighborhood of the trajectory

ΦT,x =
{

Φ0(t, x)
∣∣∣t ∈ [−T, T ]

}
⊂ Rn,

that is we fix δ > 0 and define

K ′ =
{

ξ ∈ Rn
∣∣∣dist(ξ, ΦT,x) ≤ δ

}
.

By the continuity of the trajectory, we easily get the compactness of K ′. Indeed it is
(obviously) closed and it is also bounded since so is the trajectory ΦT,x.

Let L > 0 be the Lipschitz constant of f in [−T, T ] × K ′. Let us take z ∈ Rn and
suppose that there exists τ ∈ [−T, T ] such that

Φ0(s, z) ∈ K ′ ∀ |s| ≤ τ, Φ0(τ, z) ∈ ∂K ′.

We have, for all |s| ≤ τ

‖Φ0(s, z)− Φ0(s, x)‖ ≤ ‖x− z‖+

∣∣∣∣
∫ s

0

‖f(s, Φ0(η, z))− f(s, Φ0(η, x))‖dη

∣∣∣∣ ≤

‖x− z‖+ L

∣∣∣∣
∫ s

0

‖Φ0(η, z)− Φ0(η, x)‖dη

∣∣∣∣ .
(6.11)

By the Gronwall Lemma, we then conclude

‖Φ0(s, z)− Φ0(s, x)‖ ≤ ‖z − x‖eL|s| ≤ ‖z − x‖eLT . (6.12)

Hence, if we define

U =

{
z ∈ Rn

∣∣∣‖z − x‖ ≤ δ

2
e−T

}
,

we get the conclusion since the trajectory starting from z starts inside K ′ and cannot
exits from it before the interval [−T, T ]. ¤

Remark 6.10 Let us point out that Lemma 6.9 says that all the solutions starting at
time t = 0 from any point of a fixed compact set do not exit from another compact set
when time is bounded in a fixed interval [−T, T ].

Proof of Proposition 6.8. Let us fix T > 0, K ⊂ Rn compact. Let K̃ ⊂ Rn+1 compact
as in Lemma 6.9, and moreover let M > 0 and L > 0 be the bound and the Lipschitz
constant of f in [−T, T ] × K̃. For every (t, x), (τ, z) ∈ [−T, T ] × K̃, we have, also using
(6.12),

‖Φ0(t, x)− Φ(τ, z)‖ ≤ ‖Φ0(t, x)− Φ0(t, z)‖+ ‖Φ0(t, z)− Φ0(τ, z)‖ ≤
‖x− z‖eLT + M |t− τ |. (6.13)

¤
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Remark 6.11 We observe here that if, besides hypothesis (6.10), we also suppose that
f is bounded in Rn+1 and globally Lipschitz in x uniformly in t (i.e. not only locally
Lispchitz, compare with (2.11) with ]a, b[=]−∞, +∞[), then we do not need Lemma 6.9.
Indeed such a Lemma is used in the proof of Proposition 6.8 just for being sure that we
can use some constants L and M (since we are restricted inside the compact [−T, T ]×K̃),
and so it is not more requested when we have global boundedness and Lipschitz property.
In such hypothesis we then immediately get (6.11), (6.12) and (6.13), which hold for all
(s, x), (s, z), (t, z), (τ, z) ∈ [0, T ]× Rn.

Also the proof of the following Proposition 6.12 is obviously easier if we suppose global
boundedeness and Lipschitz property.

From the local Lipschitz continuity of the phase flow, we get the following stability
result.

Proposition 6.12 Let (6.10) hold. If the initial data z ∈ Rn converge to x ∈ Rn, then
the corresponding trajectories φ0(·, z) converge to the trajectory Φ0(·, x), uniformly on the
compact sets of time. That is, for every T > 0 fixed,

lim
r→0+

sup
‖z−x‖≤r

sup
t∈[−T,T ]

‖Φ0(t, z)− Φ0(t, x)‖ = 0.

Proof. By (6.12), we get

0 ≤ sup
‖z−x‖≤r

sup
t∈[−T,T ]

‖Φ0(t, z)− Φ0(t, x)‖ ≤ reLT ,

where L > 0 is the Lipschitz constant of f in [−T, T ]× K̃, where K̃ is a compact set as
in Lemma 6.9 with respect to [−T, T ]×B(x, r0), where r0 ≥ r > 0. Then the conclusion
immediately follows. ¤

We now state, without proof, the following result on the differentiability of the flow.

Proposition 6.13 If besides (6.10), f has also continuous partial derivatives with respect
to x, that is: for every (t, x) ∈ R× Rn, for every i ∈ {1, . . . , n}

∂f

∂xi

(t, x) exits and is continuous,

then also all the partial derivatives

∂Φ0

∂xi

(t, x),

exist and are continuous for all (t, x). In particular this means that the flow is differen-
tiable with respect to the state variable x. Moreover, also the mixed second derivatives

∂2Φ0

∂t∂xi

,

exist and are continuous.
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Remark 6.14 The point of view of the phase flow is a change in the way of looking to the
Cauchy problems and to the solutions. The new way consists in interpreting the solutions
as a map from Rn (the phase space) into itself: when we have fixed a time t, every point
x ∈ Rn is mapped to another point which is the state at time t of the solution which passes
through x at time 0. In some sense we think to the trajectory as a rule to transport points
from one site to another one93. This is the point of view of a general theory whose name
is dynamical system theory.

By the uniqueness of the solution, we easily get the following (important) group property
of the phase flow94: for all x ∈ Rn, and for all t, s ∈ R, we have:

Φ0(t + s, x) = Φ0(t, Φ0(s, x)),

that is: the state at the time t + s of the solution which passes through x at the time 0 is
the state at the time t of the solution that passes through Φ0(s, x)at time 0. Very roughly
speaking we can say that“pieces of trajectories are trajectories suitably shifted in time”.

93As a parallelism: if we look to the stream inside a river we can fix a point and look to the water
which passes through it, or we can put a paper-boat on that point and look to its movement: at every
time t the boat will be in a new position, and its movement is along the integral curves (solutions) of the
velocity field (the dynamics).

94Often, such a property holds only for positive times t > 0, and so it is referred as a semigroup property.
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7 Autonomous systems

7.1 General results. First integrals

Let us consider an autonomous system

y′(t) = f(y(t)), (7.1)

where f : A → Rn, with A ⊆ Rn open, is locally Lipschitz (and hence we have local
existence and uniqueness for every initial state, and in particular existence and uniqueness
of the maximal solution).

Definition 7.1 If y : I → R is a solution of (7.1), by trajectory or orbit we mean the im-
age of y, that is the curve in Rn (the phase space) described by the function/parametrization
y.

The fact that the system is autonomous, that is the dynamics f does not explicitly
depend on the time t, permits to study the solutions by studying their orbits in the phase
space, and then to get several interesting results.

To simplify notations and proofs, we will often assume the following hypothesis:

A = Rn, all the maximal solutions are defined for all time t ∈ R 95. (7.2)

Here are some first results that hold because of the autonomy.

Proposition 7.2 i) If y is a solution of (7.1), and c ∈ R, then the function

ψ : t 7→ y(t + c)

is still a solution.
ii) If y1 and y2 are two solutions such that, for some t1, t2 ∈ R it is

y1(t1) = y2(t2),

then we must have

y1(t) = y2(t + t2 − t1) ∀ t ∈ R.

Proof. i) Just deriving

ψ′(t) = y′(t + c) = f(y(t + c)) = f(ψ(t)).

ii) For the first point i), y2(t) = y2(t + t2− t1) is a solution, and in particular y2(t1) =
y2(t2) = y1(t1). Then, by uniqueness, y2 = y1. ¤

95However, we will later see some quite easy controllable properties which guarantee the existence for
all time.
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Remark 7.3 From Proposition 7.2, we have that any orbit corresponds to a one-parameter
family of solutions y(t) = y(t + c): if a solution describes an orbit, then every its transla-
tion in time describes the same orbit, moreover if two solutions describe the same orbits
then they must be the same solution translated in time. Also, two orbits cannot intersect
each other: the orbits give a partition of the phase space.

Remark 7.4 Let us note that every non autonomous system

y′(t) = f(t, y(t))

can be written as an autonomous one just adding the fictitious state-variable t. Indeed,
writing ỹ = (t, y) and f̃(ỹ) = (1, f(ỹ)), we get

ỹ′ = f̃(ỹ).

Of course, in doing that, we have paid the fact that we passed to the larger dimension
n + 1.

Definition 7.5 A point x ∈ Rn is said an equilibrium point (or a critic/singular point)
of the system if f(x) = 0. It is obvious that, if x is an equilibrium point, then the set
{x} ⊂ Rn is an orbit, since the function y(t) ≡ x is a solution. Such an orbit is sometimes
called a stationary orbit.

Proposition 7.6 If x ∈ Rn is the limit of a solution when t → ±∞, then x is an equi-
librium point. Moreover, a non stationary solution y cannot pass through an equilibrium
point.

Proof. The second assertion is obvious, since an equilibrium point is an orbit. Let us
prove the first one, for t → +∞. By absurd, let us suppose that f(x) 6= 0. Then there
exists a unit versor ν ∈ Rn such that f(x) · ν > 0. Let us take a small ball around x, B,
such that, by the continuity of f , for a suitable fixed ε > 0,

y ∈ B =⇒ f(y) · ν > ε > 0.

Since by hypothesis of convergence y(t) ∈ B definitely for t ≥ t (because y(t) → x as
t → +∞), for a suitable t, we have, for all t ≥ t, and integrating in [t, t],

y′(t) · ν = f(y(t)) · ν > ε =⇒ y(t) · ν ≥ y(t) · ν + ε(t− t) → +∞ as t → +∞,

which is an absurd since y(t) · ν → x · ν ∈ R. 96 ¤

96Roughly speaking: when y(t) ∈ B, by the absurd hypothesis, the trajectory has a scalar velocity
which, with respect to the direction ν, is not less than ε > 0; y(t) ∈ B for all time t ≥ t; these two facts
imply that y(t) must exit from the bounded set B. Contradiction.
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Definition 7.7 A solution y is said to be periodic if there exists a time T > 0 (the period)
such that

y(t + T ) = y(t) ∀t, y(t + s) 6= y(t) ∀s ∈]0, T [.

Note that, by this definition, the constant trajectories (i.e. the equilibrium points) are not
periodic.

Proposition 7.8 For an autonomous system with uniqueness, there are only three types
of orbits: singular equilibrium points, simple closed curves (i.e cycles without transver-
sal/tangential self-intersections) which are periodic, and simple open curves (i.e open
curves without transversal/tangential self-intersections).

Proof. The fact that an orbit cannot have a self-intersection is obvious by uniqueness.
It is also obvious that the orbit of a periodic solution is a cycle. Hence, we have only to
prove that if a non constant solution y is such that y(t1) = y(t2) for some t2 > t1, then it
is periodic97.

Let us define δ = t2 − t1. We guess that y(t + δ) = y(t) for all t. Indeed, the function
ψ : t 7→ y(t + δ) is still a solution and it satisfies ψ(t1) = y(t2) = y(t1). Hence it coincides
with y and the guess is proved. We obtain the periodicity of y, in the sense of Definition
7.7 if we prove that

T = inf
{

τ > 0
∣∣∣y(t + τ) = y(t) ∀t

}
> 0.

Let P be the set whose infimum we are going to consider. Note that P is not empty since
δ ∈ P . Moreover, let us note that if τ ∈ P then mτ ∈ P for all positive integers m. Also,
since y is continuous, P is closed in ]0, +∞[, that is if τ > 0, τn → τ and {τn}n ⊂ P ,
then τ ∈ P (i.e. every strictly positive accumulation point of P belongs to P itself). By
absurd, let us suppose that T = 0. Then, for every ε > 0 there exists τ ∈ P such that
0 < τ < ε. Moreover, fixed such a τ , for any real number c > 0, for the archimedean
property of R, we find m ∈ N \ {0} such that

(m− 1)τ ≤ c ≤ mτ =⇒ 0 ≤ mτ − c ≤ τ ≤ ε,

which means that c > 0 is an accumulation point of P and so that c ∈ P . For the
arbitrariness of c > 0, we conclude that y is constant, which is a contradiction. ¤

Definition 7.9 A C1 function E : Rn → R is said a first integral of the motion for the
system if E is constant along any trajectory of the system. This in particular means that
the function t 7→ E(y(t)) is constant for any trajectory y, which is equivalent to say that
its derivative is zero, that is

97As stated in the beginning of the section, we are supposing that all the solutions are defined for all
times. However, it can be easily proved that, if a non constant solution satisfies y(t1) = y(t2) for some two
different instants t1, t2 of its interval of definition, then it is prolongable for all times (and also periodic).
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∇E(y(t)) · y′(t) = 0 =⇒ ∇E(y(t)) · f(y(t)) = 0 ∀y(·).
Since the trajectories are a partition of the phase space Rn, we can equivalently say

that E is a first integral if and only if

∇E(x) · f(x) = 0 ∀ x ∈ Rn.

Remark 7.10 If E is a first integral, then every orbit is entirely contained in a level set
of E. Moreover, in the general case of a maximal orbit y defined in Ĩ, if y is contained
in a bounded level set of E, then Ĩ =]−∞, +∞[. Indeed, in that case the derivatives are
bounded. In particular, if E has all the level set bounded, then every solution is prolongable
for all times.

7.2 Bidimensional systems

The particular case of bidimensional system is quite favorable. Indeed the phase-space
is the plane R2, where we can easier draw and analyze the orbits. Moreover, it can be
easier to find a possible first integral and also, since the level sets of the first integrals are
(generally) curves, the orbits coincide with (at least) pieces of such curves.

Proposition 7.11 Let us consider the bidimensional system

{
x′ = F (x, y)
y′ = G(x, y).

(7.3)

i) The equilibrium points are the solution of the (nonlinear) algebraic system
{

F (x, y) = 0
G(x, y) = 0.

ii) If ϕ : R2 → R is a potential of the differential 1-form

ω(x, y) = G(x, y)dx− F (x, y)dy,

then ϕ is a first integral for the system (7.3).
iii) If a level set of a first integral E is a simple closed curve98 which does not contains

equilibrium points for the systems, then it exactly coincides with a periodic orbit.

Proof. The point i) is obvious by definition.
For the point ii), let (x(·), y(·)) be a solution, then we have

d

dt
ϕ(x(t), y(t)) = G(x(t), y(t))x′(t)− F (x(t), y(t))y′(t) =

G(x(t), y(t))F (x(t), y(t))− F (x(t), y(t))G(x(t), y(t)) = 0.

98Note that, in this setting, “closed curve” also implies that it is bounded and of finite length.
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iii) Since the curve is bounded, then the solution is defined for all times. Since its
scalar velocity ‖f(y(t))‖ is uniformly greater then zero (there are no equilibrium points
and the curve is compact), then the trajectory must pass two times through the same
point. Hence, it is periodic. ¤

Remark 7.12 If the differential form ω = Gdx−Fdy is not exact, but it has an integrand
factor λ(x, y) > 0, then a potential E of the form λω is still a first integral of the system.

7.2.1 Qualitative studies (III)

Here we sketch a list of points which may be addressed when studying the qualitative
behavior of the orbits for a bidimensional autonomous system.

i) Find the possible equilibrium points.
ii) Find a possible first integral (for instance searching for a potential of the associated

differential form).
iii) If a first integral E exists, then study E: stationary points, relative maximum

points, relative minimum points, saddle points, absolute maxima and minima... This may
permit to understand the behavior of the level curves, which are the projections on R2 of
the intersections in R3 between the graph of E and the horizontal planes. Another way
may be directly study the level curves in R2 via their implicit formulations E(x, y) = c,
at least when such equation is (easily) invertible with respect to x or to y. Finally, also
some properties of E as convexity and coercivity99 may be useful.

iv) Recall that: orbits may not intersect each other, the orbits form a partition of the
phase space. Moreover if a level curve is a closed curve that does not contain equilibrium
points, then it coincides with a cycle (a periodic orbit).

v) Check, if possible, whether the solutions are defined for all times or not. This can
be done, for instance, looking to the boundedness of the level curves of E.

vi) Note that a closed level curve of E (and hence a cycle) must moves around a
stationary point of E100.

vii) Study some suitable level curves of E. For instance the ones passing through the
equilibrium points, or the zero-level curves, which may be easier to be studied.

viii) Find the versus of moving along the orbits. This can be done by studying the
sign of F and G respectively. Also note that, by the continuity of F and G, such a versus
is “continuous”, since it is the versus of the tangent vector (F,G). Hence, we cannot
approximate an orbit with other orbits moving in opposite direction.

99“Coercivity” means that lim |E(x)| = +∞ when ‖x‖ → +∞, or more generally, when x approximates
the boundary of the domain of E.

100Again, by “closed curve” we also mean that it is bounded, and hence it is compact (since, being a
cycle, it is certainly “topologically closed”). Since it is a level curve of E, that is E is constant on it,
then, by a simple generalization of the one-dimensional Rolle theorem, there must be a stationary point
of E in the region inside the curve. Also note that the stationary points of E are strictly related to the
equilibrium points (they almost always coincide).
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Example 7.13 Let us recall the Lotka-Volterra system

{
x′ = (α− βy)x
y′ = (−γ + δx)y,

where α, β, γ, δ > 0 are fixed, and we are looking for solutions (x(t), y(t)) in the first
quadrant only, that is x(t), y(t) > 0.

The only equilibrium point is (x0, y0) = (γ/δ, α/β), and a first integral is101

E(x, y) = −γ log x + δx− α log y + βy.

The study of E gives that: (x0, y0) is the only stationary point of E and it is the
absolute minimum, E is strictly convex102, E is coercive, that is it tends to +∞ when x
or y tends to 0 (i.e. when the point (x, y) tends to the axes.), and also when x, y → +∞.
Hence, its level curves are closed curves around (x0, y0).

We easily conclude that the orbits are periodic (cycles), they are defined for all times
and that they counterclockwise move around the equilibrium point.

7.2.2 Some exercises

1) Let us consider the second order autonomous scalar equation

y′′ = f(y).

As usual we can transform it in a first order autonomous bidimensional system

{
y′1 = y2

y′2 = f(y1).

Prove that, if F is a primitive of f , then

E(y1, y2) =
y2

2

2
− F (y1)

is a first integral for the system103.

2) For the following systems/second order equations, plot a qualitative picture of the
orbits, and check, if possible, whether the solutions are defined for all times, and whether
the equilibrium points are stable, asymptotically stable or unstable104.

101It can be found using the integrand factor 1/(xy).
102Its Hessian matrix is everywhere positively definite.
103In a mechanical point of view, y1 is the position and y2 is the velocity. Hence E is the “total energy”

of the system: kinetic energy plus potential energy. Since the trajectories move along the level curves of
E, that is E is constant along the trajectories, then the system is conservative: the total energy is kept
constant.

104For the concept of stability see next paragraph.
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2i)
{

x′ = (3− x)(x + 2y − 6)
y′ = (y − 3)(2x + y − 6).

2ii)
{

x′ = 3y2

y′ = 3x2.

2iii)

y′′ = y2 + 2y.

2iv) (pendulum without friction)

y′′ = −k sin y, k > 0.

Some words. The equation is the model for the oscillations of a point of mass m
hanged to an extremum of a rigid rod which has negligible mass, length equal to ` and is
free to rotate in a vertical plane around its other (fixed) extremum, only subject to the
gravity force. Denoting by ϕ the radiant angle of the rod with respect to the downward
position, the Newton equation of the motion is

m`ϕ′′(t) = −mg sin(ϕ(t)),

which corresponds to our equation with y = ϕ and k = g/`.
Following the first exercise of this section, we write our equation as the autonomous

bidimensional system (z1 = y angle, z2 = y′ angular velocity)
{

z′1 = z2

z′2 = −k sin z1,

which, by periodicity, may be studied only for z1 ∈ [−π, π], and hence the equilibrium
points are (−π, 0), (0, 0), (π, 0). A first integral is

E(z1, z2) =
1

2
z2
2 + (k − k cos z1) ≥ 0,

and hence the level curves are the curves of equations

z2 = ±
√

2(c− k + k cos z1), c ≥ 0.

Analyzing all the case for c ≥ 0 we get that there exist: 1) cycles around the equilib-
rium point (0, 0), 2) heteroclinic105 orbits connecting the equilibrium points (−π, 0), (π, 0),
3) open orbits (not connecting any equilibrium points: they are open in the strip [−π, π]×
R, but they indeed reply by periodicity in the whole R2).

2v)

y′′ = −yey.

105In general, orbits connecting two different equilibrium points are called “heteroclinic”, whereas orbits
connecting the same equilibrium point are called “homoclinic”.
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7.3 Stability

To study the stability of the system means to understand how much the trajectories are
sensible in (small) change of the initial value: if we little change the initial value, what
happens to the trajectory? Does it remain “near” to the initial one or not?

We have already met a “stability result”: Proposition 6.12. It says that, on the
compact sets of time, if we little change the initial point x, then the trajectories do
not “change to much”: they uniformly converge to the trajectory starting from x. But
that proposition says nothing about what happens when t → +∞: a stability result
for compact set of time does not imply stability for all time, the distance between the
trajectories may diverge when t → +∞.

In this section we assume that all the solutions are defined for t ∈ [0, +∞[ and we
address their behavior when t → +∞ (a similar analysis may be done when t → −∞).
We are going to use the (flow-) notation Φ0(·, x) for the solution starting from x at t = 0.
For all this section we assume that the autonomous system y′ = f(y) satisfies the usual
hypothesis for existence and uniqueness.

This section is rather sketched.

Definition 7.14 Let x ∈ Rn be fixed. The solution Φ0(·, x) is said:
i) stable if: for every ε > 0 there exists δ > 0 such that

z ∈ B(x, δ) =⇒ ‖Φ0(t, x)− Φ0(t, z)‖ ≤ ε ∀ t ≥ 0;

ii) asymptotically stable if: it is stable and moreover

lim
t→+∞

‖Φ0(t, x)− Φ0(t, z)‖ = 0 ∀ z ∈ B(x, δ);

iii) unstable in all the other cases.

Remark 7.15 Point i) of the previous definition says that the trajectory Φ0(·, x) is stable
if for every “tubular” neighborhood of it, there exists a ball around x such that, starting
from any point of such a ball, we remain inside the tube for all t ≥ 0. Point ii) does
not only require the remaining inside the tube, but also requires that we better and better
approximate the trajectory Φ0(·, x).

It is interesting, both from a theoretical and applicative point of view, to study the
stability of the equilibrium points. In that case, the trajectory is just the point, and hence
it is stable if we can remain as a close to it as we want. It is asymptotically stable if we
also converge to the equilibrium point.

In the case of asymptotically stable equilibrium point x, we define its basin of attraction
as

Ω =

{
z ∈ Rn

∣∣∣ lim
t→+∞

Φ0(t, z) = x

}
.
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We say that x is globally asymptotically stable if Ω = Rn, that is, whichever the initial
point is, we converge to x.

If x is an equilibrium point, that is f(x) = 0, then, by the change of variable and
dynamics: z = y − x and g(z) = f(z + x), we get the equivalent system z′ = g(z) with
ζ = 0 as equilibrium point. Hence we may restrict the study to the case where the
equilibrium point is the origin.

7.3.1 Stability for linear systems

For the linear (homogeneous) systems y′ = Ay, the study of the stability of the equilibrium
point x = 0 is rather easy106.

Proposition 7.16 Given the linear homogeneous system y′ = Ay, the origin is:
i) globally asymptotically stable if and only if Re(λ) < 0 for all λ ∈ C eigenvalues of

the matrix A;
ii) stable (but not asymptotically) if and only if Re(λ) ≤ 0, there exists a pure imag-

inary eigenvalue (i.e. Re(λ) = 0), and all the pure imaginary eigenvalues has algebraic
multiplicity 1;

iii) unstable in all the other cases.

Proof (very sketched). Just arguing as for the linear n-order scalar equation, it can be
easily seen that the solutions of the linear system are linear combination of addenda of
the following type

htmeRe(λ)t(cos(Im(λ)t)± sin(Im(λ)t)),

where h ∈ Rn is a suitable non null vector. Hence, point i) is almost immediate. For
point ii) just observe that we are requiring that, if Re(λ) = 0, then the multiplicity is 1.
This implies that m = 0 and hence the addendum is h(cos(Im(λ)t)± sin(Im(λ)t)) which
does not converge to the origin but stays there around. ¤

7.3.2 On the Liapunov function

For the general case of a nonlinear system y′ = f(y), with f(0) = 0, the stability of the
origin can be studied by the help of a suitable function.

Definition 7.17 Let A ⊆ Rn be a neighborhood of the origin. A C1 function V : A → R
is said a Liapunov function for the system if

i) (positively definite) V (x) ≥ 0 for all x ∈ A and V (x) = 0 ⇐⇒ x = 0
ii) (decreasing along trajectories) ∇V (x) · f(x) ≤ 0 for all x ∈ A.

106Note that x = 0 is always an equilibrium point for a linear homogeneous system, since A0 = 0.
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Note that the condition ii) says that, given a trajectory y(·) in A, then the function
of time t 7→ V (y(t)) is not increasing.

We do not prove the following theorem.

Theorem 7.18 If there exists a Liapunov function, then the origin is stable. Moreover, if
the Liapunov function is strictly decreasing along the trajectories (i.e. ∇V (x) · f(x) < 0),
then the origin is asymptotically stable.

Remark 7.19 The Liapunov function is something like a first integral (even if in general
is harder to be found). The difference is the following: for the case of the first integral,
the trajectories live for all times inside the level set, instead for the Liapunov function,
the trajectories tend to leave the level set and to point towards the origin (the lowest value
of V ). For instance, in the case of strict decreasing along the trajectories, let Sc be the
level set of value c > 0 for V . Then ∇V is orthogonal to Sc and points towards the higher
value of V . Hence the condition ∇V · f < 0 means that the field f is strictly pointing
towards the lower value of V and so the trajectory y(t) enters in the region V < c. Since
this happens at all times, in the limit the trajectory tends to the origin (the lowest value).

7.3.3 On the linearization method

Another way to study the stability in the nonlinear case is, as it usually happens for
nonlinear problems, to make a linearization and try to apply the already known results
for the linear case.

Proposition 7.20 Let the origin be an equilibrium point for y′ = f(y), with f of class
C1. We may expand f with the first-order Taylor formula around the origin107

f(x) = Df(0)x + o(‖x‖) x → 0,

where Df(0) is the Jacobian matrix of f in 0. Let us consider the linearized system
y′ = Df(0)y, and suppose that Df(0) is not singular. If the origin is asymptotically
stable for the linearized system, then it is also asymptotically stable for the nonlinear
system. In general, the converse is not true.

7.3.4 On the limit cycles

We know that if a trajectory converges to a point x for t → +∞, then x is an equilibrium
point. However, the trajectories may in general have other behaviors as t → +∞. For
instance they may approximate (or tend to) a cycle given by a periodic orbit. In that
case, the behavior of the trajectory is something like a spiral which moves around the
cycle and tends to it, without reaching it, of course. In that case we say that such a cycle
is a limit cycle.

To check the existence of a limit cycle is of course harder than checking the existence
of an equilibrium point. We state the following theorem without proof. It holds for
bidimensional systems.

107Since the origin is an equilibrium, then f(0) = 0.
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Theorem 7.21 (Poincaré-Bendixson). Let us consider a bidimensional autonomous sys-
tem y′ = f(y), with f ∈ C1. If there exists a bounded open set Ω ⊆ R2 such that: every
trajectory which enters in it will stay inside Ω for all the other times, and such that it
does not contains equilibrium points, then there exists a limit cycle inside Ω.
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8 Appendix

8.1 Uniform continuity

Definition 8.1 Let A ⊆ Rn and f : A → Rm be a set and a function. We say that f is
uniformly continuous on A if

∀ε > 0 ∃δ > 0 such that x, y ∈ A, ‖x− y‖Rn ≤ δ =⇒ ‖f(x)− f(y)‖Rm ≤ ε.

Note that such a definition, with respect to the usual ε − δ definition of continuity,
says that, when ε > 0 is fixed, the amplitude δ > 0 can be taken uniformly all around A,
that is independently from the points x and y.

Definition 8.2 A function ω : [0, +∞[→ [0, +∞[, r 7→ ω(r) is a modulus of continuity
if ω(0) = 0 and if it is increasing and continuous at r = 0.

The following proposition is a useful characterization of the uniform continuity.

Proposition 8.3 Referring to the same notations as in Definition 8.1, f is uniformly
continuous if and only if there exists a modulus of continuity ω such that

‖f(x)− f(y)‖Rm ≤ ω(‖x− y‖Rn) ∀ x, y ∈ A.

Proof. The sufficiency is easy. For the necessity, just define

ω(r) := sup
x,y∈A ‖x−y‖≤r

‖f(x)− f(y)‖

and prove that it is a modulus of continuity satisfying the request. ¤

The following theorem is a very popular result. The proof may be found on every text
book.

Theorem 8.4 If A is compact and f is continuous in A, then f is also uniformly con-
tinuous on A.

Also the following proposition is often useful.

Proposition 8.5 Let A ⊆ Rn be a nonempty set, and f : A → Rm be a uniform contin-
uous function. Then, there exists a unique uniformly continuous function f̃ : A → Rn,
where A is the closure of A, which extends f , that is f̃(x) = f(x) for every x ∈ A.
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Proof. Let us fix x ∈ A. Then there exists a sequence xk of points of A such that
xk → x when k → +∞. Hence, being convergent, xk is a Cauchy sequence in Rn, that
is, for every ε > 0 there exists k ∈ N such that ‖xi − xj‖Rn ≤ ε for every i, j ≥ k. We
consider the sequence f(xk) in Rm. We are going to prove that it is a Cauchy sequence
and hence, being Rm complete, convergent108. Let us fix ε > 0, then, by the uniform
continuity of f , there exists δ > 0 such that, for every x, y ∈ A, with ‖x − y‖ ≤ δ, we
have ‖f(x)− f(y)‖ ≤ ε. Now, let us take k such that, for i, j ≥ k, ‖xi − xj‖ ≤ δ. Hence
we also have ‖f(xi)− f(xj)‖ ≤ ε.

Now, let y ∈ Rm be the limit of the sequence f(xk), we prove that y is independent
from the particular sequence in A, convergent to x. Indeed, let x′k be another sequence
in A convergent to x. By the same argument as above, the sequence f(x′k) converges to
a point y′. But, for every ε > 0, we find k such that, for k ≥ k, ‖xk − x′k‖ ≤ ε (since
they are converging to the same point x). Hence, by the uniform continuity of f , we have
‖f(xk) − f(x′k)‖ ≤ ωf (‖xk − x′k‖) ≤ ωf (ε), where ωf is a modulus of continuity for f on
A. We then get that f(xk) and f(x′k) must converge to the same value y = y′.

The following definition is then well-defined, f̃ : A → Rm

f̃(x) = y where y is defined as above.

Note that, if x ∈ A, then applying the construction of f̃(x) = y as above, we immediately
get y = f(x): just take the constant sequence xk ≡ x. Hence f̃ is an extension of f .

The reader is invited to prove that f̃ is uniformly continuous in A and that it is the
unique possible uniform extension of f (take another g : A → Rm which extends f and is
uniformly continuous and prove that f̃ = g). ¤

8.2 Uniform convergence of functions

Definition 8.6 Let fn : A ⊆ Rp → Rm be a sequence of functions, with A ⊆ Rp a subset.
Moreover, let f : A → Rm be a function. We say that the sequence of functions (fn)n∈N
uniformly converges to f , on A if

∀ε > 0 ∃n ∈ N such that n ≥ n =⇒ ‖fn(x)− f(x)‖Rm ≤ ε ∀ x ∈ A,

which is equivalent to say that

lim
n→+∞

sup
a∈A

‖fn(x)− f(x)‖Rm = lim
n→+∞

‖fn − f‖C0(A;Rm) = 0

We immediately note the difference of such a definition with the other definition of
pointwise convergence to f on A:

lim
n→+∞

fn(x) = f(x) ∀ x ∈ A.

108The completeness means that every Cauchy sequence is convergent. And it is well-known that Rm

has such a property, for every m.
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Indeed, the pointwise convergence says that, for every fixed x ∈ A, the sequence of
vectors (fn(x))n∈N converges in Rm to the vector f(x), but it does not say anything about
the “velocity of such a convergence”: for any point x the convergence velocity may be
completely independent from the velocity of the convergence in other points. In particular,
once ε > 0 is fixed, it may be not possible to find n such that the values fn(x) is far from
the limit value f(x) not more than ε, and such that this happens for all x ∈ A. Instead,
this is exactly what the uniform convergence says. From a geometrical point of view, the
uniform convergence says that, for every width (ε) of a tubular neighborhood (a tube)
around the graph of f over A, we can find n such that, from n on, the graphs of all the
functions fn are entrapped inside such a neighborhood.

A first interesting result about the uniform convergence is the following, whose proof
may be found in any text book.

Proposition 8.7 If fn : A → Rm is a sequence of continuous functions uniformly con-
verging on A to a function f : A → Rm, then f is continuous too.

8.2.1 Change between the limit sign and the sign of integral

One of the major point of interest of the uniform convergence is the following Proposition
about the passage of the limit sign under the sign of integral. The proof may be found
on any text book.

Proposition 8.8 Let fn : A → Rm be a sequence of integrable functions uniformly con-
verging to a function f : A → Rm on A109. Then f is also integrable on A and

∫

A

f(x)dx =

(
=

∫

A

(
lim

n→+∞
fn(x)

)
dx

)
= lim

n→+∞

∫

A

fn(x)dx. (8.1)

Let us note that the uniform convergence is only a sufficient condition for passing
with the limit inside the integral. It is not necessary: we may require a little less than
the uniform convergence, still preserving the sufficiency for (8.1). However, the pointwise
convergence is not more sufficient: it is too few. Take for instance the sequence of functions
in [0, 1]

fn(x) =





n2x if 0 ≤ x ≤ 1
n
,

−n2x + 2n if 1
n
≤ x ≤ 2

n
,

0 if 2
n
≤ x ≤ 1.

The sequence fn pointwise converges to the null function f ≡ 0, but the integrals do not
converge

∫ 1

0

fn(x)dx = 1 ∀n > 0,

∫ 1

0

f(x)dx = 0.

109The integral of a vector-valued function is defined as the vector whose components are the integral
of the (scalar-valued) components of the function.
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Proposition 8.9 Let us consider A ⊆ Rn, B ⊆ Rm, f : A → Rp uniformly continuous,
and zk : B → A uniformly convergent to z : B → A on B. Then, the sequence of functions
f ◦ zk : B → Rp uniformly converges to the function f ◦ z on B.

Proof. The thesis immediately follows from our hypotheses and from the following
inequality, which holds for every x, y ∈ B, and for all k ∈ N,

‖f(zk(x))− f(z(x))‖Rp ≤ ωf (‖zk(x)− z(x)‖Rn),

where ωf is a modulus of continuity for f on A. ¤

8.2.2 The Ascoli-Arzelà Theorem

The following theorem is of fundamental importance for proving existence results in the
theory of ordinary differential equations110.

Theorem 8.10 Let K ⊂ Rm be a compact set and fn : K → Rp be a sequence of
functions. Let us suppose that the following hypotheses are satisfied

i) equiboundedness: there exists a real number M > 0 such that

‖fn(x)‖Rp ≤ M ∀ x ∈ K ∀ n;

ii) equicontinuity111: for every ε > 0 there exists δ > 0 such that

x, y ∈ K, ‖x− y‖Rm ≤ δ =⇒ ‖fn(x)− fn(y)‖Rp ≤ ε ∀ n.

Then there exist a continuous function f : K → Rp and a subsequence fni
such that fni

uniformly converges to f on K, as i → +∞.

Proof. Let A ⊆ K be a numerable set which is dense in K112. Let us enumerate A

A = {x1, x2, x3, . . . , xh, . . .} .

We first consider the sequence in Rp: {fn(x1)}n
113. By the equiboundedness, such a

sequence is bounded in Rp, and hence it has a convergent subsequence. We denote the
limit by y1 and the subsequence by

fn1
j (x1), lim

j→+∞
fn1

j
(x1) = y1 ∈ Rp.

110Of course, it is of fundamental importance in many other contexts.
111Actually, this is an equi-uniform continuity
112For any n ∈ N \ {0} take a covering of K given by a finite number of balls of radius 1/n. For any of

such balls take a point belonging to K.
113Note that it is a sequence of vectorial elements (in Rp). Here convergence is obviously equivalent to

the convergence of the sequences of the components.
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Hence, we have a sequence of functions, fn1
j
, which converges in x1, Let us evaluate such

a sequence in x2, obtaining, as before, the bounded sequence fn1
j
(x2) in Rp. Again, such a

sequence has a convergent subsequence. We denote the limit by y2 and the subsequence
by

fn1,2
j

(x2), lim
j→+∞

fn1,2
j

(x2) = y2 ∈ Rp.

Now, as before, we evaluate such a sequence of functions in x3 and we extract another
subsequence converging in x3. We then have

lim
j→+∞

fn1,2,3
j

(x3) = y3 ∈ Rp.

Proceeding in this way, at the step h we have a subsequence of functions, denoted by

fn1,2,···,h−1,h
j

which converges in xi, for every i = 1, 2, · · · , h− 1, h, respectively to points yi ∈ Rp.
Now, for every i ∈ N we define the index (diagonal procedure)

ni := n1,···,i−1,i
i .

Let us first note that limi→+∞ ni = +∞ (that is ni is really a subsequence of the sequence
of indices n). Indeed, by our construction we have

ni = n1,···,i
i ≤ n1,···,i,i+1

i < n1,···,i,i+1
i+1 = ni+1, (8.2)

where the first inequality comes from the fact that the sequence of indices {n1,···,i+1
j }j is

extracted from the sequence {n1,···,i
j }j.

We leave the proof of the following statement to the reader.
The subsequence of functions fni

pointwise converges to the function f on A, where
f(xh) = yh for every h ∈ N. That is

lim
i→+∞

fni
(x) = f(x) ∀x ∈ A.

Moreover, f is uniformly continuous in A. (Hint for the pointwise convergence: take
xh ∈ A and ε > 0 and show that there exists jh ≥ h such that ‖f 1,...,h

njh
(xh) − yh‖ ≤ ε

and conclude by (8.2). Hint for the uniform continuity: take ε > 0 and then δ > 0 given
by the equicontinuity of fh; take any x, y ∈ A with ‖x − y‖ ≤ δ and then i such that
‖fni

(x)− f(x)‖, ‖fni
(y)− f(y)‖ ≤ ε.)

Since f is uniformly continuous on A, it uniquely extends to a uniformly continuous
function, still denoted by f , defined on the whole set K, which is the closure of A.

We are done if we prove that fni
uniformly converges to f on K. By absurd, let us

suppose that it is false. Hence, there exist ε > 0, a subsequence is → +∞ as s → +∞,
and a sequence of points xis ∈ K such that
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‖fnis
(xis)− f(xis)‖ > ε ∀s.

By the compactness of K the sequence of points has a subsequence which converges to a
point x ∈ K. We still denote such a subsequence by xis , that is

xis → x as s → +∞.

By the equicontinuity of the functions fnis
and the uniform continuity of f , there exists

δ > 0 such that

ξ, η ∈ K, ‖ξ − η‖Rm ≤ δ =⇒ ‖fnis
(ξ)− fnis

(η)‖Rp ≤ ε

5
∀s, and ‖f(ξ)− f(η)‖Rp ≤ ε

5
.

Now, we take s ∈ N such that ‖xis−x‖ ≤ δ for s ≥ s, we take x̃ ∈ A such that ‖x̃−x‖ ≤ δ
(remember that A is dense in K), and finally we possibly modify s in such a way that
‖fnis

(x̃) − f(x̃)‖ ≤ ε/5 for all s ≥ s. Hence, for s ≥ s we have the following inequality
which contradicts the absurd hypothesis:

‖fnis
(xis)− f(xis)‖

≤ ‖fnis
(xis)− fnis

(x)‖+ ‖fnis
(x)− fnis

(x̃)‖+ ‖fnis
(x̃)− f(x̃)‖

+‖f(x̃)− f(x)‖+ ‖f(x)− f(xis)‖
≤ ε

5
+

ε

5
+

ε

5
+

ε

5
+

ε

5
+ ε.

¤

Now we exhibit three examples where we separately let drop only one of the previous
hypotheses (compactness of K, equiboundedness, equicontinuity) and where the thesis of
the theorem does not hold anymore.

Example 8.11 (Lacking of compactness.) Let us consider the sequence fn : R→ R

fn(x) =





0 if x ≤ n or x ≥ n + 1,
x− n if n ≤ x ≤ n + 1

2
,

−x + n + 1 if n + 1
2
≤ x ≤ n + 1.

Such a sequence is equicontinuous and equibounded on R, but no subsequence uniformly
converges on R. Indeed, the sequence pointwise converges to the null function f ≡ 0 and
then, if a subsequence is uniformly convergent it must converge to f ≡ 0114, but

sup
x∈R

|fn(x)| = 1

2
> 0 ∀ n.

114The uniform convergence implies the pointwise convergence.

96



Example 8.12 (Lacking of equiboundedness). Let us consider the sequence fn : [0, 1] →
R, with fn(x) ≡ n for all n. Such a sequence is equicontinuous on the compact set [0, 1]
but it is not equibounded. And, of course, no subsequence is uniformly convergent.

Example 8.13 (Lacking of equicontinuity.) Let us consider the sequence fn : [−1, 1] → R

fn(x) =




−1 if − 1 ≤ x ≤ − 1

n
,

nx if − 1
n
≤ x ≤ 1

n
,

1 if 1
n
≤ x ≤ 1.

Such a sequence is equibounded on the compact set [−1, 1] but it is not equicontinuous
(even if every fn is continuous). No subsequence may uniformly converge. Indeed, the
sequence is pointwise converging to the function

f(x) =




−1 if x < 0,
0 if x = 0,
1 if x > 0,

which is discontinuous. If a subsequence uniformly converges, then it must converge to f ,
but all the fn are continuous and the limit f is discontinuous. This is impossible. Hence
there are not uniformly convergent subsequence.

8.3 Metric spaces

Definition 8.14 A non empty set X is said a metric space115 if there exists a nonnegative
function

d : X ×X → [0, +∞[

satisfying:
i) (positive definition) d(x, y) = 0 if and only if x = y;
ii) (symmetry) d(x, y) = d(y, x) for all x, y ∈ X;
iii) (triangular inequality) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

The function d is also said a distance on X (or a metrics).

It is easy to see that a metric space is also a topological space where the convergence of
a sequence xn to a point x is equivalent to the convergence to 0 (in R) of the distances116,
i.e.:

lim
n→+∞

xn = x ⇐⇒ lim
n→+∞

d(xn, x) = 0.

115Actually, we should say that a couple (X, d) is a metric space if X is a non empty set and d is a
function from X ×X to [0,+∞[ satisfying....

116A more precise characterization is that the balls B(x, δ) = {y ∈ X
∣∣∣d(x, y) < δ}, when we vary x ∈ X

and δ > 0, form a basis for the topology (the set of all open sets of X)
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8.3.1 Completeness and fixed point theorems

Definition 8.15 A metric space X, with distance d, is said a complete metric space if
every Cauchy sequence in it is convergent. A Cauchy sequence in X is a sequence of
points xn of X such that

∀ ε > 0 ∃ n ∈ N such that n,m ≥ n =⇒ d(xn, xm) ≤ ε.

Definition 8.16 Let us consider a metric space X and a function F : X → X. We say
that F is a contraction (on X) if there exists a constant L, with 0 ≤ L < 1 such that

d (F (x), F (y)) ≤ Ld(x, y), ∀ x, y ∈ X.

We say that a point x ∈ X is a fixed point for (of) F if

F (x) = x.

The following theorem is one of the most powerful tool in mathematical analysis.

Theorem 8.17 (Contraction Lemma). If X is a complete metric space and F : X → X
is a contraction, then there exists a unique fixed point for F , that is

∃! x ∈ X such that F (x) = x.

Note that this is an existence as well as a uniqueness result: it says that a fixed point
exists, and it also says that it is unique.

Proof of Theorem 8.17. i) (Uniqueness.) We first prove that there exists at most one
fixed point. Indeed, let x, y ∈ X be two fixed points for F , and suppose that they are
distinct (i.e. d(x, y) > 0). We immediately get the following contradiction:

d(x, y) = d (F (x), F (y)) ≤ Ld(x, y) < d(x, y).

ii) (Existence.) Now we prove that a fixed point really exists. Let us take a point
x ∈ X and consider the following sequence in X:

x0 := x, x1 := F (x0), x2 := F (x1), x3 := F (x2), . . . , xn := F (xn−1), . . .

We now prove that such a sequence is a Cauchy sequence and that its limit (which exists
since X is complete) is a fixed point for F . We first observe that

xn = F (xn−1) = F (F (xn−2)) = F (F (F (xn−3))) = · · · = F n(x),

where, with obvious notation, F n stays for the composition F ◦ F ◦ · · · ◦ F of F n times
with itself (with F 0 the identity). Using such a notation we have, for every n ≥ 1,

d(xn+1, xn) = d
(
F n+1(x), F n(x)

)
= d

(
F (F n(x)) , F

(
F n−1(x)

)) ≤ Ld
(
F n(x), F n−1(x)

)
.
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Repeating such an estimate n times and setting C = d(x1, x) ≥ 0, we get, for every n,

d (xn+1, xn) ≤ Lnd(x1, x) := LnC ≥ 0,

and hence, for all n ≥ m ≥ n (recall L ≥ 0)

0 ≤ d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · ·+ d(xm+1, xm) ≤ C

n−1∑
i=m

Li < C

+∞∑
i=n

Li,

from which we get the Cauchy property of the sequence since
∑+∞

i=n Li is the rest of the
converging series of powers of L (remember that 0 ≤ L < 1), and so it is infinitesimal as
n → +∞.

Now, let x ∈ X be the limit of the sequence. Hence we have

0 ≤ d (F (x), x) ≤ d
(
F (x), F n+1(x)

)
+ d

(
F n+1(x), x

)
≤ Ld (x, F n(x)) + d

(
F n+1(x), x

) → 0, as n → +∞.

We then get d(F (x), x) = 0, from which the conclusion F (x) = x. ¤

8.4 Matrix algebra

8.4.1 The exponential matrix and its properties.

Theorem 8.18 Let A be a n× n matrix. Then the matrix series117

+∞∑

k=0

Ak

k!
= I + A +

A2

2!
+

A3

3!
+ · · ·

is convergent118 to a n×n matrix which we call the exponential matrix of A and we denote
by eA.

Proof. We recall that, given the n× n matrix

A = (aij)i,j=1,...,n,

its norm is defined as

‖A‖ =
n∑

i,j=1

|aij|,

117Where I is the identity matrix and Ak means AA · · ·A k times.
118You can regard the convergence of a series of n× n matrices as convergence of a sequence of vectors

in Rn2
.
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which, from a topological point of view, is equivalent to the Euclidean norm of Rn2
. Since

it is a norm it satisfies the sub-additivity property. Moreover, also the Cauchy-Schwarz
inequality holds: for every A,B n× n matrices

‖AB‖ ≤ ‖A‖‖B‖.
Now, we prove that our matrices series is a Cauchy series, from which the conclusion

follows. Indeed, for every p, q ∈ N we have
∥∥∥∥∥

p+q∑

k=0

Ak

k!
−

p∑

k=0

Ak

k!

∥∥∥∥∥ =

∥∥∥∥∥
p+q∑

k=p+1

Ak

k!

∥∥∥∥∥ ≤
p+q∑

k=p+1

‖Ak‖
k!

≤
p+q∑

k=p+1

‖A‖k

k!
,

and we conclude, since the last term is the rest of the (converging) real exponential series
of ‖A‖ ∈ R. ¤

We do not prove the following Proposition, whose proof may be found on every text
book.

Proposition 8.19 For every n×n matrix, the exponential matrix eA is nonsingular (i.e.
determinant different from zero), indeed

det
(
eA

)
= etr(A),

where tr(A) is the trace of A, tr(A) = a11 + a22 + · · ·+ ann.

Proposition 8.20 Let us denote by Mn the space of the n × n real matrices, and fix
A ∈Mn. Then, the function

R 3 t 7→ etA ∈Mn

is derivable and its derivative is

d

dt
etA = AetA. (8.3)

Proof. We just prove (8.3). In the same way as we proved the convergence of the series,
we can also prove the uniform convergence, on every compact set, of the time-dependent
series

+∞∑

k=0

(tA)k

k!
=

+∞∑

k=0

tkAk

k!
,

and of the series of its derivatives

+∞∑

k=1

ktk−1Ak

k!
.
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Hence, we can derive term by term, and we get

d

dt
etA =

d

dt

+∞∑

k=0

tkAk

k!
=

+∞∑

k=0

Ak

k!

d

dt
tk

=
+∞∑

k=1

Ak

(k − 1)!
tk−1 = A

+∞∑

k=0

tkAk

k!
= AetA.

¤

Remark 8.21 By its very definition we have eO = I where O is the null matrix. More-
over, for every t, s ∈ R, A and the exponential matrices etA, esA commute and we have

AetA = etAA, etAesA = e(t+s)A.

8.4.2 On the calculus of the exponential matrix

In general, to explicitly calculate the exponential matrix eA is hard119. Here, we illustrate
some particular favorable cases for the computation of eA.

(Diagonal matrix.) If A is diagonal, then the exponential matrix eA is the diagonal
matrix whose principal diagonal coefficients cjj are given by eλjj , where λjj are the cor-
responding coefficients of the principal diagonal of A. To check this fact, just use the
definition.

(Diagonalizable matrix. ) If A is diagonalizable (on R), i.e. there exist two (real)
matrices B, invertible, and D, diagonal, such that

D = B−1AB,

then, using just the definition, an easy calculation shows that, for every t ∈ R,

etA = BetDB−1,

where etD is diagonal as in the previous case.
(Three special cases for 3× 3 matrices.120)

i) The matrix A has only one eigenvalue λ ∈ R. Then, for every t ∈ R:

etA = eλt

(
I + t (A− λI) +

1

2
t2 (A− λI)2

)
.

ii) The matrix A has three distinct eigenvalues λ, µ, ν ∈ R. Then, for every t ∈ R:

119In particular, eA is not the matrix whose coefficients are the exponential of the coefficients of A.
120For the proof, see, for instance, T.M. Apostol: “Calcolo, Volume terzo, Analisi 2”, Bollati-Boringhieri,

1992.
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etA = eλt (A− µI) (A− νI)

(λ− µ)(λ− ν)
+ eµt (A− λI) (A− νI)

(µ− λ)(µ− ν)
+ eνt (A− λI) (A− µI)

(ν − λ)(ν − µ)
.

iii) The matrix A has only two eigenvalues λ, µ ∈ R, where λ has (algebraic) multiplicity
2 and µ has (algebraic) multiplicity 1. Then, for every t ∈ R:

etA = eλt (I + t(A− λI)) +
eµt − eλt

(µ− λ)2
(A− λI)2 − teλt

µ− λ
(A− λI)2 .

8.5 Remarks on the space C([a, b];Rn)

Let [a, b] be a compact interval of the real line R. Then we define the set of all continuous
functions (up to the boundary) from [a, b] to Rn as121

C([a, b];Rn) =
{

f : [a, b] → Rn
∣∣∣f is continuous in [a, b]

}
.

It is well-known that it is a vectorial space on R. We endow it with the following
metrics122

d(f, g) = sup
x∈[a,b]

‖f(x)− g(x)‖Rn =: ‖f − g‖∞. (8.4)

Remark 8.22 Note that, by definition, a sequence fk ∈ C([a, b];Rn) converges to a func-
tion f ∈ C([a, b];Rn) with respect to the metrics in (8.4) if and only if the sequence
uniformly converges to f in [a, b].

Proposition 8.23 Endowed with the metrics (8.4), C([a, b];Rn) is a complete metric
space.

Proof. Let us consider a Cauchy sequence, that is a sequence of functions fk ∈
C([a, b];Rn) such that, for every ε > 0, there exists k ∈ N such that

i, j ≥ k =⇒ sup
x∈[a,b]

|fi(x)− fj(x)| ≤ ε. (8.5)

But then, for every x ∈ [a, b] fixed, the sequence of vectors fk(x) is also a Cauchy sequence
in Rn. Hence, for the completeness of Rn, it converges. Let us denote by f(x) the limit
of such a sequence. We are going to prove that f ∈ C([a, b];Rn) and that

lim
k→+∞

‖fk − f‖∞ = 0,

121Sometimes it is also denoted by C0([a, b];Rn).
122As exercise, prove that it is a metrics.
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which will conclude the proof. Let us fix ε > 0 and take k as in (8.5). Hence, for i, j ≥ k,
we have

‖fi − fj‖∞ ≤ ε =⇒ ‖fi(x)− fj(x)‖ ≤ ε ∀x ∈ [a, b]
=⇒ lim

j→+∞
‖fi(x)− fj(x)‖ ≤ ε ∀x ∈ [a, b] =⇒ ‖fi(x)− f(x)‖ ≤ ε ∀x ∈ [a, b]

=⇒ ‖fi − f‖∞ ≤ ε.

Since the convergence in metrics is the uniform convergence, then the limit is also con-
tinuous: f ∈ C([a, b];Rn), and the proof is finished. ¤

Remark 8.24 If B ⊆ Rn is a set, we can also consider the space

C([a, b]; B) =
{

f : [a, b] → B
∣∣∣f is continuous in [a, b]

}
,

which is a subset of C([a, b];Rn), and we can think to it as endowed with the same metrics
(8.4). If B is closed, then C([a, b]; B) is also closed in C([a, b];Rn) and hence, as metric
space, it is a complete metric space too.

8.6 Remarks on differential 1-forms in two variables

Definition 8.25 A differential 1-form in two variables is a function between an open set
A of the plane R2 and the set L of the linear functions from R2 to R:

ω : A → L, (x, y) 7→ ω(x, y) : R2 → R (linear).

If ω is such a 1-form, then it is not hard to see that there exist two functions P, Q :
A → R such that ω(x, y) = P (x, y)dx + Q(x, y)dy, where dx and dy are the projection to
the x and the to y axis, respectively123. We say that ω is a continuous 1-form (respectively:
a C1 1-form) if P and Q are continuous (respectively: of class C1).

If ω = Pdx + Qdy is a continuous 1-form on A ⊆ R2, we say that a C1 function
ϕ : A → R is a primitive (or a potential) of the differential form if

∂ϕ

∂x
(x, y) = P (x, y),

∂ϕ

∂y
(x, y) = Q(x, y) ∀ (x, y) ∈ A,

and, in such a case, we say that w is exact.

The following theorem is well-known.

Theorem 8.26 Let ω : A → L be a C1 1-form on A ⊆ R2, open. A necessary condition
for ω = Pdx + Qdy be exact is

∂P

∂y
(x, y) =

∂Q

∂x
(x, y) ∀(x, y) ∈ A. (8.6)

The condition (8.6) becomes also sufficient if the domain A is simply connected124.

123They are a basis of the linear space L.
124A is simply connected if it is connected and it has no “holes”, in the sense that every closed curve in

it is homotopic to a point, with homotopy which makes the curve not exit from A.
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Once we know that a continuous differential form ω = Pdx + Qdy is exact, how can
we calculate a primitive? Here is one of the possible methods. If ϕ is a primitive, then

∂ϕ

∂x
(x, y) = P (x, y),

and so, using indefinite integrals, we also have

∫
∂ϕ

∂x
(x, y)dx =

∫
P (x, y)dx =⇒ ϕ(x, y) = P(x, y) + g(y),

where P is a primitive of P with respect to x only, and g(y) is the constant of integration
which of course depends on y125. Then we get

∂ϕ

∂y
(x, y) = Q(x, y) =⇒ ∂P

∂y
(x, y) + g′(y) = Q(x, y),

from which

g′(y) = Q(x, y)− ∂P
∂y

(x, y),

and, if ω is exact, the second member is really a function of the only variable y. Hence

g(y) = Q̃(x, y) + k

where k ∈ R and Q̃ is a primitive of the function of y: Q(x, y) − ∂P
∂y

(x, y). We conclude
that the functions

ϕ(x, y) = P(x, y) + Q̃(x, y) + k,

are all the primitives of ω126.

125It is a constant with respect to the integration variable x only.
126Actually, they are “all” the primitives if A is connected.
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